Information Spaces for Mobile Robots

Benjamin Tovar Anna Yershova

Jason M. O’Kane

Steven M. LaValle

Dept. of Computer Science

University of Illinois
Urbana-Champaign, IL 61801. USA

[btovar,yershova, jokane,lavalle]@uiuc.edu

Abstract

Planning with sensing uncertainty is central to robotics.
Often, sensor limitations prevent accurate state esti-
mation of the robot. Two general approaches can be
taken for solving robotics tasks given semsing uncer-
tainty. The first approach is to estimate the state and
to solve the given task using the estimation as the real
state. However, estimation of the state may sometimes
be harder than solving the original task. The other ap-
proach is to avoid estimation of the state, which can
be studied by defining the information space, the space
of all histories of actions and sensing observations of
a robot system. Considering information spaces brings
better understanding of the problems involving uncer-
tainty, and also allows finding better solutions to such
problems. In this paper we give a brief description of
the information space framework, followed by its use in
some robotic tasks.

1 Introduction

Often robots have to plan and execute tasks while be-
ing uncertain about their state and the environment
in which they are acting. From a robotic perspective,
the state of a robot system, or simply the state, rep-
resents the information that together with the control
input, fully specifies the situation of the robot system.
It refers to the position in space, velocities in joints
or wheels, levels of energy consumption, etc. Clas-
sical approaches for robot planning assume a perfect
knowledge of the robot state. Such perfect knowledge
is virtually unattainable, given noisy readings from the
available sensors and limitations on the number of sen-
sors the robot can have. Therefore, some crucial in-
formation may simply be unavailable to the robot (for
example, the information about the orientation is not
available to the robot without a compass). Therefore,
many further research efforts have been focused on the
estimation of the state. If such estimations are reliable,

they can be considered as the true robot state, forget-
ting that there is uncertainty in the state information.
In control theory, for example, the concept of an 0b-
server is well understood [2], and if the observer con-
verges sufficiently fast, the value of the state variables
of the observer is taken as the value of the state vari-
ables of the system. In mobile robotics, simultaneous
localization and mapping (SLAM) approaches have re-
ceived considerable attention in recent years [3, 21, 25].
The goal of the SLAM approaches is to correctly esti-
mate the current state of the robot. However, an in-
teresting approach is to avoid the state estimation all
together. In fact, the necessity for the knowledge of the
robot state can be considered as an artifact of a plan-
ning algorithm. While knowing the state of the robot
is sufficient to solve a task, it may not be necessary. In
other words, a robot may not know its current state,
and still be able to solve a specific task. It has been
shown in numerous robotics works that robots can ef-
ficiently solve complicated tasks with no estimation of
its current state. Much of the early work in this direc-
tion was in the context of object manipulation [9, 20].
Other work includes information invariants [5], sensor
design [8], bug algorithms for navigation [19, 13], robot
localization [6], POMDPs [16], and error detection and
recovery [4].

All of these works present seemingly different ap-
proaches for solving given robotics tasks. In this paper
we describe a framework based on information spaces
that generalizes planning strategies for robotic systems
with sensing uncertainty. For this we first formulate the
general planning problem presented to the robot. This
usually includes: the state space, i.e. the set of states
where the robot can be; the action space, i.e. the set
of actions that the robot can perform; the observation
space, i.e. the set of observations that is available to
the robot from sensors; sensor mappings, which pro-
duce an observation for each state of the robot; state
transition function, which produces a state for each ac-
tion; and the goal, which is expressed in terms of the

histories of actions and observations.

To achieve the goal defined by the planning problem
above, a broader definition of robot state should be
used. Such states, called the information states, and
the space where they live, the information space allow
to express planning problems where tasks with par-
tial information naturally live. In this paper we ex-
plore some results for robot planning in the informa-
tion space framework. There are many exciting open
research problems with information spaces. It is our
hope that this paper will stimulate further research in
analyzing the information spaces for robotics systems
and bring more efficient strategies for solving robotics
tasks.

2 Preliminaries

In the following discussion, let X denote the state
space, and let U(x) the set of actions available to the
robot from state z € X. At each stage k, it is assumed
that a nature action 6y is chosen from a set O (xzy, ur),
given the current state of the robot z; € X, and the
action executed ur € U(zy). The role of ©(xzy,uy) is
to model events the robot cannot control. For exam-
ple, it can model control execution inaccuracies, unpre-
dictable changes in a dynamic environment, etc. Let f
be the state transition equation, that produces a state,
f(z,u,8) for every x € X, u € U and § € O(x,u).
Note that f is not known for every planning problem.
For simplicity of presentation, we assume that time is
discrete. The continuous time case is developed in [17].
For a more extensive description see [17, 23]. A robot
may retrieve information regarding its state from three
sources, initial conditions, sensor observations and ac-
tions executed:

e Initial conditions. The initial conditions refer
to all the information the robot is given prior to
the planning task. For example, the initial state
1 € X may be given, or the initial state may lie in
a given subset X1 C X. Also, the initial state may
follow a given probability distribution P(x1) over
X. Note that the calibration of a robotic system
is considered in the previous cases. If all the state
variables are calibrated, then the initial state is
known. On the contrary, if only some state vari-
ables are calibrated, this correspond to the case
when a subset X7 is given. The initial conditions
will be denoted with 7.

e Sensor observations. A sensor is a device that
provides some measurement of the current state.
Thus, a sensor observation provides measurements

of the state during execution. Formally, let Y de-
note the observation space, and let h denote a
sensor mapping. If given the state, the observa-
tion is completely determined, h takes the form
h : X — Y. Other important case is when na-
ture interferes with the observation. In this case
the mapping takes the form y = h(z,$) € Y, with
¢ € @, in which ®(z) is the set of nature sensing
actions defined for each z € X. Finally, the ob-
servation may also depend on previous states, in
which the mapping for the k observation takes the
form yx = h(w1, ..., Tk, P1)-

e Actions executed. An action executed may
provide valuable information regarding the robot
state. For example, in the absence of control er-
rors, if the robot is commanded to move one meter
east, it is known that the robot is now one meter
further east than before.

2.1 The Information Space

The information available to the robot when the plan
is at stage k should be determined either from the new
observations, or the accumulation of previous informa-
tion. It is assumed that the robot keeps a record of
each of the observations made. Thus, the observation
history, § = (y1,¥2,..-,Yr), is the ordered sequence of
observations up to stage k. Similarly, the action his-
tory, @ = (ur,us,...,up_1), is the record of the actions
taken. It runs until &k — 1, because action ug_1 is ap-
plied in state xy_1, to yield the current state x, where
the observation yj, is made. The information state at
stage k is defined as

Nk = (Mo, Gr—1, Tr),

that is, the initial condition together with the history.
Alternatively, an information state can be expressed
recursively as

Nk = (nkflaukflayk)a

since the difference between the previous and the cur-
rent information state consists of the new observation
made and the new action taken. The set of all possible
information states is called the information space, .
Usually we do not deal with 7 directly, given that the
size of an information state grows linearly in time, and
this becomes intractable very fast. Thus, we have to
look for methods that collapse the information space.
One simple method for collapsing the information space
is based on the inferences that can be done given an
information state. If the information state 7y is avail-
able, it is possible to compute the set Xy (n) in which

the actual zj, is known to lie. The set Xy (ng) is called
a derived information state. To compute the derived
information state, we have to infer over the observa-
tions and actions performed. For the observations, we
can define

H(y) ={z|y = h(z,v),for) € ¥(z)}

that is, the set of all possible states the robot may be
in given an observation. The set H(y) is called the
preimage of y. Similarly, if we let the actions available
depend on the current state, the robot can determine
a set of states V' where it may be, by computing;:

V(Uy) = {2' |U, =U(z") for ' € X}

in which Uy are the actions available at stage k. The
current state then lies in the set HNV. Note, however,
that it can be assumed that the robot has some kind of
sensor that detects which kind of actions are available.
This reduces the computation of V and H into only
the computation of H. Thus, only the case when U is
fixed for all z € X is important.

From the state transition equation, it is possible to
know which states may be reached if action u is applied
at state x. Let F' be this set, formally defined as

F(z,u) ={z' € X|30 € O(z,u)
for which z' = f(z,u,0)}

If we further assume that X is countably infinite, the
derived information state Xg(n) can be computed us-
ing induction. Note that F' and H eliminate the direct
appearance of nature actions. The base case (k = 1) of
the induction is

X1 =To n H(yl)

This first step consists only of making the initial con-
dition consistent with the first observation. Now as-
sume inductively that Xy (nx) € X is available, and
Xkt+1(Mk+1) should be computed. First note that
Me+1 = (M, Uk, Ye+1), and the new information is pro-
vided only by u; and yg41. From eq. 1, the state is
anywhere in H(yg4+1). On the other hand, if z; was
known, after applying ug, the state lies somewhere in
F(x,ur). Since xy is unknown, but it is known that
zr € Xg(nk), the new derived information state is

U Flax,ur) 0 H(yerr).
2k €Xn (M)

X1 (e, Uk, Yry1) =

Given that the derived information state is always a
subset of X, the derived information space denoted by

7°, can be defined as 7° = 2X. Note that if X is finite,
7° is also finite, which makes it preferable if the number
of stages is much larger than the size of X.

3 Examples of Information Spaces

In this section we present several examples in which
the state is unknown, and the concept of information
space comes naturally. We do not intent to give a full
range of applications, rather, the examples are related
to the previous work we developed. As we said in the
introduction, we hope for an increased interest in in-
formation spaces, since they offer an exciting point of
view from which robotic problems can be analyzed.

3.1 Visibility-based Pursuit-Evasion

In the pursuit-evasion problem, a robot, called the pur-
suer, has to move in such a way that it could find an-
other robot, called the evader. In a complete antago-
nistic setting, the evader does not want to be found,
and can move arbitrarily fast compared to the pursuer.
Assume that the pursuer has a map of the environ-
ment, and it is perfectly localized with respect to this
map. How the pursuer should plan its movements in
order to find all of the evaders? The answer depends
on which sensors are available to the pursuer. Since
the pursuer does not know where the evaders are, we
can provide the pursuer with an ideal sensor called the
evader locator, which when used, will tell the location
of the evaders to the pursuer. While this is a valid for-
mulation of the pursuit-evasion problem, its solution is
trivial, given that we provided the pursuer with per-
fect information of the state of the task. Thus, a more
interesting formulation considers providing the robot
with sensors that report robot only local information.
For example, providing the pursuer a camera, can only
tell if an evader is present in the current visible region,
or not. Such setting of the pursuit-evasion problem
was presented in [10], and we describe it here from the
information space framework.

Formally, assume that the pursuer moves in a con-
nected open set R C R2. The boundary of R, OR
is assumed to be polygonal and simply-connected. The
evader is modeled as a moving point in R. The evader
position e(t) at time ¢ is determined by a continuous
position function e : [0,00) — R. The pursuer is also
modeled as a point, with position p(¢). The pursuer
has an exact geometric representation of R, and it is
perfectly localized with respect to R. The pursuer also
has a wvisibility sensor, which returns the visibility re-
gion from its current position. For a point ¢ € R, the

i
(a)

Figure 1: Each shadow region is a portion of the envi-
ronment that may or may not contain the evader.

visibility region V(g) includes all the points in R that
can be joined with ¢ through a line segment without in-
tersecting dR. The task is to find a path p: [0,1] —» R
for the pursuer such that the evader is guaranteed to be
detected, regardless of its position function e(t), which
is unknown to the pursuer.

The state yields the position of the pursuer and evader,
x = (p,e), which results in the state space X C R? x
R? = R*. Since the position of the evader is unknown,
the state is unknown. The observation space Y, is a
collection of subsets of R. For each ¢ € R, the sensor
yields a visibility polygon V(p) C R. Consider the
information state at time ¢. For the initial condition,
p(0) is given and the evader may lie anywhere in R.
The input history 4, can be expressed as the position
function of the pursuer. Thus, the information state is
defined as:

1e = ((p(0), P), p(t) §)-

Since the pursuer position is always known, the inter-
esting part is the subset of R in which the evader may
lie. Thus, the derived information state can be ex-
pressed as X¢(n:) = (p(t), E(nt)), in which E(n)) is
the subset of R that is known to contain the evader,
given ;.

The visibility region divides P in several shadow re-
gions. That is, regions that are not visible to the robot
(Figure 1). When an evader may be hidden in one
of these regions, the region is said to be contaminated,
otherwise it is said to be cleared. As the pursuer moves,
the shadow regions appear, disappear, merge or split.
Such events, called wvisual events, are produced by com-
binatorial changes in the visibility region. The visual
events provide the only way to vary E(n;). For exam-
ple, if a shadow region disappear, it means that the
given region is now visible to the pursuer, and thus
does not contain the evader. Also, if a contaminated
region merges with a cleared one, the new region should
be labeled contaminated, etc. The visual events induce

a decomposition on P, called the aspect graph[14], or
the wisibility-cell decomposition[11]. In these decom-
position, if the robot moves inside a cell there is not
significant change in information. The robot receives
about the same information from the sensors. Such
movements are called conservative in the sense that
they preserve the current robot’s information. In con-
trast, when the robot crosses one of the cells’ bound-
ary edges, the structure of the visibility region suffers
a drastic change, and the robot’s information may be
modified [7]. In these case there are two kinds of visual
events. One kind is triggered when the robot crosses
an environment’s boundary generalized inflection ray,
and the other when it crosses the complement of bi-
tangent line segments of the boundary. An inflection
is a change in the sign of the curvature of the environ-
ment’s boundary. We use the term “generalized,” as in
[18], to include polygonal boundaries. Given a general-
ized inflection, an inflection ray is found by extending
a ray from the inflection until it hits another point of
the environment’s boundary. A bitangent line segment
is a segment completely contained in the environment
representation, whose supporting line is tangent to two
points of the boundary, and whose endpoints are these
points of tangency. A common general position as-
sumption is that no line is tangent to more than two
points of the boundary (thus the term bitangent). For
each bitangent, its complement is found by extending
outward from each point of tangency until the environ-
ment’s boundary is hit again (see Figure 3).

With these decomposition we can collapse the informa-
tion space even further. It can be proved [11] that each
of the cells produced are convex. Thus, if the pursuer
is inside a cell, it can detect if the evader is also inside
or not. Further, it can compute which cells are cleared,
or become recontaminated when moving from one cell
to the other. The state space is now discrete, since the
exact position of the pursuer and evader is not relevant
anymore, only whether or not they are inside a given
cell. We can encode E(ny) as binary vector, with a la-
bel for each cell indicating if it is cleared or not. With
this, the solution plan p(t) can be found using a simple
search in the derived information space [10].

3.2 Visibility-based tasks with Gap Navi-
gation Trees

In the previous example, in principle, the planning
strategy used the exact geometry of both visibility re-
gions and the environment. However, we are interested
in such information as an intermediate product, since
it is only important if a certain region is cleared, or if
it becomes recontaminated by merging with other re-

gions. Thus, we are not interested in the exact descrip-
tion of the visibility regions, but in how they change.
As presented in [12, 26, 27], we can further collapse the
information state by designing a sensor that detects the
combinatorial changes in the visibility region. Further-
more, we can eliminate the need of a map, and the
robot can solve some visibility-based tasks in unknown
environments.

A visibility region is composed of edges completely
contained in the environment boundary, and of edges
collinear with the position of the robot. The later are
called spurious edges. When a spurious edge either ap-
pears, disappears, splits or merges with another, a com-
binatorial change in the visibility region occurs. From
the robot perspective, the spurious edges are the dis-
continuities in depth information in the environment.
Note that geometric information of the spurious edges
is not relevant for the visual event detection. The
events will be the same in spite of the exact length
and angular position of the spurious edges. Their or-
der is relevant, though, since we are interested in which
discontinuity disappeared, or merged with another, for
example. Although the precise distances to the walls
may be unknown, the robot only needs a type of edge
detector that can detect each of the discontinuities,
and return their order relative to the robot’s heading.
Each of this discontinuities is referred to as a gap, and
the sensor as a gap sensor [24]. As it was shown in
[27, 12, 26], a robot using a gap sensor, with no other
sensing ability is assumed, i.e., it has neither a compass
nor a reliable odometer, can compute shortest paths
information for unknown environments, localize itself
and perform pursuit-evasion. The ideal gap sensor can
be easily realized through a range sensor (i.e., laser or
sonar) or using computer vision techniques.

Each gap hides a connected region of the environment
that is occluded to the robot from its current position.
A label of “L” or “R” is assigned to a gap to indicate
the direction of the part of R that is hidden behind the
gap. This corresponds to transitions of the gap sensor
from “far to near” (left) or “near to far” (right), if
the gaps are detected by a counterclockwise scan with
respect to the robot’s heading (see Figure 2.(a)).
When the robot moves in the environment, the gaps, as
reported by the gap sensor, may change. It is assumed
that the robot can track the gaps at all times and record
any topological change. There are four possible ways
in which gaps change:

Gap appearance. A gap, not detected before, is
now tracked by the gap sensor. The gap is said to
be visible.

Gap disappearance. A gap is no longer detected

far
?& near far b a

o
@

(b)

Figure 2: The robot’s view of the environment. The po-
sition of the robot is shown with a black disk. (a) The
environment and the respective labeling of the gaps de-
tected. (b) Angular position of the gaps detected in the
visibility region.

Disappear Split

Figure 3: Inflections and bitangents of OF'. (a) Appear-
ance and disappearance of gaps occur when the robot
crosses inflection rays. (b) Splits and merge occur by
crossing bitangent complements.

by the gap sensor. The given gap is not visible for
the gap sensor.

Gaps merge. Several gaps merge into a single one.
Gap split. One gap splits into several gaps.

If a gap appears, the region behind it was just visible to
the robot, but now is “hidden” by the gap. Similarly,
when a gap disappears, the region of the environment
behind the gap is now visible to the robot. With bi-
tangents, exactly two gaps may merge into one, and
one gap splits exactly into two gaps. These four gap
topological changes are called the gap critical events.

Appearances and disappearances of gaps are related
to generalized inflections of OR. As illustrated in Fig-
ure 3 (a), appearances and disappearances of gaps oc-
cur when the robot crosses inflection rays. Merges and
splits of gaps, are related to the bitangents of R, and
they occur when the robot crosses bitangent comple-
ments. (Figure 3 (b)). Note that R need not be a poly-
gon, but may be any piecewise-analytic closed curve.

In this sensing model, the observation space Y is de-
fined by the set of all of the ordered circular sequences
of possible readings of gaps. Thus, {L,L,R} € Y cor-
respond to a sensor reading where two “left” gaps and
a “right” gap are detected. Note this sensor reading is
indistinguishable from {R, L, L} and {L, R, L}, since a
compass is not available. Even more, with only gap
readings, the exact position of the robot cannot be de-
termined, and different neighborhoods of points will
generate the same sensor reading across the whole en-
vironment. The input space is determined by the gap
chasing movements, that is, the commands to the robot
to move towards a gap.

3.2.1 Encoding information states

Remember that the robot can track the gaps all of the
time and record any of their topological changes. Thus,
it can detect that from the transition {L;, Ry, Ra, Lo}
to {L1, Ra, Lo}, the gap Ry disappeared. The gap sen-
sor only will report to the robot that a gap, detected be-
fore in this order, disappeared, for example. This iden-
tification of gaps is implicit at the sensor level, and it
is possible if we assume coherency between the robot’s
motion and gap changes (i.e., small position changes of
the robot will produce small angular position changes
in the gaps). The gaps and their topological changes
are encoded into a tree, hereafter referred to as T. The
tree T is the Gap Navigation Tree of the environment.
The root of T' moves along with the robot. Each child
of the root represents a gap that is currently visible,
and they are maintained in the circular order of the
gaps they represent. In T', we will use the terms gaps
and nodes interchangeably, because except the root,
each node encodes a gap.

As the robot moves, critical events are triggered. As
events occur, T is updated as follows: if a gap disap-
pears, the corresponding node is removed from T'. If a
gap appears, it is added as a child of the root of T" in
a location that preserves the circular ordering of gaps.
If a gap splits, then the corresponding child of the root
will be replaced with two children. If two gaps merge,
the two corresponding children of the root become the
children of a new node, d, and d becomes a child of the
root.

The relation of T' with an information state is immedi-
ate. In fact, T is nothing more than the sensor history
of the current information state. For example, assume
that at time ¢; the state of T is Ty. At t; the robot
is commanded to chase the sequence of gaps «, which
brings T' into the state T5. Comparing 77 and 75 we
can readily obtain the sequence a followed (input his-
tory), with the respective changes as reported by the

ﬁﬂi

(c)

@@@

Figure 4: Environment equivalence. All the environ-
ments shown share the same family of GNTs. A robot
could not disambiguate one from another using the
sensing capabilities presented, yet it can navigate opti-
mally in each of them.

gap sensor (sensor history). Note, however, that we
are assuming that « is the shortest sequence of gaps
to take T; into T5. In this sense, all sequences of gaps
that take T from one state to another are equivalent
to the shortest one, since at the end, they modify T in
the same way.

There is a very close relation between the visibility
graph and the Gap Navigation Tree. Once the GNT
is known for an environment, it can be shown that
the robot will follow optimal paths in distance, even
though no distance information was ever measured[27].
Adding cleared and contaminated labels to the gaps,
pursuit-evasion in the absence of a map can also be
solved [12]. One interesting observation is that the
GNT induces an equivalence relation in the set of envi-
ronments with piecewise-analytic closed curves bound-
aries. For example, all the environments in Figure 4
have the same family of GNTs. This means that with
the GNT framework, the robot cannot disambiguate
one from another.

3.3 Bitbots

In the previous examples, we used visibility information
directly, either by computing it from a map, or by de-
tecting visibility changes through the gap sensor. Now
we present an example where the robot solves visibility-
tasks without any visibility related sensor. In fact, the
robot, called Bitbot [28], has only one sensor, a contact
sensor. The contact sensor gives one bit of information
indicating whether or not there is a contact with the
boundary of the environment. The Bitbot can only
choose among two types of movements in a polygonal
environment. First, it can follow the walls in either
direction. Second, when approaching a reflex vertex v

Figure 5: A polygon and all its cuts are shown on the
left. For a cut [v,v.] its cave is shaded. The corre-
sponding cut diagram is shown on the right.

(Figure 5), it can choose to go straight off the reflex
vertex along the continuation of the edge, and land on
the opposite edge of the environment.

The state space is defined as X C R? x F, where each
valid state z = (g, ¢e),q € Q¢, e € E represents the Bit-
bot position g with respect to the environment e it is
in. The set E represents all possible environments the
Bitbot may be in. Since neither e nor ¢ are known
to the robot, the state is unknown. The observation
space is determined by the output of the contact sen-
sor. We assume that the contact sensor indicates if
the robot is currently in contact with a reflex vertex
(i.e., a corner) of the environment, in contact with
a non-reflex vertex, or in contact with a wall. Thus
Y = {reflex, nonReflex, wall, noContact}. The ac-
tion space, U = {goRight, goLeft, goRightOff,
goLeftOff} represents the actions to move right and
left along the walls, or right and left along the walls
followed by going off from the reflex vertices.

Given a reflex vertex v in the environment boundary,
consider an edge incident to this vertex, with maxi-
mal extension inside the environment. When the robot
decides to go straight off the reflex vertex, it follows
exactly this segment, which is called a cut. For each
reflex vertex there are two cuts, corresponding to the
two incident edges at this vertex. An example of a
polygon with the set of all of the cuts is shown on
Figure 5. Consider an environment representation in
which nodes representing the polygon vertices are ar-
ranged in a circle, respecting its circular order along the
boundary. Each edge in the polygon has its counter-
part along the circle too. For each cut in the polygon,
a chord is added to the circle, from a node correspond-
ing to the reflex vertex to the corresponding edge. This
representation, called the Cut diagram of the polygon,
contains the information related to inflections and bi-
tangents of the environment boundary, as it is shown
in [28]. Particularly, through the diagram we can con-
servatively determine if two given reflex vertices may

Figure 6: Some polygons having the cut diagram shown
in Figure 5.

be endpoints of a bitangent in the environment. This
test is conservative, since two vertices may be said to
form a bitangent when in fact they do not. This is
because different polygons will share the same Cut di-
agram, and for some of them the bitangent does exist
(Figure 6).

As it is, the Bitbot cannot construct the Cut diagram.
With the Bitbot capabilities assumed until now, the
robot cannot count the number of vertices in the envi-
ronment, information that is needed to construct the
Cut diagram. Thus, the Bitbot is provided with a
marker, or pebble, that labels a single position in the
environment boundary. With this, the robot can trans-
verse the boundary exactly one time to count the num-
ber of vertices, and to go straight off each cut, encoding
in which edge, and which order the chords should be
added. Once the Cut diagram is built, the pebble is
not needed.

The Cut diagram offers a discrete version of the state
space. For example, if the reading from the sensor is
noContact, the Bitbot knows that is somewhere along
a certain cut, but not its exact position. This allows the
use of the nondeterministic derived information states
framework presented before. As it is presented in [28§],
it is possible to solve a version of the pursuit-evasion
problem with a search in this collapsed state space,
together with the bitangent information available in
the diagram.

3.4 Almost-Sensorless Localization

Consider now a mobile robot equipped with a contact
sensor, an environment map, and a compass. The reli-
able motions available to this sort of robot are severely
limited. Lacking odometry or a sense of time, the robot
can only choose a direction of motion and travels in
that direction until it reaches the boundary of the envi-
ronment. Suppose this robot is kidnapped and released
at an unknown position. Can the robot localize itself?
To formalize, let the environment be described by a
simply-connected polygonal environment X. At each
step the robot chooses an action (that is, a direction of
motion) from U = S'. The resulting state 2’ = f(z,u)

1| ug Ni+1 1| U Nit+1

| [[
W

Figure 7: A localizing sequence for a simple non-convex
polygon. The derived information state at each step is
shaded.

is the first boundary point touched by moving from z
in direction wu.

We can define localization as a planning problem over
nondeterministic derived information states. Figure 7
shows a rudimentary example environment along with
a localization plan for it and the derived information
states traversed along the way. The initial condition is
total uncertainty, so that 7o = X. The goal is to reach
some singleton information state,

ne=1{n€Z|n =1},

or equivalently, ng = {{z} | € X}. To complete the
problem definition, we must describe the information
transition function f : Z x U — Z. First consider two
special cases:

e If) is a single point, then f(n,u) can be computed
by a ray shooting query [1] in X.

e If 5 is a segment along the boundary of X, then
f(n,u) can be computed geometrically. Sweep a
normal line across the segment, tracking changes
to the environment edge first intersected by the
sweep line. At each change, a new segment is
added to the resulting information state.

These two cases are illustrated in Figure 8. For arbi-
trary information transitions, observe that any reach-
able information state can be described by a finite
union of points and open segments along the environ-
ment boundary. Therefore, for an arbitrary reachable
information state action pair, the resulting information
state is simply the union of partial results given by the
two special cases described above.

To solve the localization task, we need a strategy that
will reach one of the goal information states. Since
there are no observations for this problem, we can de-
scribe the strategy as a sequence of actions. More gen-
erally, a policy over information space can be defined.

(a) (b)

Figure 8: Computing the information transition func-
tion F(n,u) for the special cases when (a) 7 is a sin-
gle point and (b) 7 is a segment. All other reachable
derived information states can be described by finite
unions of these two special cases.

LOCALIZE(n)
if 1 contains a segment s then
return a direction parallel to s
else if 7 contains at least two points p and g then
if g is visible from p then
return a direction parallel to p — g.
else
return a direction parallel to the gap hiding p from
q-
end if
else
terminate

end if

Figure 9: A motion strategy for localization with a
simple robot, expressed as a policy over derived infor-
mation space.

Figure 9 shows a localization policy that originally ap-
peared in [22]. This policy will eliminate segments from
the information state first, then iteratively merge pairs
of the remaining points until the information state is
a single point. A more complex example appears in
Figure 10.

3.5 Probabilistic Information Spaces

The planning examples described above present nonde-
terministic state uncertainty. However, for some tasks,
probability distribution over the state space and nature
actions are available, and have been used in an infor-
mation space context. One of such approaches is the
well known Kalman filter. In the case of the Kalman
filter, the transition function f, and the sensor map-
ping h are both linear functions, and nature actions,
and ¢, can be modeled as Gaussians. Thus, the derived
information states will follow a Gaussian distribution
too. Each Gaussian is specified by an n-dimensional
mean vector u, and an n X n Symmetric covariance ma-
trix, . Since the Kalman filter relies on linear models,
f takes the well-known form

e

s

Figure 10: (a) An irregular environment for which the
the policy in Figure 9 terminates in 30 steps. (b) Exe-
cution traces for 6 different starting positions. For each
starting position, the final position is the upper right
corner of the environment.

Bl

(a)

Tpy1 = Apzr + Brug + Gy,

in which A, By, and G} are real-valued matrices of
appropriate dimensions. The subscript k is used be-
cause the Kalman filter works even if f is different in
every stage. Similarly, the sensor mapping becomes

Yr = Crzp + Hyp)y.

Since an information state P(xg|ny) is represented by
its mean vector and its covariance matrix, the goal is
to compute pur and Xy at the stage k. Such updating
expressions can be found in textbooks on stochastic
control (i.e., [15]).

If we assume that nature can be modelled probabilisti-
cally, and it follows a Markov model (its actions depend
only on the current state, as opposed to actions or state
histories), the derived information state becomes a con-
ditional probability distribution. The set functions H
and F' become P(zp|yr) and P(zyy1|zg,ur), respec-
tively. To compute P(z|yr) Bayes rule is applied as:

P(zr Nyr) = P(ak| yr)Pyr) = Plyx| zx) P(zr).

Bayes rule will require the knowledge of P(xy), which
is replaced by a derived information state!. Since each
information state is a probability distribution over X,
it can be written as P(zg| nx), if it is derived from
n- As before, derived information states can be com-
puted inductively [17]. In this case, the derived infor-
mation space is the set P(X), of all probability distri-
butions over X. Thus, the planning problem can be

1In this context, derived information states have been also
called belief states.

expressed again entirely in terms of the derived infor-
mation space. A goal region can be specified as con-
straints on the probabilities. For example, for some
particular z € X, the goal might be to reach any de-
rived information state for which P(z|ng) > 0.9. Fur-
ther, it is possible to embed 7 in R" with each state
z € X representing a vertex of a (n — 1)-simplex.
The coordinates of each vertex are expressed using
probabilities (p1,p1, - .., pn) as barycentric coordinates.
Here, p; is the probability of being in state z;. Since
p1 + -+ + p, = 1, the vertices of the simplex (i.e.,
(1,0,...,0), (0,1,...,0), ---, (0,0,...,1)) correspond
to the cases when the state is completely known. A
planning problem of this kind is known as a Partial
Observable Markov Decision Process (POMDP). Solv-
ing efficiently POMDPs is an active area in the research
community [16, 29]. The problem is clearly very dif-
ficult, since the dimension of the space grows linearly
with the number of states.

4 Conclusions

In this paper we have presented information spaces - a
notion which combines all planning problems for robots
with sensing uncertainty into one framework. Each in-
formation state represents the current knowledge of the
robot about its progress after taking each action and
sensor measurement. We have described several exam-
ples of information spaces for different problems, such
as pursuit-evasion tasks for robots with different sens-
ing capabilities and robot localization. These examples
show that considering planning problems in terms of in-
formation spaces allows a better understanding of the
structure of the problem. Moreover, the solutions for
robotics tasks naturally lie in the spaces of information
states, which allows finding better plans for the robots.
Considering information spaces opens new opportuni-
ties for characterizing the robotics tasks. It is possi-
ble to characterize sensors based on their power. It is
also possible to design robots with minimal sensor re-
quirements for a given task, by comparing generated
information spaces, as it was shown on the example
of pursuit-evasion task, which was solved with robots
with hierarchy of sensors. Information spaces also al-
low to characterize the essential information needed to
solve the required tasks, allowing design of task specific
sensors, as was shown in the presented example on lo-
calization. There are many opportunities to contribute
the research on planning for mobile robots using infor-
mation spaces. It is our hope that this work will stim-
ulate the community to progress in solving challenging
problems in robotics.

References

(1]

2]

[11]

[12]

[13]

[14]

[15]

[16]

B. Chazelle and L. G. Guibas. Visibility and inter-
section problems in plane geometry. Disc. and Comp.
Geom., 4:551-589, 1989.

C.-T. Chen. Linear System Theory and Design. Holt,
Rinehart, and Winston, New York, NY, 1999.

H. Choset and K. Nagatani. Topological simultaneous
localization and mapping (SLAM): toward exact local-
ization without explicit localization. IEEE Int. Conf.
Robot. & Autom., 17(2):125-137, April 2001.

B. R. Donald. Planning multi-step error detection
and recovery strategies. Int. J. Robot. Res., 9(1):3-
60, 1990.

B. R. Donald. On information invariants in robotics.
Artif. Intell., 72:217-304, 1995.

G. Dudek, K. Romanik, and S. Whitesides. Localizing
a robot with minimum travel. In ACM-SIAM Sympo-
stum on Discrete Algorithms, pages 437-446, 1995.

F. Durand. 3D Visibility: Analytical study and appli-
cations. PhD thesis, Université Grenoble I — Joseph
Fourier Sciences et Géographe, July 1999.

M. Erdmann. Understanding action and sensing by
designing action-based sensors. Int. J. Robot. Res.,
14(5):483-509, 1995.

K. Y. Goldberg. Orienting polygonal parts without
sensors. Algorithmica, 10:201-225, 1993.

L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin,
and R. Motwani. Visibility-based pursuit-evasion in a
polygonal environment. In F. Dehne, A. Rau-Chaplin,
J.-R. Sack, and R. Tamassia, editors, WADS ’97 Algo-
rithms and Data Structures (Lecture Notes in Com-
puter Science, 1272), pages 17-30. Springer-Verlag,
Berlin, 1997.

L. J. Guibas, R. Motwani, and P. Raghavan. The robot
localization problem. In K. Goldberg, D. Halperin, J.-
C. Latombe, and R. Wilson, editors, Proc. 1st Work-
shop on Algorithmic Foundations of Robotics, pages
269-282. A.K. Peters, Wellesley, MA, 1995.

L. Guilamo, B. Tovar, and S. M. LaValle. Pursuit-
evasion in an unknown environment using gap naviga-
tion graphs. In IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems, 2004.

I. Kamon, E. Rivlin, and E. Rimon. Range-sensor
based navigation in three dimensions. In IEEE Int.
Conf. Robot. & Autom., 1999.

J.J. Koenderink and A.J. van Doorn. The singularities
of the visual mapping. Biological Cybernetics, (24):51—
59, 1976.

H. Kwakernaak and R. Sivan. Linear Optimal Control
Systems. Wiley, New York, NY, 1972.

M. Littman L. Kaelbling and and A. Cassandra. Plan-

ning and acting in partially observable stochastic do-
mains. Artificial Intelligence, 101:99-134, 1998.

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

S. M. LaValle. Planning Algorithms. Cam-

bridge University Press (also available at
http://msl.cs.uiuc.edu/planning/). To be published
in 2006.

S. M. LaValle and J. Hinrichsen. Visibility-based
pursuit-evasion: The case of curved environments.
IEEE Transactions on Robotics and Automation,
17(2):196-201, April 2001.

V. J. Lumelsky and A. A. Stepanov. Path planning
strategies for a point mobile automaton moving amidst
unknown obstacles of arbitrary shape. Algorithmica,
2:403-430, 1987.

M. T. Mason. Mechanics of Robotic Manipulation.
MIT Press, Cambridge, MA, 2001.

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit.
FastSLAM: A factored solution to the simultaneous
localization and mapping problem. In AAATI National
Conference On Artificial Intelligence, 2002.

J. M. O’Kane and S. M. LaValle. Almost-sensorless
localization. In IEEE Int. Conf. Robot. € Autom.,
2005.

J. M. O’Kane, B. Tovar, P. Cheng, and S.M. LaValle.
Algorithms for planning under uncertainty in predic-
tion and sensing. Chapter 18 in Autonomous Mobile
Robots: Sensing, Control, Decision-Making, and Ap-
plications, 2005. To appear.

S. Rajko and S. M. LaValle. A pursuit-evasion bug
algorithm. In Proc. IEEE Int’l Conf. on Robotics and
Automation, pages 1954-1960, 2001.

S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust
Monte Carlo localization for mobile robots. Artificial
Intelligence Journal, 2001.

B. Tovar, L. Guilamo, and S. M. LaValle. Gap naviga-
tion trees: Minimal representation for visibility-based
tasks. In Proc. Workshop on the Algorithmic Founda-
tions of Robotics, 2004.

B. Tovar, S. M. LaValle, and R. Murrieta. Optimal
navigation and object finding without geometric maps
or localization. In Proc. IEEE International Confer-
ence on Robotics and Automation, 2003.

A. Yershova, B. Tovar, S.M. LaValle, and R. Ghrist.
Bitbots, simple robots solving complex tasks. In
AAAI 2005.

N. Zhang and W. Lin. A model approximation scheme
for planning in partially observable stochastic domains.
Journal of Artificial Intelligence Research, 7:199-230,
1997.

