CSCE 452/752 Robotics and Spatial Intelligence, Fall 2025

Review Sheet for Final Exam

This review sheet is intended as a guide to help you prepare for Final Exam.

Format

Some types of questions to expect: Question formats will include both multiple choice ("Choose A, B, C, or D") and short answer questions ("Solve", "Draw", "Explain", etc.).
Remember that the homework assignments are graded on the basis of making a reasonable good-faith attempt to solve the problem. That is, receiving full credit on the homework is not a sign that your answers were correct.

15. Motion planning

16. Asymptotically Optimal Motion Planning

17. Pursuit and Evasion

Provided equations

These equations will appear, without any explanation, on the exam paper:
$ x_{k+1} = f(x_k,u_k) $   $ \dot{x} = f(x,u) $   $ y_k = h(x_k) $   $ y(t) = h(x(t)) $   $ R = \left(\frac{l}{2}\right) \frac{v_r + v_l}{v_r - v_l} $   $ \omega = \frac{v_r - v_l}{l} $   $ \left[ \begin{matrix} x_{k+1} \\ y_{k+1} \\ \theta_{k+1} \end{matrix} \right] = \left[\begin{matrix} \cos (\omega \Delta t) & -\sin(\omega \Delta t) & 0 \\ \sin (\omega \Delta t) & \cos(\omega \Delta t) & 0 \\ 0 & 0 & 1 \end{matrix}\right] \left[\begin{matrix} x - c_x \\ y - c_y \\ \theta \end{matrix}\right] + \left[\begin{matrix} c_x \\ c_y \\ \omega \Delta t \end{matrix}\right] $   $D + \frac{3}{2} \sum_{i=1}^M p_i$   $D + \frac{1}{2} \sum_{i=1}^M n_i p_i$   $ \newcommand{\goal}{_{\rm goal}} \newcommand{\obst}{_{\rm obst}} U(x) = U\goal(x) + \sum_i U^{(i)}\obst(x) $   $ U\goal(x) = \frac{1}{2} \zeta \left[d(x, x\goal) \right]^2 $   $ U^{(i)}\obst(x) = \begin{cases} \frac{1}{2} \eta \left( \frac{1}{d_i(x)} - \frac{1}{Q_i^*} \right)^2 & \text{if } d_i(x) \le Q_i^* \\ 0 & \text{if } d_i(x) > Q_i^* \\ \end{cases} $   $ u(t) = K_p e(t) + K_i {\Large\int}_0^{\,t} e(\tau) \mathrm{d}\tau + K_d \frac{\mathrm{d}e}{\mathrm{d}t} $   $ u_k = K_p e_k + K_i \left(\Delta t \sum_{i=1}^k e_i \right) + K_d \left(\frac{e_k - e_{k-1}}{\Delta t} \right) $   $x_{k+1} = Ax_k + Bu_k + G\theta_k$   $y_{k} = Cx_k + H\psi_k$   $ \Sigma^\prime_{k+1} = A \Sigma_k A^\top + G \Sigma_\theta G^\top $   $ L_{k+1} = \Sigma^\prime_{k+1}C^\top ( C \Sigma^\prime_{k+1} C^\top + H \Sigma_\psi H )^{-1} $   $ \mu_{k+1} = A \mu_k + B u_k + L_{k+1}( y_k - C(A \mu_k + B u_k) ) $   $\Sigma_{k+1} = (I - L_{k+1}C)\Sigma^\prime_{k+1} $   \begin{multline*} P(x_k | u_1, \ldots, u_{k-1}, y_1, \ldots, y_k) \\ = \alpha_k P(y_k \mid x_k) \sum_{x_{k-1} \in X} \left[ P(x_k | x_{k-1}, u_{k-1}) P(x_{k-1} \mid u_1,\ldots,u_{k-2},y_1,\ldots,y_{k-1}) \right] \end{multline*}   $ P_{\ell,k} = \left[ 1 + \left(\frac{P(m_\ell = 0 \mid x_k, y_k)}{P(m_\ell = 1 \mid x_k, y_k)} \right) \left(\frac{1 - P_{\ell,k-1}}{P_{\ell,k-1}} \right) \right]^{-1} $   $ \lim_{n \to \infty} P(\text{failure}) = 0 $   $ \lim_{n \to \infty} E[c(P)] = c^* $