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Abstract— We study the problem of covering an environment
using an Unmanned Aerial Vehicle (UAV) with limited battery
capacity. We consider a scenario where the UAV can land on an
Unmanned Ground Vehicle (UGV) and recharge the onboard
battery. The UGV can also recharge the UAV while transporting
the UAV to the next take-off site. We present an algorithm to
solve a new variant of the area coverage problem that takes
into account this symbiotic UAV and UGV system. The input
consists of a set of boustrophedon cells — rectangular strips
whose width is equal to the field-of-view of the sensor on the
UAV. The goal is to find a tour for the UAV that visits and
covers all cells in minimum time. This includes flight time
for visiting and covering all cells, recharging time, as well as
the take-off and landing times. We show how to reduce this
problem to a known NP-hard problem, Generalized Traveling
Salesperson Problem (GTSP). Given an optimal GTSP solver,
our approach finds the optimal coverage paths for the UAV
and UGV. We evaluate our algorithm through simulations and
proof-of-concept experiments.

I. INTRODUCTION

Our work is motivated by applications such as infras-
tructure and environmental monitoring [1], [2], [3], surveil-
lance [4], precision agriculture [5], [6], and search and
rescue [7], [8] where Unmanned Aerial Vehicles (UAVs) are
used as mobile sensors. However, most multi-rotor UAVs
have limited battery capacities that restrict deployments
to less than 30 minutes [9]. As a result, surveying large
areas with a single vehicle may require frequent stops to
recharge or replace batteries. Traveling to a fixed recharging
station will further increase the time required to cover the
environment. Instead of using fixed recharging stations, we
show how to use an Unmanned Ground Vehicle (UGV) that
acts as a mobile recharging station.

This work extends our prior work [10] wherein we pre-
sented a method to visit a set of sites using the UAV and
the UGV as a mobile recharging station. In this paper, we
extend it to handle the case where the input is not a set of
sites but instead a set of regions that need to be covered.

The input to our planner is a set of boustrophedon cells —
rectangular regions whose width is equal to the footprint of
the UAV’s sensor. The boustrophedon cells can be obtained
by decomposing regions that need to be covered [11], [12].
Figure 1 shows a motivating example of surveying crops in
four fields. Here, each boustrophedon cells corresponds to a
row of crops that need to be covered by the UAV.
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Fig. 1. We study the problem of covering a set of boustrophedon cells
using a UAV which has limited battery capacity. In a precision agriculture
scenario, a boustrophedon cell may correspond to a row of crops that must
be monitored using a downward-facing camera on the UAV.

A boustrophedon cell can be covered by the UAV entering
from either end and exiting from the other — the planner
must find the optimal sequence in which to cover the
boustrophedon cells as well as the corresponding entry and
exit sites for each boustrophedon cells.

We consider scenarios where the UAV can land on the
UGYV and either recharge in-place or recharge while the UGV
transports the UAV to the next take-off site. We present an
algorithm that plans a tour for the UAV and a path for the
UGV such that the UAV can cover an area in the minimum
time while never running of out charge. This includes not
only the flight time of the UAV but also the time it takes
to recharge as well as the taking-off and landing times.
The output tour given by our planner specifies not only the
order in which to cover the boustrophedon cells but also the
charging schedule. In particular, the planner outputs where
to recharge the battery and how much to recharge by.

This problem is a generalization of the NP-hard Traveling
Salesperson Problem (TSP) [13]. Our solution is based on
reducing the coverage problem to that of the Generalized
TSP (GTSP) [14]. Specifically, we present an algorithm
that is guaranteed to find the optimal coverage tour for
the UAV as long as there exists an optimal GTSP solver.
While no polynomial-time optimal algorithms are believed
to exist for NP-hard problems, there are solvers that find
optimal solutions to many instances in reasonable amounts
of time in practice. We use one such solver, Generalized
Large Neighborhood Search (GLNS) [15], that finds optimal
solutions for GTSP instances. We empirically evaluate the
performance of our algorithm using the GLNS solver. We
also demonstrate the efficacy of the system through proof-
of-concept field experiments.



II. RELATED WORK

Environmental coverage is a well-studied problem in
robotics [16], [17]. The variant most closely related to the
one we study is that of decomposing a known environment
into various cells and then finding a route to sweep (i.e.,
cover) each cell [18], [19], [20], [21], [22]. In this work,
we assume that the first step (cell decomposition) is solved
and focus on the problem of routing the UAV to cover the
cells in minimal time, while keeping track of the battery
level. Specifically, we take as input a boustrophedon cell
decomposition which can be found using techniques given
by, for example, Maza and Ollero [12].

A number of algorithms have also been developed for the
second step, i.e., routing to cover all cells, under various
constraints. In particular, Karapetyan et al. [23] presented
a multi-robot coverage algorithm for boustrophedon cell
decompositions for point robots. Yu et al. [24] presented
a coverage algorithm for a single robot, but with Dubins
steering constraints. Lewis et al. [25] later proved that prob-
lem NP-hard, and showed how to reduce the graph to obtain
practical solutions [26]. Bochkarev and Smith [22] present
a method for decomposing an environment to minimize
the number of turns needed to cover an area, but do not
consider energy-limited robots and consequently, do not need
to keep track of the battery level of the robot. Most recently,
Karapetyan et al. [27] presented two techniques to cover a
collection of cells with multiple Dubins vehicles.

The underlying ideas in the aforementioned works are
similar — reduce the problem of covering all cells to a
variant of the TSP, solve the TSP, and convert the resulting
solution back to a tour for the robots. Our approach extends
these ideas for the case of a robot with limited energy
capacity which can be recharged along the way. This requires
us to keep track of energy level of the robot along the
tour which further complicates the problem. Nevertheless,
we show that by reducing it to GTSP, we can obtain optimal
solutions in reasonable amounts of time.

There have been algorithms for assigning and routing with
one or more stationary recharging stations [28], [29], [30].
Kim et al. present a Mixed Integer Linear Programming ap-
proach for assigning UAVs to stationary recharging stations
while taking into account the task objective [28]. Liu and
Michael [30] presented a method for assigning UAVs to
UGVs acting as recharging stations [30]. In our previous
work [6], [10], we studied the problem of visiting a set of
sites (points in a 2D plane) using an energy-limited UAV. In
[6], we showed how to maximize the number of sites visited
in a single charge when the UAV is allowed to land on the
UGYV and let the UGV transport it to the next take-off site
without the UAV expending energy. In [10], we extended this
to also allow for the UGV to recharge the UAV either while
stationary or while being transported to the next deployment
site. This paper extends the prior work from merely visiting
sites to area coverage. As a result, the planner must decide
not only the order in which the boustrophedon cells should
be visited but also the directions in which to cover them.

III. PROBLEM FORMULATION

The input to our algorithm is a set of n boustrophedon
cells that need to be covered by the UAV. A boustrophedon
cell is a rectangular strip whose width is equal to the diameter
of the field-of-view (FOV) of the sensor onboard the robot.
An example is shown in Figure 2 and a larger example is
shown in Figure 1.
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Fig. 2. Example boustrophedon cells. Each boustrophedon cell is a
rectangle whose width is equal to the footprint of the UAV’s sensor. A
boustrophedon cell 7 is characterized by two sites, a; and b;, on either end.
The algorithm must choose which one acts as the entry site.

Each boustrophedon cell consists of two sites, a; and b;,
where i is the index of the boustrophedon cell. These sites are
placed at two ends of the rectangular strip. A boustrophedon
cell is said to be covered if the UAV traverses in a straight
line from a; to b; or from b; to a;. The UAV can enter a
boustrophedon cell from either site, a; or b;. However, once
the UAV has entered a boustrophedon cell it is required to
cover the entire boustrophedon cell and exit from the other
site. The coverage algorithm must choose one of the sites as
the entry site. We slightly generalize the traditional notion
of a boustrophedon cell by allowing them to be oriented
along different directions. That is, we do not require the
boustrophedon cells to be parallel to each other.

We make the following assumptions:

o the UAV has an initial battery charge of 100%;

o the UAV flies at a fixed-altitude plane when covering a
boustrophedon cell;

o the UAV travels at unit speed;

« the battery discharges at a unit rate (one unit per unit time
and per unit distance traveled);

« the battery gets recharged at a rate of 7 units per unit time;

o the UGV has unlimited fuel/battery capacity.

Since we assume that the UAV travels with unit speed,
we use time and distance interchangeably. We use t7o and
tr, to represent the time taken by the UAV to take-off from
the UGV to reach the fixed-altitude plane and land from this
plane onto the UGV, respectively. D ,,x represents the total
distance a UAV can travel with 100% battery capacity.! We
discretize the battery capacity into C levels.

Let (i) € {a;,b;} denote the site chosen by a coverage
algorithm to be the entry site of the i*" boustrophedon cell.
Correspondingly, (i) denotes the site chosen to be the exit

IStrictly speaking, we maintain a reserve battery capacity to take-off from
ground to reach the fixed altitude plane and land from the fixed-altitude
plane on the ground. In this paper, when we refer to 100% battery capacity,
it excludes this reserve battery for taking-off and landing.



Yi 71' Yi+1

[ v aryvromeesd
UAV fiight UAV flight

Yi 71‘

7 20— — 0
UAV flight U UAV flight

recharging

Yit1 Yi

Fig. 3.

site of the boustrophedon cell, i.e., (i) = {a;, b; }\v(%).

o(j) denotes the order in which the boustrophedon cells

are to be visited. That is, o(j) € {1,...,n} gives the j*"

boustrophedon cell that is visited.

We use 7;, 7;, and ;41 to denote y(o (7)), F(o(i)), and
v(o(i + 1)), respectively. We denote by t(7;,7j+1) the
time it takes for the UGV to travel from the exit site of
4t boustrophedon cell to the entry site of the next visited
boustrophedon cell. We use ¢ A(ﬁj,'yjﬂ) to represent the
time it takes for the UAV to travel from the exit site of
the j'* boustrophedon cell to the entry site of the next
boustrophedon cell visited. Similarly, t4(v;,7;) gives the
time taken by the UAV to cover the ;! boustrophedon cell.

Suppose 7 is a path that visits every boustrophedon cell
in the order given by o and with entry and exit sites given
by ~y. The cost of the path depends on how the UAV travels
between consecutive boustrophedon cells. Consider traveling
from ~; to 7; and then on to v, along 7. We have the
following components for this part of the path:

o The UAV must fly from ~; to 7;. The time taken is given
by ta(v;,7;)-

o It can then choose to land on the UGV at ;s recharge in-
place, and take-off to reach the fixed-altitude plane at 7.
Let I;(%,) be an indicator function that denotes whether
the UAV chooses to do this or not.

o It can then choose to either fly from 7, to ;4 or land
on the UGV at 7, recharge while being carried by the
UGV to the next site, then take-off at ;4 to reach the
fixed-altitude plane. Let I5(7;) be an indicator function
denoting whether the UAV travels with the UGV or not.

e It can then choose to land on the UGV at 7,1, recharge
in-place, and take-off to reach the fixed-altitude plane at
v;+1. Let I;(7y;j4+1) be an indicator function that denotes
whether the UAV chooses to do this or not.

Based on these choices, the cost of traveling from v, to ;41

is given by:

T(j,j+1) =talv,7;)

+ Li(¥;)(te +7-0(7;,7;) + tro)

+ (1= L@;))ta(@;,vj+1)

+ 1>(¥;)(max{tc(¥;, vj+1),7 - 0(F;, vi+1)} +to + tro)

+ Ii(vj+1) (tL + - 0(vj41,7541) + tro)

1
Here, b(-) is a function which gives the amount by which
the battery should be recharged between the two entry sites.
Therefore, we can define the cost of the path 7 as:
n—1

T(m) = Z T(’Yj)’Yjﬁ-l) + tA(’Ynain)
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Five edge types (F-F, F-DUF, F-FDU, F-DUFDU, F-DTU).

We are now ready to define the problem.

Problem 1 (Multiple Polygon Coverage): Given a set of
boustrophedon cells to be covered, find a path 7* for the
UAV that visits and covers all of the boustrophedon cells,
while minimizing the cost (Equation 2), and ensuring that
the UAV does not run out of battery capacity. The path 7*
must specify the order in which to visit the boustrophedon
cells, o(-), the entry site for each boustrophedon cell, ~(-),
the recharging indicator functions, I;(-) and I(-), and the
amount of recharging at a site, b(-).

Note that finding a path for the UAV necessitates finding a
path for the UGV that supports the UAV recharging schedule.

IV. GTSP-BASED ALGORITHM

We solve the polygon coverage problem by reducing it to
GTSP. In this section, we describe in detail the reduction to
GTSP. The input to GTSP is a graph where the vertices are
partitioned into clusters. The objective is to find a minimum
cost tour that visits exactly one vertex in each cluster. If all
the clusters contain exactly one vertex, then GTSP trivially
reduces to TSP. We show how to create the clusters, the
edges between the clusters and then show how to convert
the solution for GTSP into tours for the UAV and the UGV.

A. Vertices and Clusters

We discretize the battery into C' levels. We create C'
vertices, one corresponding to each discretized battery level,
for each site a; and b; corresponding to boustrophedon cell
1. The vertex is denoted by v’(fi or v{fi, where k corresponds
to the discretized battery level. We create one cluster per
boustrophedon cell. This cluster contains 2C' vertices, C' of
them corresponding to a; and b; each.

B. Edges

We create an edge between every pair of vertices that do
not belong to the same cluster (i.e., do not belong to the
same boustrophedon cell). Recall that a vertex corresponds
to the entry site for the corresponding boustrophedon cell.
Therefore, an edge between two vertices represents the UAV
starting at the entry site of the first boustrophedon cell
and ending at the entry site of the next boustrophedon
cell. This includes two travel legs: coverage of the first
boustrophedon cell and then traveling from the exit site of the
first boustrophedon cell towards the second boustrophedon
cell. Recall that the UAV must always fly the first leg;
however, the second leg can be a combination of recharging,
flying, and/or recharging while traveling on the UGV.

Equation 1 gives the cost of traveling between two en-
try sites of different boustrophedon cells. The actual cost
depends on the three binary indicator variables: Iy(v;),



I5(7;), and I1(v;41). This gives a total of 2% possible travel
options. However, three of these eight options are redundant.
Specifically, if the UAV chooses to recharge while traveling
on the UGV, then also recharging on either end of this
leg is redundant and, in fact, more time-consuming since
it will have to take-off and land more than once. Formally,
if Io(7;) = 1, then the optimal algorithm will never set
Ii(v;) = 1 nor Iy(vyj+1) = 1. Therefore, of these 23
possibilities, we can eliminate three, leaving a total of five
possibilities for the second leg. These are shown in Figure 3.
Note that since we assume that the UAV starts with 100%
battery capacity, we will never recharge at the first entry site.

We denote the five edge combinations using the notation:

= Fly, D = Down/Land, U = Up/Take-off, and T =
Transit. The first leg is always the UAV flying to cover the
boustrophedon cell. We describe the actual edge costs in the
remainder of this section.

In the fol]owmg, we show how to compute the edge cost

between vertices v/ and va . k] denotes the battery at vb

if going from vk and va Note that there will also be edges

between vb and vaJ, ki and vb , and vb ‘ and vb The costs
for these edges can be obtalned using the same formula just
by swapping a with b and vice-versa.

F-F: The cost of the F-F type of edge between vfj and
véj is oo if the energy required to go from a; to b; and then
to a; is more than k; — k;. Else, the edge cost is given by:

" K g
Trr(vgi,vh7) = ta(vfi,vy)) +ta(vy 05i). ()

F-FDU: The cost of the F-FDU type of edge between
vfjj and vfj is oo if the energy required to go from a; to b;

and then to a; is more than k; — k;. Else, the edge cost is:

Tr.rpu (v siaﬂsj) =
ks €]
ta(vgi,v )—i—tA(vb, a)—l—tL—i—r e+ tro,
where e = max{0, k; — (ki — (llai — billy + [1bi — a;l,))}

gives the recharging amount.

F-DUFDU: The cost of the F-DUFDU type of edge
between UL“ and vij is equal to oo if the energy required to
go from a; to b; is more than k — k; and then b; to aj is
more than k; — k. Else, the edge cost is given by:

Tr-purpu (v}, Uf;) =

ta(vk op) +tL 47 e+ tro (5)
J’_tA(Ub’ o)) Tt +7-e2+tro,

where e; = max{0,k, — (k; — |la; — bi||,)} and ex =
max{0, k; — (kj —||b; — a;||,)} gives the recharging amount
for e; and es, respectively.

F-DUF: The cost of the F-DUF type of edge between

k. kj . . .

vgi and vg; is equal to oo if the energy required to go from
a; to b; is more than &} — k; and then b; to a; is more than
k; — k;. Else, the edge cost is given by:

TF-DUF(”Sfa Uéfj) =

Ea(ul o) tp e tro + talvy, o),

(6)

where e = max{0, k} — (k; —||la; —
ing amount.

F-DTU: The cost of the F-FDU type of edge between

ki and véj is equal to oo if the energy required to go from

Vg
a; to b; is more than k] — k;. Else, the edge cost is given by:

bi||,)} gives the recharg-

Tr-pTU (Ufj L) =
ki K,k )
ta(vgi,v )+tL+maX(tg(vb s Vg0), 7€) +tro,
where e = max{0,k; — (ki — [|b; —aqjl,)} gives the
recharging amount.
The actual edge cost between Uff? and vsj
is the minimum of all five types. Specifically,
the final edge cost is given by: T(v ’vf) =

min{7T¢.g, Tr-rou, Tr-purpu; Tr-pur, Te-pTu}.  We  also
keep track of which type of edge gives the final edge cost.
This is used when converting the GTSP tour into a solution
for the original problem.

C. Solving GTSP

We solve the GTSP instance using the GLNS solver [15].
GLNS uses a neighborhood search heuristic to find the
optimal solution for the given GTSP instance. GLNS also
allows for finding feasible solutions in lesser time, potentially
at the expense of optimality.

Common alternatives for finding the optimal GTSP solu-
tion are Integer Programming or reducing GTSP to TSP [14]
and then using a TSP solver such as Concorde [31]. In
our previous work [10], we showed that GLNS finds the
optimal solution for a similar class of GTSP instances in
times that are at least an order of magnitude faster than the
other approaches. As a result, we focus on only using GLNS
for solving the GTSP instances in this paper.

D. Converting the GTSP solution to a Coverage Tour

The optimal tour obtained from the GTSP solver is a
tour that visits exactly one vertex in each cluster. Recall
that one cluster corresponds to one boustrophedon cell. The
optimal tour will visit only one vertex within a cluster. The
chosen vertex corresponds specifies the entry site for the
boustrophedon cell as well as the corresponding battery level.

For example, if the edge between v*: and vf' is selected,
then this implies the UAV will cover the ith boustrophedon
cell with a; as the entry site and b; as the exit site. Then,
the UAV will travel from b; to the entry site of the next
boustrophedon cell which is chosen to be bj. The actual
mode of transportation between v*: and vb depends on the
type of the edge (F-F, F-FDU, F- DUFDU F-DUF, or F-
DTU). Depending the type, we construct the actual tour and
recharging schedule for the UAV.

We can determine the UGV path based on the type of
edges chosen by considering the edges in the order they
appear in the optimal GTSP tour. For a F-F edge, the UGV is
not required. For an F-DUF edge, we add the exit site of the
first boustrophedon cell to the UGV tour. Similarly, for an
F-FDU, we add the entry site of the second boustrophedon
cell to the UGV tour. Finally, for F-DUFDU and F-DTU
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Fig. 4. Solution to the input instance given in Figure 1.

edges, we add the exit site of the first boustrophedon cell
and the entry site of the second one to the UGV tour.

E. Performance Guarantees

If the GTSP solver finds the optimal tour, then the corre-
sponding UAV tour is also the optimal solution to Problem 1
with the additional assumption that the UGV is as fast as
the UAV. If the UAV is faster than the UGV, then it is
possible that the solution yields paths where the UAV reaches
a landing site before the UGV. In such cases, one possibility
is to have more than one UGV that can support the UAV
tour. In our previous work [32], we presented an Integer
Programming solution that minimizes the number of slower
UGVs required to support the UAV tour.

V. SIMULATIONS

In this section, we present qualitative and quantitative
results to evaluate the proposed algorithm. In particular, we
analyze the effect of various parameters on the tour cost and
the computational time of the algorithm. The experiments
were run on an Ubuntu 14.04 computer with an Intel i7-
6700HQ CPU running at 2.6GHz, with 4 cores, 16GB of
RAM, and a GTX 980M GPU.

A. Qualitative Examples

We use the boustrophedon cells given in Figure 1 as
the input. There are a total of 66 boustrophedon cells. The
solution is shown in Figure 4. The boustrophedon cells are
marked with rectangles. The input parameters were set to:
tro =5, tp, = 45, 1 = 2, Dyax = 1800 and C' = 20. The
UGV speed was set to be 20% as that of the UAV.

We compare the results of our algorithm with a naive
baseline. The baseline approach visits each boustrophedon
cells in the same order in which they appear along the
boundary of the polygon. The UAV lands to recharge on the
UGYV only when covering the next boustrophedon cell would
deplete it of the remaining energy. Once on the UGV, the
UAV recharges to maximum capacity. The baseline approach
produces a tour which requires 29564 seconds for completion
(as given by Equation 2) where as the proposed algorithm
produces a tour which requires 25910 seconds.

Figures 5(b)- 5(d) presents additional qualitative examples
that show the effect of changing D, and the UGV speed
on the solution for the input given in Figure 5(a). We observe
that if the UAV has enough energy capacity Dy,ax then the
final tour does not use the UGV (Figure 5(b)). If the UGV is
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Fig. 5. (a) Input for qualitative examples to help explain input parameters
and the effects. (b) Using input parameters: tro = 5, t;, = 45, r = 2,
Dmax = 200, UGV speed is one-fifth of the UAV, and C' = 20, results
in a tour that uses only the UAV. (c) Minimum number of landings/take-
offs in place for the given input parameters. The input parameters for this
experiment were t7o = 5, tf, = 45, r = 2, Dmax = 50 UGV speed
is 50 times slower than the UAV, and C' = 20. (d) Minimum number of
landings/take-offs using the UGV to recharge for the given input parameters.
The input parameters for this experiment were t7o = 5, tf, = 45, r = 2,
Dmax = 50 UGV speed is 5 times slower than the UAV, and C' = 20.
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Fig. 6. (a) Example input boustrophedon cells for the 10 trials used for
generating (b). We randomly create 15 non-overlapping boustrophedon cells,
each no more than 10m. (b) Tour cost vs. flight budget, Dmax. We vary the
total budget as well as the distance per battery level. The input parameters
were: tpo = 1000, t;, = 1000, » = 2, and C' = 20. The UGV is 5 times
slower than the UAV.

significantly slower than the UAV and D, is small, then
the UAV only recharges in-place (Figure 5(c)) and does not
use the F-DTU edges. However, if the UGV is not as slow,
then the tour uses F-DTU edges (Figure 5(d)). We present
quantitative evaluation of these parameters next.

B. Effect of Changing D..x on the Tour Cost

Next, we study the effect of changing the total battery
capacity, i.e., changing D ,.x, on the total tour time. We ran-
domly generate 15 boustrophedon cells in a 100m x 100m
environment such that no two boustrophedon cells intersect
with each other and each boustrophedon cell is no more than
10 meters long. Figure 6(a) shows one example.



We vary Dy,.x from 10 meters to 50 meters. We use the
same set of 15 boustrophedon cells for each value of Dy ax.
Figure 6(b) shows the average, minimum, and maximum
value of the optimal tour cost. We observe that the tour cost
decreases as D, increases, as is expected. We also observe
a step decrease in the minimum and maximum tour costs as
D..x increases. This can be attributed to the fact that as
D ax increases the UAV can travel a larger distance without
running out of energy. Therefore, it may need to land/take-
off fewer number of times. Each landing and taking-off
operation costs a fixed amount of time. Therefore, we see
a step decrease in the tour cost as Dy, ,x increases.

C. Effect on the Computational Time

Next, we empirically analyze the computational time as a
function of some of the input parameters.

Figure 7(a) shows the effect of increasing the number of
input boustrophedon cells on the computational time. The
input number of boustrophedon cells are varied from 10 to
101 in steps of 7. The figure shows the average, minimum,
and maximum computational times for 10 random instances.
The input parameters for these experiments were kept the
same: tro = 100, ¢, = 100, r = 2, and C' = 20.

Figure 7(b) shows the effect of increasing the battery level,
i.e., C, on the computational time. We vary C' from 10 to
101 in steps of 7. The input parameters for these experiments
were: tr7o = 100, tz = 100, » = 2. The figure shows the
average, minimum, and maximum computational time for 10
random instances with 15 boustrophedon cells each.

We observe that the computational time increases (per-
haps, exponentially) with increasing the number of input
boustrophedon cells and battery level. Nevertheless, the com-
putational time is still small enough (less than 50 minutes)
for moderately sized instances (80 boustrophedon cells).

Con i Time vs. Cells
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Fig. 7. Input parameters: t7o = 100, tr, = 100, » = 2, UGV
speed is one-fifth that of the UAV for both plots. 10 random sets of
input boustrophedon cells were randomly generated in a 100m x 100m
environment. We set C' = 20 for (a) and vary C for (b).

VI. FIELD EXPERIMENTS

We conducted proof-of-concept field experiments using
the UAV and UGV shown in Figure 8(c). The UAV is a
DII 450 frame [33] with a Pixhawk 2.1 [34] flight controller
running the APM firmware [35] and the UGV is a Clearpath
Husky [36]. The UAV is equipped with dual GPSs, a down-
wards facing LIDAR (for relative altitude estimation) and
the IR-Lock infrared camera [37]. The UGV is fitted with

infrared LED beacons. The IR-Lock system [37] allows for
precision landing on the UGV with up to 10cm accuracy
in nominal wind conditions. More details on the system are
reported in our prior work [32].

Output Tour

L

(c) Robots (e) UGV Path

(d) UAV Path

Fig. 8.  Proof-of-concept Experiment with 13 boustrophedon cells. The
input parameters were: Dmax = 1000, C' = 100, t7o = 100, t;, = 100,
r = 2, and UGV speed is one-fifth that of the UAV. The UGV is also
restricted to the road network (red sites).

Figure 8(a) shows the input boustrophedon cells for the
proof-of-concept experiment conducted at Kentland Farms
at Virginia Tech. The motion of the UGV is restricted to
only those sites that lie on the road. Specifically, we allow
F-FDU, F-DUF, F-DTU, or F-DUFDU edges only if the
corresponding sites are on the road. These sites are marked
in red in Figure 8(a). The output tour for the UAV is shown
in Figure 8(b). The following parameters were used as input
to the outdoor field experiments: tro = 100, t; = 100,
r = 2, Dpax = 1000, 13 boustrophedon cells, and C' =
100. The GPS trace of the UAV and the UGV are shown in
Figures 8(d) and 8(e). Additional experiments are included
in the accompanying multi-media submission.

VII. CONCLUSION

We present an algorithm for optimal coverage of boustro-
phedon cells with an energy-limited UAV and a UGV. The
UGV acts as a mobile recharging station that can mule the
UAV between sites. We analyze the effects of various input
parameters on the total tour cost as well as the computational
time. We evaluate our algorithm through field experiments.

If the UGV is slower, it is possible that the UAV may
reach a site before the UGV. In [32], we showed how find
the minimum number of UGVs required to ensure that the
UAV can execute its tour without having to wait for the UGV.
A possible extension is to find a tour for a fixed number of
slower UGVs that still ensures that the UAV does not need
to wait for the UGV. We restrict the UAV to land and take-
off only from the entry/exit sites of a boustrophedon cell. A
possible extension would be to relax this assumption which
can result in even shorter tours.
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