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Introduction

Motion planning algorithms generate continuous paths through the robot's
configuration space.

Overview:

The configuration space allows us to treat the robot as a point.
For a typical motion planning problem, it is impractical to attempt to represent
the complete obstacle boundary explicitly.
Instead, use algorithms based on sampling. Two well-known sampling based
algorithms are PRM and RRT.



Configuration Space



Motivation
Suppose we want to plan the motions for a circular robot amongst some known
obstacles.



Intuition
Informally, we want to shrink the robot down to a point and expand the obstacles
by the same amount.

If we keep the center point out of the “expanded” obstacles, then the entire robot
will stay out of the real workspace obstacles.
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...but this intuition can only take us so far.
What if the robot is not a circle?



...but this intuition can only take us so far.
What if we want to plan motions for a multi-link manipulator to grasp a distant
object?



Definition
It looks like we'll need to think about this more carefully.

The configuration space (C-space)  of a system contains one point for each
combination of values for the robot's position, orientation, and internal joint
positions.

Comments:

The configuration space is a special kind of state space.
The configuration space should be a topological space. Informally, this means
that it is meaningful to talk about the “neighborhood” of a configuration.
Many algorithms require the configuration space to be a metric space, which
means that there is some reasonable definition of distance between pairs of
configurations.
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C-spaces for our examples
To find the configuration space for a given system, think about what parameters are
needed to describe the robot's situation.

Circular robot: We need just the  and  coordinates, so

Rectangular robot: Orientation is important, so

Robotic arm: Five revolute joints, so

x y

C = R × R.

C = R × R × S1 = SE(2).

C = S1 × S1 × S1 × S1 × S1.



Common C-spaces
There are some C-spaces that occur in many different contexts:

 (“special orthogonal group”): A robot that can rotate (but not translate) in
the plane.

 (“special Euclidean group”): A robot that can translate and rotate in the
plane.

: A robot that can rotate in 3-space.
: A robot that can translate and rotate in 3-space.

(How many dimensions do each of these C-spaces have?)

SO(2)

SE(2)

SO(3)
SE(3)



Free space and obstacle space
The configuration space itself just describes where the robot is. It doesn't take the
obstacles into account.

Obstacles:

An obstacle configuration is a configuration in which the robot is in collision with
something in the environment, including possibly itself.
The set of obstacle configurations is denoted .

Free space:

Everything else is a free configuration.
The set of free configurations is .

Cobst

Cfree = C − Cobst



Back to our examples
For the disc robot:



Back to our examples
For the rectangle robot:



Motion planning algorithms



The problem
The motion planning problem has these inputs:

A description of .
A start configuration.
A goal configuration.

This is sometimes called the piano movers' problem.

Cfree



Combinatorial approaches
Good news: Combinatorial algorithms exist to solve this problem.

Bad news: These algorithms are:

Difficult to understand.
Difficult to implement.
Exponential time.

More bad news: This problem is PSPACE-complete. (PSPACE-complete is at least as
bad as NP-complete, and likely even worse.) So we shouldn't expect to ever come
up with an efficient algorithm.



What's the problem?
The complexity of the problem comes from the fact that the C-space obstacles can
be difficult to compute and represent.

The configuration space may have high dimension.
The obstacle boundaries may be complicated.
Accurately describing the obstacle boundaries may require an absurd amount of
memory.



Collision detection
Instead of representing  explicitly, efficient algorithms are built around
collision detection.

Given a configuration, determine whether or not it's an obstacle
configuration.

Or, more generally:

Given a short path in configuration space, determine whether or not any
configuration along that path is an obstacle configuration.

Cobst



Collision detection overview
To perform collision tests, one can transform (that is, translate, rotate, and adjust
joints) the geometric model of the robot, then test whether this transformed version
intersects any obstacles.

We'll treat collision detection basically as a black box, but there are efficient
geometric algorithms for this, especially if we are willing to accept an
approximation.



Sampling based motion planning
Using collision detection queries, we can design algorithms that work well for many
common types of instances.

The best existing algorithms of this type are sampling-based algorithms.

The algorithm chooses a sequence of (random) samples that are well-distributed
throughout the C-space.
Using these samples as a guide, the algorithm constructs a graph in ,
attempting to connect the initial and goal configurations.

The differences between sampling based algorithms are in the details of how the
samples are used, and in what kind of graph is constructed.

Cfree



Probabilistic roadmaps
The probabilistic roadmap (PRM) builds an arbitrary graph.

Use a collection of samples, plus the initial and final configurations, as nodes in
the graph.
Discard samples that are in obstacles.
Attempt to connect pairs of nodes that are within the connection distance of
each other. Use the collision detector to determine whether a connection can be
made.



Probabilistic roadmaps
The probabilistic roadmap (PRM) builds an arbitrary graph.

Use a collection of samples, plus the initial and final configurations, as nodes in
the graph.
Discard samples that are in obstacles.
Attempt to connect pairs of nodes that are within the connection distance of
each other. Use the collision detector to determine whether a connection can be
made.



Probabilistic roadmaps
The probabilistic roadmap (PRM) builds an arbitrary graph.

Use a collection of samples, plus the initial and final configurations, as nodes in
the graph.
Discard samples that are in obstacles.
Attempt to connect pairs of nodes that are within the connection distance of
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PRM example



Rapidly-exploring random trees
The rapidly-exploring random tree (RRT) builds a tree.

Begin with the start configuration.
Choose a random sample.
Find the nearest configuration in the tree to this sample.
Extend the tree from this configuration toward the sample.
Repeat.
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Rapidly-exploring random trees
The rapidly-exploring random tree (RRT) builds a tree.

Begin with the start configuration.
Choose a random sample.
Find the nearest configuration in the tree to this sample.
Extend the tree from this configuration toward the sample.
Repeat.



RRT details
Some comments:

The random samples “pull” the tree into the largest unexplored regions. Tree
nodes that are the closest to large unexplored regions are the most likely to have
children added. This is called Voronoi bias.

  
In practice, one uses (at least) two trees and alternates between extending
toward random samples and attempting to connect the two trees. Thus, it
becomes a bidirectional search.
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Some comments:

The random samples “pull” the tree into the largest unexplored regions. Tree
nodes that are the closest to large unexplored regions are the most likely to have
children added. This is called Voronoi bias.

 
In practice, one uses (at least) two trees and alternates between extending
toward random samples and attempting to connect the two trees. Thus, it
becomes a bidirectional search.



RRT example



Comparison between algorithms
PRMs are most useful when:

Many motion planning instances need to be solved in the same C-space.
(multiple query)

RRTs are most useful when:

Only a single instance needs to be solved. (single query)
The system has motion constraints that make it difficult to create direct, straight
connections.



Completeness
If a solution exists, can we guarantee that the PRM or RRT algorithms will find it? No!

Success depends on the sequence of samples we select.

However, we can use a weaker notion of completeness:

A motion planner is probabilistically complete if the probability of failure goes
to zero as the number of samples increases.

Both the PRM and the RRT methods are probabilistically complete.

lim
n→∞

P(failure) = 0



When is motion planning hard? Narrow corridors



Example: Alpha puzzle



Example: Deformable objects



Example: “Wreckless” driving



Example: Grasping


