CSCE 452/752 Robotics and Spatial Intelligence, Fall 2025

Review Sheet for Test 2

This review sheet is intended as a guide to help you prepare for Test 2.

Format

Some types of questions to expect: Question formats will include both multiple choice ("Choose A, B, C, or D") and short answer questions ("Solve", "Draw", "Explain", etc.).
Remember that the homework assignments are graded on the basis of making a reasonable good-faith attempt to solve the problem. That is, receiving full credit on the homework is not a sign that your answers were correct.

9. Navigation: Potential fields

10. PID Control

11. Localization 1: Dudek-Romanik-Whitesides Localization

12. Localization 2: The Kalman Filter

13. Localization 3: Histogram filters and particle filters

14. Simultaneous Localization and Mapping

Provided equations

These equations will appear, without any explanation, on the cover sheet:
$ x_{k+1} = f(x_k,u_k) $   $ \dot{x} = f(x,u) $   $ y_k = h(x_k) $   $ y(t) = h(x(t)) $   $ R = \left(\frac{l}{2}\right) \frac{v_r + v_l}{v_r - v_l} $   $ \omega = \frac{v_r - v_l}{l} $   $ \left[ \begin{matrix} x_{k+1} \\ y_{k+1} \\ \theta_{k+1} \end{matrix} \right] = \left[\begin{matrix} \cos (\omega \Delta t) & -\sin(\omega \Delta t) & 0 \\ \sin (\omega \Delta t) & \cos(\omega \Delta t) & 0 \\ 0 & 0 & 1 \end{matrix}\right] \left[\begin{matrix} x - c_x \\ y - c_y \\ \theta \end{matrix}\right] + \left[\begin{matrix} c_x \\ c_y \\ \omega \Delta t \end{matrix}\right] $   $D + \frac{3}{2} \sum_{i=1}^M p_i$   $D + \frac{1}{2} \sum_{i=1}^M n_i p_i$   $ \newcommand{\goal}{_{\rm goal}} \newcommand{\obst}{_{\rm obst}} U(x) = U\goal(x) + \sum_i U^{(i)}\obst(x) $   $ U\goal(x) = \frac{1}{2} \zeta \left[d(x, x\goal) \right]^2 $   $ U^{(i)}\obst(x) = \begin{cases} \frac{1}{2} \eta \left( \frac{1}{d_i(x)} - \frac{1}{Q_i^*} \right)^2 & \text{if } d_i(x) \le Q_i^* \\ 0 & \text{if } d_i(x) > Q_i^* \\ \end{cases} $   $ u(t) = K_p e(t) + K_i {\Large\int}_0^{\,t} e(\tau) \mathrm{d}\tau + K_d \frac{\mathrm{d}e}{\mathrm{d}t} $   $ u_k = K_p e_k + K_i \left(\Delta t \sum_{i=1}^k e_i \right) + K_d \left(\frac{e_k - e_{k-1}}{\Delta t} \right) $   $x_{k+1} = Ax_k + Bu_k + G\theta_k$   $y_{k} = Cx_k + H\psi_k$   $ \Sigma^\prime_{k+1} = A \Sigma_k A^\top + G \Sigma_\theta G^\top $   $ L_{k+1} = \Sigma^\prime_{k+1}C^\top ( C \Sigma^\prime_{k+1} C^\top + H \Sigma_\psi H )^{-1} $   $ \mu_{k+1} = A \mu_k + B u_k + L_{k+1}( y_k - C(A \mu_k + B u_k) ) $   $\Sigma_{k+1} = (I - L_{k+1}C)\Sigma^\prime_{k+1} $   \begin{multline*} P(x_k | u_1, \ldots, u_{k-1}, y_1, \ldots, y_k) \\ = \alpha_k P(y_k \mid x_k) \sum_{x_{k-1} \in X} \left[ P(x_k | x_{k-1}, u_{k-1}) P(x_{k-1} \mid u_1,\ldots,u_{k-2},y_1,\ldots,y_{k-1}) \right] \end{multline*}   $ P_{\ell,k} = \left[ 1 + \left(\frac{P(m_\ell = 0 \mid x_k, y_k)}{P(m_\ell = 1 \mid x_k, y_k)} \right) \left(\frac{1 - P_{\ell,k-1}}{P_{\ell,k-1}} \right) \right]^{-1} $