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Abstract—Wireless sensor networks are vulnerable to various
attacks and network dynamics that can breach data privacy and
harm data availability. Since those threats cannot be addressed
purely by cryptography-based methods, this paper presents a
data dissemination scheme that can enhance two goals: data pri-
vacy and data availability, leveraging the node location diversity
presented in typical wireless sensor networks rather than relying
on cryptographic techniques. We demonstrate that the message
content is important to quantify the uncertainty associated with
data privacy and data availability, and provide content-based
definitions utilizing information states. Further, to strike the
balance between two conflicting goals in an energy efficient way,
we construct a spatial privacy graph based on the locations of
network nodes, and use a distributed coloring scheme to ensure
that any pairs of nodes whose combined data provide too much
information should not send their sensed data to the same storage
node. Additionally, sensor nodes selectively send data to multiple
storage nodes to achieve higher availability. Our experimental
results show that our scheme can achieve better data privacy
and a higher level of data availability at smaller energy cost
than other baseline data dissemination schemes.

I. I NTRODUCTION

Wireless sensor networks (WSNs) are changing the way
that we interact with the physical world by providing a low
cost method to monitor the surroundings. For example, we
have recently witnessed sensing applications that remotely
monitor endangered wild animals and track targets. As those
WSNs scale in size, the large volume of sensed data and the
required energy of collecting them have led to data-centric
sensor networks (DCSNs) [1], [2]. In DCSNs, sensed data are
stored among a few dedicated storage nodes in the network,
and a mobile sink will visit the network occasionally to collect
the stored data. Unlike its previous counterpart, the sink-based
sensor network where one sink is used to collect and store
sensed data, a DCSN is efficient and robust, since it does not
require every sensor node to deliver data to the sink that may
be far away and may also become a single point of failure.

Once deployed, possibly in a remote environment, DCSNs
are typically left unattended with occasional human visitsand
can create vast quantities of information.As an example, a
DCSN can be deployed in a forest for monitoring endan-
gered animals. Sensed data are stored in the network first
and are then collected automatically by a forest ranger who
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Fig. 1. An illustration of a data-centric sensor network (DCSN).

makes periodic patrols while carrying a data collector. The
characteristic of little physical protectioncombined with the
low cost nature makes DCSNs vulnerable to a wide variety
of network dynamics and attacks, including node captures,
node compromises, node failures, packet injections, jamming
attacks, etc. As a result, an adversary maybreach data privacy
by acquiringsensitive data stored in the network through node
compromises, ormay affect data availability by removing
data permanently via disabling network nodes. In a habitat
monitoring or target tracking DCSN, obtaining the stored data
reveals the location information about targets, which may
create life-threatening risks. To cope with those threats,we
design a data-dissemination scheme that can enhance data
privacy and data availability before they are collected by a
trusted data center.

Many cryptography-based methods [3], [4], [1] are designed
to ensure data integrity, confidentiality, and access control for
sensor networks. Although those cryptography-based strategies
are essential in protecting WSNs against various attacks, they
can only partially address the threats against data privacyand
data availability. For instance, they cannot cope with informa-
tion leakage caused by node compromises or communication
disturbance caused by jamming attacks. Additionally, most
cryptography-based strategies rely on robust key management
schemes, which will impose extra storage costs and complicate
the network deployment as well as its operations. In this
paper, we are interested in whether we can mitigate threats
against data privacy and data availability bynon-cryptography-
basedmethods that only exploit the sensor location diversity
exhibited in the typical wireless sensor network. We present a



method that can serve as a complimentary solution to existing
cryptography-based methods to enhance data privacy and data
availability.

Addressing data privacy issues together with data availabil-
ity is tricky. To increase data availability against node failure,
it is natural to replicate data to many nodes. However, this
replication introduces the risk of data privacy leakage due
to node compromises. The requirement of energy efficiency
further complicates the solution. To strike a balance among
these three goals, we construct a graph called the spatial
privacy graph (SPG) to guide the data dissemination and
validate that our scheme can achieve a higher level of data
privacy and data availability at less energy cost compared
with other data dissemination schemes. We summarize our
contributions as follows:

• We have identified that data privacy and data availabil-
ity are determined by the uncertainty specified by data
contents, e.g., the granularity of locations in the context
of location privacy, and we provided a novel definition
of data privacy and data availability utilizinginformation
statesto quantify the uncertainty. Compared to existing
privacy definitions, e.g., entropy, our definition requires
no prior knowledge.

• To our best knowledge, this is the first work designing
a data dissemination scheme with the goal of achieving
data privacy and data availability simultaneously. We
formulate the problem as a multi-target optimization
problem and use distributed graph coloring to drive the
data dissemination.

• To solve the problem, we constructed Spatial Privacy
Graphs (SPG) by identifying node pairsthat compro-
mised in combinationcan breach data privacy and harm
data availability, and designed an SPG-based distributed
coloring algorithm that has shown to enhance data privacy
and data availability.

The rest of the paper is organized as follows. We begin the
paper in Section II by describing the sensor network model
and the threat model. Then, we overview the problem of en-
hancing privacy and availability, and discuss two baselinedata
dissemination schemes in Section III. We propose our SPG-
based data dissemination scheme that utilizes the concept of
a SPG in Section IV. In Section V, we evaluate both baseline
and our SPG-based data dissemination schemes. Finally, we
end the paper with related work in Section VI and concluding
remarks in Section VII.

II. M ODEL

In this section, we describe the network model and threat
model. We summarize our notations in Table I.

A. Network Model

We focus on a data-centric sensor network that is deployed
to track targets or monitor habitats.Specifically, the sensing
application first utilizes trusted data collectors to collect mes-
sages generated by every sensor, and then derives the location
information of the target from the messages. Thenetwork
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Fig. 2. Illustration that a combination of two potential related nodes provides
more valuable information than three nodes which possess similar information.

consists of sensor nodes, storage nodes, and mobile sinks,as
shown in Figure 1.

1) Sensor Nodes:A network ofnn static sensor nodesSn

are deployed through a planar environmentW at positions
x1, x2, ..., xnn

andSn = {xi}i∈[1...nn]. Each sensor node con-
tinually senses its surroundings, and sends an event message to
storage nodes whenever it senses an event of interest. Sensor
nodes are identical, with the same sensing rangers and the
same communication rangerc. The sensor nodes do not store
data, but they always forward data to storage nodes. We avoid
letting sensor nodes store data because of their lack of enough
memory to store data measured for months or years, and the
prohibitive number of nodes from which a mobile sink needs
to offload data.

Additionally, we assume the network consists of low cost
sensors capable ofcoarse sensing. That is, each sensor is
equipped with a long range proximity sensor that can detect
the target whenever‖q(t)− xni

‖ ≤ rs, where q(t) is the
position of a target at timet. This sensing is boolean in the
sense that the node knows only whether or not the target has
been detected, but no other information. Thus, the reported
measurement will be a circle with radiusrs. We assume the
rs is large enough so that capturing one message does not
breach the privacy requirement.

Finally, each sensor node is aware of the relative location of
its neighbors. Such information can be obtained by wireless
localization algorithms [5].

2) Storage Nodes:A collection ofns storage nodesSs are
deployed across the environmentW at positiony1, y2, ..., yns

,
wherens ≪ nn, andSs = {yi}i∈[1...ns]. Storage nodes have
larger size of memory and larger battery capacity. They are in
charge of storing data before mobile sinks offload the data. To
prevent malicious users from overflowing the storage nodes by
injecting faulty packets, each storage node will perform data
filtering to sterilize the data. Thus, no matter whether the data
are encrypted or notduring message deliveries, storage nodes
are required to access the plaintext of each packet.

3) Mobile Sinks:From time to time, one or more mobile
sinks will visit the network, and they will get close to each
storage node tooffload data. Because of the relatively small
number, we assume that mobile sinks are equipped with
tamper-proof hardware, or guarded by humans. Thus, mobile
sinks cannot be compromised by any adversary or followed
by a jammer that may interfere with their communication. In
summary, mobile sinks are reliable and trustworthy.



Notation Explanation Notation Explanation Notation Explanation

Sn The set of sensor nodes nn The total number of sensor nodes xi A sensor node, wherei ∈ {1, . . . , nn}
Ss The set of storage nodes ns The total number of storage nodes yi A storage node, wherei ∈ {1, . . . , ns}
rs The sensing radius of sensor nodes rc The communication radius of sensor nodes p Duplication probability

ηi(t) The I-state of storage nodei at timet η∗(t) The master I-state,η∗(t) =
⋂

i∈Ss
ηi(t) V (η(t)) The area of I-stateη(t)

P I-state based privacy measure A I-state based availability measure E Energy cost

TABLE I
FREQUENTLY USED NOTATIONS.

B. Threat Model

In this paper, we consider both unintentional and malicious
threats that breach data privacy and harm data availability.
We make the following assumptions about the symptoms the
adversaries or network dynamics can cause:

Nodes can be compromised.Since both sensor nodes and
storage nodes are left in the field unattended and prone to
be compromised, we assume both of them are untrustworthy.
However, the adversary can only compromise up tog storage
nodes, sensor nodes, or any combination of them. As a
starting point, we assumeg = 1 and adversaries are only
interested in capturing storage nodes due to the higher payoff
of compromising a storage node than a sensor node. When a
node is compromised the adversary can obtain all stored data
including secret keys and sensed data. Moreover, we assume
that adversaries donot have a global view of the network and
are unaware of all the locations of sensor nodes as well as
storage nodes.

Nodes can fail or be jammed.We assume both sensor
nodes and storage nodes can fail during the lifetime of the
network. They can experience hardware problems, causing
permanent data loss, or their communication channel can
suffer from severe radio interference, resulting in an inability
to receive or send data. In either case, the data that are stored
or scheduled to be stored on the affected storage nodes will
not be available to mobile sinks.

In summary, data can be leaked to adversaries or can be
unavailable to mobile sinks due to various reasons, breaching
data privacy and harming data availability.

III. PROBLEM OVERVIEW

In this section, we first motivate the necessity of quantifying
privacy and availability based on message contents; then
we discuss information states for modeling uncertainty and
provide a quantitative definition of data privacy and data avail-
ability; finally, we formalize and analyze data dissemination
schemes.

A. Privacy Scope

Data privacy of a network includescontent privacy and
contextprivacy [6]. In this study, we focus on content privacy
breaches that are caused by node compromises, node failures,
or even DoS attacks. We refer readers to other work [7],
[6] that copes with preserving context privacy, e.g., where
the communication has occurred and who has participated
in communication. We note that those two problems are

complementary: ourcontent-aware data dissemination problem
focuses onwhich storage node to deliver whilecontext-aware
routing problems deal withhow to deliver data.

B. Motivation for the Privacy and Availability Definition

Preserving privacy is normally considered as the guarantee
that data is observable only by those who are supposed to
access it. However, such a definition does not capture the fact
that privacy is closely linked to its resolution of uncertainty.
Taking location privacy for example, we generally do not want
to reveal where we are. Here, the definition ofwhere we are
determines the boundary of the tolerance level of privacy, and
it can be quite different in various cases. As an example,
Alice might be willing to reveal her location information if
the granularity of location is at the level of city, while sheis
unwilling to reveal her current street address. Similarly,a gran-
ularity of no less than250m may be acceptable for protecting
endangered animals, but not less than25m. Thus, the definition
of privacy should quantify the level of informationuncertainty.
Similarly, the goal of data availability is not necessarilyto
guarantee that all data records are accessible, but to ensure
the available data set produces enough information about the
target with acceptable level of resolution, i.e., uncertainty.

Before quantifying the information uncertainty, we clarify
the relationship between information and messages in sensor
networks. Since the message generated by each node only
provides a portion of the global location information that the
sensing application has, one naive method to quantify the
information uncertainty is to count the number of messages.
For instance, breaching data privacy can be quantified by the
number of messages obtained by adversaries, and data avail-
ability can be defined as the number of available messages.

However, with regard to privacy and availability, thecontent
of messages is more important than the quantity of messages.
Figure 2 provides a simple illustration of the idea in the
context of target tracking applications, where the contentrefers
to the location of target. In the figure, nodesA, B, C and
D detect the target using their proximity sensors, and each
generates a message reporting the possible region of the target
as a circle centered at itself. The location information of the
target provided by a set of messages is the intersection of
corresponding disks. Combining three messages from nodesA,
B, andC results in an intersection region much larger than
the intersection of nodesA and D’s sensing ranges. Thus,
leaking three messages does not necessary map to a worse
privacy breach than leaking two messages, and the definition



of data privacy and data availability should becontent-aware
rather than counting the messages.

C. Uncertainty and Information States

1) Modeling the Uncertainty:We use the concept ofin-
formation states(I-states) [8] to capture the tolerance level of
uncertainty on both privacy and availability associated with
a set of messages. I-states are used in robotics for reasoning
about uncertainty and explicitly encode the uncertainty about
the target. More precisely, we use the termstate to refer to
an instantaneous description of this target at a given time.
In target tracking, I-states are the set ofpossible statesthat
are consistent with the measurements provided by sensors,
e.g., the possible locations of the target that can incur the
measurements, and I-states are calculated according to the
content of messages. The main advantage of using the concept
of I-states is that no prior knowledge of the target is required
but the message contents. In comparison,entropy has been
used to define privacy[9], [10], but it is only applicable to
limited scopes because its calculation requires prior knowledge
of the probability distribution for the targets’ movements.

Formally, in a network that tracks the motion of a target
through a planar environmentW using proximity sensors,
suppose that prior to some timetf sensor nodes have measured
m samples that map tom messages,

{(O1, t1), ..., (Om, tm)}, (1)

in whichOi is a circle known to contain the true state, andti is
a time stamp at which this information was known to be valid.
Then a target position̂q is consistentwith those messages if
and only if there exists a continuous trajectoryq : [0, tf ] → W
such that

1) dq/dt ≤ vmax for all t ∈ [0, tf ], where vmax is the
target’s maximum speed;

2) q(ti) ∈ Oi for all i ∈ [1,m];
3) q(tf ) = q̂.

The I-stateη(t) at time t is the set of target positions
consistent with the messages with the time stamps prior to
time t. V (η(t)) denotes the area of the I-stateη(t), which
quantifies the level of uncertainty. A largerV (η(t)) means that
the target can be anywhere inside a larger area, corresponding
to higher level of uncertainty.

Consider the example illustrated in Figure 2 (a), and assume
at time t = 0 nodesA, B, andC generate three messages.
The I-stateη(0) associated with all three messages is the points
inside the intersection of those three disks centered at nodes
A, B, and C, respectively; andV (η(t)) is the area of that
intersecting region, denoted by the shaded region in Figure2
(a).

2) Computing the Information State:To calculate the I-
state, we perform iterative updates, maintaining the current I-
state and updating it when time passes and when new messages
are received. We start with the initial I-stateη(0) = W . Then
two kinds of updates are performed throughout the execution:

(a) (b) (c)

Fig. 3. Computing the I-state. (a) An initial information state. (b) Expansion
to account for the passage of time, and intersection with received message
disks. (c) The resulting updated I-state.

• When time fromt1 to t2 passes without any messages
being received, we computeη(t2) from η(t1). To accom-
plish this we perform a Minkowski sum ofη(t1) with a
ball of radius(t2 − t1)vmax. Informally, this “expands”
the I-state to reflect the fact that the state may have
changed since the previous message was received. The
resulting region is retained asη(t2).

• When a message(O, t) is received, the existing I-state
is updated to the correctη(t) by intersecting the current
I-state withO. This takes the information provided by
the message into account.

Figure 3 illustrates each of these updates. Our implemen-
tation approximates the curved boundaries of the I-states as
polygonal chains.

3) Information States in the Network:For a network with
ns storage nodes, each storage nodeyj will calculate its I-state
ηj(t) based on its received messages. Additionally, there exists
a “master” I-stateη∗(t) derived from all the messages received
across all storage nodes, andη∗(t) = η1(t)∩· · ·∩ηns

(t). Thus,
there existns + 1 I-states in the network in total.

In a normal scenario without any attacks or hardware
failures, the mobile sink is able to collect all data stored
at each storage node and to obtainη∗(t), while in practice
some storage nodes may fail and prevent the mobile sink from
obtainingη∗(t), reducing the amount of information available
to the mobile sink. Moreover, it is possible that an adversary
compromises one storage nodeyj and acquires its I-stateηj(t),
breaching the network privacy.

D. Evaluation Criteria

We target to design an energy-efficient data dissemination
scheme that can enhance privacy and availability. Thus, we
define three evaluation metrics.

1) Privacy: Consider the case that the adversary is able
to compromise one storage nodei. We define the levels of
this privacy breach as the size ratio betweenηi(t)

1, which the
adversary can access, andη∗(t), which is the knowledge of
the entire network. This ratio is a measure of the quantity of
information that is protected in spite of the compromise. Of
course, compromising different storage nodes may lead to a
different level of payoff. In light of the fact that securityis
typically determined by the weakest point in the system, we

1Since adversaries do not have the global information of the network, we
do not consider the privacy breaches caused by the absence ofsensed data at
storage nodes, e.g., nodeA did not detect a target.



define privacy by considering the worst case across all possible
storage node compromises:

P = 1−
V (η∗(t))

mini∈Ss
V (ηi(t))

(2)

for the privacy level at timet. The interpretation of this metric
is that whenP = 0, a single storage node has access to
the full knowledge of the network, and privacy cannot be
preserved against a compromise of that storage node. Similarly
P = 1 would indicate “perfect” privacy, but this clearly cannot
be achieved, since it would require the network to retain
information that is not stored at any of its storage nodes.

2) Availability: Similar to the privacy definition, to define
network availability, we consider the area of the I-state avail-
able to the entire network, in comparison to the area that
is stored at each individual storage node. If a storage node
fails, then the knowledge that can be reconstructed from the
remaining ns − 1 storage nodes is simply the intersection
of their I-states. As a result, we can define availability by
considering the worst case across all possible storage node
failures:

A =
V (η∗(t))

maxi∈Ss
V (

⋂
j∈Ss−{i} ηj(t))

(3)

To interpret this metric, observe that if all of the messagesare
sent only to a single storage node, then we obtainA = 0, the
worst availability, since the network then has a single point
of failure. In contrast, if each message is sent to at least two
distinct storage nodes, thenA = 1, the “perfect” availability,
because no single failure can result in data loss. Realistic,
energy efficient protocols fall somewhere between these two
extremes.

3) Energy: Because the energy available to each wireless
sensor node is generally limited by battery capacity, one
important objective is to minimize the amount of energy
consumed for delivering messages per unit time. LetE(i)
denote the number of messages forwarded or generated by
the sensor nodei betweent = 0 andt = T . The system seeks
to keepE as small as possible

E =
1

T

nn∑

i=1

E(i). (4)

We note that this energy representation is sufficient to model
energy spent both at the sending end and at the receiving end,
since we can scale upE by multiplying by a coefficientα.
The coefficientα can include the energy consumed both as the
sender transmits the message and as its neighbors overhear and
process the message.

E. Problem Definition

The goal of our data dissemination protocol is to let sensor
nodes determine to which storage node they should deliver
their observations so that the overall privacyP and availability
A are both good while the energy consumptionE is small.
As such, the data dissemination protocol can be modeled as
a color assignment function. We label each storage node with
a unique color ID, for instance,the same as the storage node

(a) Coloring by shortest hop count (b) Coloring by random coloring

Fig. 4. Illustration of shortest path coloring and random coloring.

ID; and assign colors to each sensor to indicatewhich storage
nodes to deliver its data to. Define the color assignmentC as
a function mapping each sensor nodexi to one or multiple
storage nodes inSs, i.e.,

C : Sn → 2Ss ,

where2Ss is the power set ofSs. The problem of preserving
privacy and availability is equivalent tofinding a color assign-
ment functionC that maximizes the privacy and availability of
the network at the minimum energy cost.

Solving this non-linear multi-objective optimization prob-
lem is challenging, since these three evaluation criteria,P ,
A and E are at least partially in conflict with one another:
intuition suggests—and our experiments confirm—that in-
creasingA generally reducesP and increasesE. To tackle
the problem, we first analyze a few baseline data dissemination
technologies to gain insights, and then present our SPG-based
data dissemination protocol in Section IV.

F. Baseline Data Dissemination

Essentially, we design our data dissemination protocols with
the inspiration from secret splitting algorithms [11]. Each
sensor is capable of observing a coarse measurement of the
target, similar to the concept of small pieces of secret. Storage
nodes combine multiple messages, analogous to gaining larger
portions of the secret. Finally, the trusted data collectorcan
obtainη∗(t) by combining all messages and can pinpoint the
location of the target, corresponding to obtaining the secret.

Intuitively, the data dissemination protocol should guidethe
messages to be distributed across several storage nodes, and
thus split the secret evenly among storage nodes. To illustrate
this intuition, we analyze two baseline data dissemination
protocols.

Shortest path.The shortest path coloring algorithm rep-
resents general data dissemination schemes [12] that aim at
reducing energy consumption without considering data privacy
or data availability. It involves a sensor node choosing the
closest storage node to store its data. Figure 4(a) depicts
an example of such a coloring scheme with three storage
nodes, in which each sensor node transmits tothe closest
storage node, measured by hop counts in the network, i.e.,
C(xi) = arg minyj∈Ss

h(xi, yj), where h() returns the hop



Scheme Shortest path Random color

P 0.30 0.49
A 0.02 0.28
E 36 61

TABLE II
COMPARISON OF THE SHORTEST PATH COLORING AND THE RANDOM

COLORING SCHEMES IN A NETWORK OF3 STORAGES NODES.

count betweenxi and yj . Although such a shortest-hop-
count based coloring scheme consumes the smallest amount
of energy, it will not provide good privacy and availability.
For instance, imagining a target is moving in the white region
(upper-right corner), the I-state stored on the white storage
nodeηw(t) equalsη∗(t). If the white storage node happens to
be compromised, the adversary can obtain the same location
information about the target as the trusted data collector.
Moreover, if the white storage node is unavailable due to
hardware failures, then no target movement information will
be available. This is the exact situation we want to avoid.

Random coloring.A naive technique to improve the data
distribution across the network is to randomly assign each
sensor node a color, corresponding to a storage node. That
is, the functionC is randomly selected, and only one color is
assigned to each sensor node. Figure 4(b) gives an example
of random coloring under the same network deployment as
Figure 4(a).

Performance comparison.To evaluate the performance of
the shortest path and the random coloring schemes, we simu-
lated a network with 325 identical sensor nodes spread across a
2000m by 2000m network field. A single target moved through
the field and each sensor node detected the target whenever
it was within the sensor’s 250m range. The results, which
are listed in Table II, confirm that the shortest-path scheme
achieves low availabilityA and privacyP but consumes small
amount of energyE. In comparison, the random coloring
scheme consumes almost twice the amount of the energy as
the shortest-path, but achieves a higher level of data privacy
and data availability.

IV. SPG-BASED DATA DISSEMINATION

We have shown that achieving high privacy and availability
with minimum energy cost is a tricky multi-objective opti-
mization problem. In this section, we present our SPG-based
data dissemination protocol that seeks balance among these
objectives.

A. Spatial Privacy Graph

Before defining spatial privacy graph (SPG), we examine the
insights obtained from studying our random coloring scheme.
Particularly, the random coloring scheme improves the pri-
vacy and availability by simply distributing equal numbersof
messages to each storage node. However, equal distribution
of messages is not sufficient. Recall the example shown in
Figure 2, where four nodesA, B, C, andD detect the target.
Among all nodes, the combination ofA’s andD’s informa-
tion statesηA(t) ∩ ηD(t) is more “valuable” compared to

(a) (b)

Fig. 5. Illustration of constructing the spatial privacy graph. (a) Communi-
cation topology. (b) Spatial privacy graph.

ηA(t)∩ηB(t)∩ηC(t). Thus, nodesA andD must transmit their
observations to different storage nodes to improve privacyand
availability. In contrast, it is relatively harmless for three nodes
A, B andC to transmit to the same storage node, because the
sensors for these nodes will provide very similar information.
This motivates us to construct a spatial privacy graph that
identifies those pairs of sensor nodes that in combination can
determine the position of the target within a small region.

Formally, we define a spatial privacy graph of a set of sensor
nodesS asGP = (S,EP ) in which a pair of nodes(xi, xj)
are connected by an edgeeij if and only if they form aprivacy
pair. Given a scalar parameterprivacy factora, a pair of nodes
is a privacy pair, if their distanced ∈ [2rs − a, 2rs]. The
intuition is that these privacy pairs are nodes whose sensing
regions have small, nonzero intersections. Figure 5 illustrates
this process. Figure 5(a) presents a simple network scenario
with 7 nodes, where the edges represent communication links.
Figure 5(b) depicts the resulting spatial privacy graph, where
the edges link privacy pairs. We note that although nodesG
andD are within each other’s communication range, they are
too close to have an overlapped sensing range that is small
enough to be considered as a privacy pair. Thus,G andD are
not connected in the spatial privacy graph. In this example,
we assume2rs > rc. The distance between node pair(A,F )
is larger than their communication rangerc but smaller than
2rs. Thus, nodesA andF are not connected in the network
topology, but are connected in the spatial privacy graph.

B. Enhancing Privacy via a Distributed Coloring Algorithm

The SPG identifies the privacy pairs that should select
different storage nodes to save their data. Thus, to enhance
data privacy, each sensor node can determine its storage node
by executing a distributed graph coloring scheme. Given ann-
vertex SPG withGP = (S,EP ), the output of the distributed
coloring scheme is a colored graphGc = (S,EP , C). Without
loss of generality, we assign one color to each sensor node,
and denote the color assignmentsC as C = {cxi

|cxi
=

C(xi)}∀xi∈S . Ideally, Gc should satisfytwo requirements:
valid and feasible. Here, valid means that for every edge
eij ∈ EP , its verticesxi and xj have different colors, e.g.,
cxi

6= cxj
, and feasiblemeans that the color of every vertex

should be one of the storage nodes’ colors. A valid and feasible
coloring can guide the network to disseminate messages that
belong to the same privacy pairs to different storage nodes



and thus achieve high privacy. However, for any SPG and
given number of storage nodes, it is not always possible to
obtain a valid yet feasible colored graph. For instance, if
there are only two storage nodes available to color the SPG
shown in Figure 5(b), then it is impossible to obtain a valid
coloring among nodesA, C, and D. To address this issue,
our distributed coloring algorithm will first generate avalid
coloring and then adjust thoseinfeasiblecolors into feasible
colors.

Algorithm walk-through. Our distributed coloring algo-
rithm is motivated by Linial’s coloring scheme [13], which
starts with a valid colored graph with a large number of
colors and then reduces the total number of colors iteratively.
However, Linial’s coloring scheme is inapplicable to our
problem because it does not consider the factor of energy con-
sumption, which is crucial to sensor networks. In comparison,
our distributed coloring algorithm is energy efficient.

Our distributed algorithm works in the following way. Prior
to coloring sensor nodes, we map each storage node to a
unique color numbered from 1 tons. Then, each sensor node
assigns its color purely based on its neighbors’ colors by
executingDistributed_Coloring() (shown in Algo-
rithm 1) in parallel. Here, we call a pair of nodesneighbors
if they are connected on the SPG, which is different from
the concept of neighbors defined according to communication
abilities. Each sensorxi initializes its color to a unique
infeasible one, e.g., adding its own IDIxi

to ns. As such, we
prevent any sensor nodes from pre-assigning itself a feasible
color. Then each sensor node participates in iterative coloring
updating until no color updates between two consecutive
iterations.

At the beginning of each iteration, nodexj announces
its current color with its ID Ixj

to all its neighbors by
broadcasting a message(Ixj

, cxj
), where cxj

is its current
color. At the same time, it records its neighbors’ current
colors {cxi

}xi∈Nbr . In each iteration, only the sensor nodes
that satisfy the following conditions is allowed to update its
color:

1) It has not been assigned a feasible color yet.
2) Its color is larger than all its neighbors’.
FunctionUpdateColor() first tries to find a new color

that satisfies all conditions listed below.
1) Feasible, the new color should be one of the storage

nodes’ colors,c′xj
∈ {1, . . . , ns}.

2) Valid, none of its neighbors has chosen this color,c′xj
/∈

{cxi
}xi∈Nbr .

3) Nearest, among all valid and feasible colors, it chooses
the storage node that is separated by the fewest hop
counts from itself.

Sometimes it is possible that no feasible and valid color
is available, as shown in Figure 5(b). In those cases
UpdateColor() returns−|cxi

|. We note that the algorithm
terminates when none of the nodes can update its color further,
and the following Lemma holds. .

Lemma 1. Algorithm 1 always terminates after|S| iterations

Algorithm: Distributed Coloring
Input : Nbr : neighbor set
Input : Io: local sensor ID
co = Io + ns;
repeat

Announce(Io, co);
{cxi}xi∈Nbr = ReceiveAnnounce();
if co > ns and co > max {cxi}xi∈Nbr then

co = UpdateColor({cxi}xi∈Nbr );
end

until NoChange(co) and NoChange({cxi}xi∈Nbr);

Algorithm 1: The SPG-based distributed coloring algo-
rithm

and terminates with a valid (but not necessarily feasible)
colored graphGc = (S,EP , C).

Proof: We first prove that the algorithm terminates within
|S| iterations, then prove the resulting colored graph is valid
by induction.

Termination. In each iteration, a node that can update its
color must have a color that is larger thanns. Meanwhile, a
node can only update its color either to the number between1
andns, or to its negative node ID. Thus, each nodexi ∈ S will
only update its color at most once. The algorithm terminates
when none of nodes can update its color, and the total number
of iterationsI ≤ |S|.

Validity. We prove validity by induction onk. Let G(0)
c =

(S,EP , C
(0)) be the colored graph after initialization, then for

all nodesxi we havecxi
= Ixi

+ ns. Since all nodes have
unique identifications,∀xi, xj ∈ S, cxi

6= cxj
, G(0)

c is valid.
AssumeG(k−1)

c is valid. Let the graph afterkth iteration be
G

(k)
c . Since in each iteration only the node that has the largest

color in its neighborhood can update its color, we assume
w.l.o.g that nodexp updates its color fromc(k−1)

xp to c(k)xp .
According to the color updating condition 2,c(k)xp 6= c(k)xq , for
all xq that are its neighbors. Thus,G(k)

c is valid.
When Algorithm 1 produces a valid but infeasible graph,

e.g., some sensor nodes have a color that is out of the feasible
range[1, . . . , ns], the sensor nodes with infeasible color will
randomly choose a feasible color regardless of their neighbors’
colors. We note that at this step sensor nodes should not select
the nearest colors, otherwise it is likely that several of them
will choose the same storage node and will reduce the level
of privacy.

Algorithm challenges. There are several practical chal-
lenges associated with this algorithm.

Loose Synchronization.The correctness of the distributed
coloring algorithm holds only if at most one node in its
neighborhood updates its color in each iteration. Such a con-
dition can be guaranteed only if every node decides whether
it should update its color after all color announcements are
delivered. Thus, it is important to let every node have a loosely
synchronized clock and to let the color announcements reach
its neighbors. For synchronization, one can use TPSN (Timing-
sync Protocol for Sensor Networks) [14], a light-weight syn-



chronization protocol. For coloring announcement, we use
TTL (time to live) to control the flooding range. The neighbors
with regard to the SPG are not communication neighbors.
Thus, the coloring announcement has to be broadcast beyond a
1-hop neighborhood. In cases where the communication range
rc equals the sensing rangers, the privacy pair can be located
up to 2rs apart and we set TTL =2rs/rc = 2.

Reducing energy through on-demand, incremental coloring.
Energy-efficiency is one of the main concerns when designing
algorithms for sensor networks. Our SPG-based coloring al-
gorithm is energy efficient in the sense that each node always
chooses a valid color of the storage node closest to it, and
it converges in at most|S| steps. Additionally, we adopt the
following rules to further reduce the energy consumption: (1)
Construct the SPG on-demand.In a tracking sensor network,
a few nodes will detect the target; we call those nodeshot
nodesShot. Instead of constructing an SPG across the whole
network, only hot nodes will participate in constructing the
SPG by broadcasting control messages locally. (2)Incremental
coloring.That is to incrementally update the SPG as the target
moves continuously.

The incrementalcoloring algorithm works in the following
manner. When the target moves to locationL1 initially, all hot
nodesShot(L1) will color themselves using Algorithm 1. In
the next time window, the target moves to another locationL2,
and theShot(L2) will intersect withShot(L1). The nodes that
belong to the intersectionShot(L2)∩Shot(L1) keep their color
unchanged, and the nodes that are part of the setShot(L2)−
Shot(L1) select their colors. As such, the colors ofShot(L2)∩
Shot(L1) can be treated as prior knowledge, and only nodes
in the setShot(L2)− Shot(L1) need to announce and update
their colors iteratively. We note that this incremental coloring
is especially beneficial in reducing energy cost when the target
moves at a low speed.

C. Enhancing Availability via Message Replication

In a non-failure scenario, the mobile sinks can deriveη∗(t)
by acquiring data from every storage node. However, the data
stored on storage nodes may be unavailable due to hardware
failure or jamming attacks. The goal of maintaining high data
availability is to ensure that the intersection of the information
state of available storage nodes,

⋂
i∈Ss

ηi(t), is close toη∗(t).
A natural way to improve high availability involves replication,
e.g., let a sensor node deliver a copy of the data to another
storage node. However, naive duplication will increase the
energy cost. To replicate efficiently, we ask three questions:
(1) who should duplicate its messages, (2) how, and (3) where
should the duplicated messages go?

Who? Only privacy pairs shall duplicate their messages.
This heuristic can be illustrated by the example in Figure 6,
which consists of two privacy pairs,(B,D) and (B,E), and
isolated nodesA andC. The nodes that do not form privacy
pairs with any hot nodes are usually located in the center of hot
nodes. Their intersection (denoted by the light grey shadow)
is typically larger than the interaction of privacy pairs, and
thus is less valuable towards increasing availability. Letting

Fig. 6. SPG and information redundancy. NodeB, D andE form privacy
pairs, and their intersected sensing area is contained by the intersection of
A’s andC ’s sensing regions.

privacy pairs duplicate messages allows us to spend energy
on the most valuable messages.

How? Availability and privacy are conflicting objectives.
Thus we adjust the duplication probabilityp to balance be-
tween two goals. Each node that is part of privacy pairs will
replicate messages with probabilityp. Particularly, in each data
reporting period, a node generates a random number in the
range of[0, 1]. Only if the random number is smaller thanp
will it send a replicated message to a second storage node.
Setting p = 0 gives privacy higher priority while assigning
p = 1 favors availability.

Where?To avoid the situation that the duplicated messages
from the same region are always delivered to the same storage
node, the privacy pairs will randomly choose a second storage
node to deliver their duplicated messages.

V. EXPERIMENT VALIDATION

A. Simulation Methodology

We have implemented the SPG-based data dissemination
algorithm with C++. We simulated a sensor network deployed
in a 2000m-by-2000m region withrs = rc = 250m, and
a target moved randomly throughout the network region at
a speed of25m/s. We studied all three data dissemination
strategies: the shortest path, random coloring, and our SPG-
based algorithm. For the SPG-based algorithm, we set the
privacy factora to 15m and measured the energy cost for both
constructing SPG and delivering data. To capture the statistical
characteristics, we evaluatedP , A, and E by running our
experiments 10 rounds and each round lasted for 1000 seconds
with a 1 second sensinginterval .

B. Experiment Results

We performed two sets of experiments to study the impact
of p and the number of storage nodesns, respectively.

1) Impact ofp: We first compared the performance of three
algorithms in the scenarios of 200 sensor nodes and 3 storage
nodes when varyingp from 0 to 1. The results are depicted in
Figure 7, from which we observed that the availability of all
three algorithms improves withp increasing but at the cost of
less privacy and higher energy cost. Compared with the other
two algorithms, the energy cost of the SPG-based algorithm
grows slower. Interestingly, whenp is larger than0.1, the
energy cost of the SPG-based algorithm becomes smaller than
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Fig. 7. Comparison between shortest path coloring, random coloring and the SPG-based algorithm withp changing from 0 to 1.nn = 200. ns = 3.

the one of the shortest path scheme. This is because our
SPG-based algorithm only allows privacy pairs to duplicate
messages instead of all hot nodes.

Figure 7(b) showsP andE for all three algorithms. Note
that the point at(0, 1) represents the (unachievable) ideal of
perfect privacy with no energy cost. Figure 7(b) shows that
the SPG-based algorithm accomplishes higher privacy than the
shortest path scheme, which can only achieve a maximum
privacy of 0.2. Compared with the random coloring scheme,
the SPG-based algorithm can achieve the same level of privacy
with less energy cost.

Finally, Figure 7(c) shows that the SPG-based algorithm
dominates both the shortest path and random coloring schemes
with regard toA andE. That is, at the same energy cost the
SPG-based algorithm provides highest availability.

2) Impact ofns: Besides tuningp to balance betweenA
andP , it is interesting to know what the maximum achievable
A is, given the energy budget and the minimum requiredP .
Figure 8(a) and Figure 8(b) show such cases with the require-
ments ofE ≤ 50 andP ≥ 0.4. As ns becomes larger than
4, the SPG-based algorithm outperforms the random coloring
schemes, and uses a smaller amount of energy. Moreover,
we observe that in Figure 8(a), with the increases of the
storage-node number, the availability of SPG-based algorithm
increases much faster than the availability of the random
coloring algorithm. This confirms our analysis: distributing
messages evenly is insufficient; and the content of messages
is more important than the number of messages in terms of
data uncertainty. We note that the shortest path algorithm
cannot achieve the requirements and does not show up in
the plots. Similarly, as shown in Figure 8(c) and Figure 8(d),
given the requirements ofA ≥ 0.6 and E ≤ 50, the SPG-
based algorithm achieves higher maximum privacy than the
shortest path scheme and uses less energy. We note the random
coloring scheme cannot find any feasible solution to meet the
requirements and does not appear in the plots.

In summary, our SPG-based data dissemination proto-
col combines the advantages of two baseline dissemination
schemes and can achieve better data privacy and a higher level
of data availability while consuming less energy.

VI. RELATED WORK

Much attention has been devoted to addressing privacy
issues in the context of data mining and databases [15], [16],
[17]. A common technique is to perturb the data and to
reconstruct distributions at an aggregate level. This typeof
approach is centralized and cannot be applied to resource-
constrained sensor networks.

The problem of providing contextual location privacy in
WSNs has been well studied. The primary concern of location
privacy in WSNs is to protect the source location [6], [18],
[19] and sink location information [7]. To protect the source
location against a local adversary, phantom routing [6] uses a
random walk before commencing with regular flooding/single-
path routing. Later, Mehta et al. [18] and Yang at al. [19]
studied the source location privacy problem in the presence
of a global adversary who can observe all traffic in the
network. Mehta et al. proposed to use hop-by-hop encryption
to hide the message flows, and Yang et al. proposed to inject
fake messages. Deng et al. [7] proposed randomized routing
algorithms and fake message injection to prevent an adversary
from locating the network sink based on the observed traffic
patterns.

A common design goal of data dissemination protocols [20]
in wireless sensor networks is to achieve energy-efficiency.
Ugur et al. [20] let data travel down an event dissemination
tree based on a schedule to save energy. To address the data
privacy issues, Shao et al. [1] designed a data dissemination
scheme called pDCS that can provide different levels of data
privacy based on different cryptographic keys.

In the areas of constructing storage systems, Gregory et
al. [21] and SafeStore [22] have addressed issues of ensuring
the system availability and integrity policies in the presence
of component failures and malicious attacks.

Unlike prior work, we addressed the problem of data
privacy and data availability at the same time using a non-
cryptographic method.

VII. C ONCLUSION

Preserving data privacy and data availability in WSNs
cannot be achieved purely by cryptographic strategies. In this
paper, we proposed an SPG-based data dissemination protocol
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that is complimentary to traditional cryptographic techniques
and that can enhance data privacy and data availability in
sensor networks deployed for target tracking. We argued that
data uncertainty is important to quantify data privacy and data
availability, and message content is more important than the
number of messages with regard to data uncertainty. As such,
we provided a content-based definition of data privacy and data
availability utilizing information states. To strike a balance
between two conflicting objectives, data privacy and data
availability, we introduced a graph called spatial privacygraph
(SPG) that identifies node pairs whose combined sensed data
provide high certainty of the target location, and showed that
the task of disseminating data to storage nodes is equivalent
to the problem of coloring the SPG.

Our SPG-based data dissemination protocol consists of the
following steps: (1) Constructing the SPG among hot nodes
(nodes that detect the target) on-demand; (2) coloring the
SPG using our energy-efficient distributed coloring algorithm;
(3) letting those nodes that provide “valuable” information
replicate messages with a probabilityp. Our experiment results
have shown that our SPG-based data dissemination proto-
col combines the advantages of two baseline dissemination
schemes: shortest path routing and random coloring protocols.
The SPG-based protocol can achieve better data privacy and a
higher level of data availabilitywhile consuming less energy
than either baseline data dissemination scheme.
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