Find the angular velocity:
$\omega = \frac{\Delta \theta}{t}
= \frac{\pi}{4} \frac{\rads}{\secs}
$.
Since it's rotation in place, we have $v_l=-v_r$, so
$\omega = \frac{v_r-v_l}{\ell}
= \frac{2v_r}{10}
= \frac{v_r}{5}
$ and $\frac{v_r}{5} = \frac{\pi}{4}$. This means that $v_r = \frac{5\pi}{4} \cm/\secs$ and $v_l = -v_r = -\frac{5\pi}{4} \cm/\secs$.