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Abstract— The multi-robot visibility-based pursuit-evasion
problem tasks a team of robots with systematically searching an
environment to detect (capture) an evader. Previous techniques
to generate search strategies for the pursuit team have shown
to be either computationally intractable or permit poor solution
quality. This paper presents a novel asymptotically optimal al-
gorithm for generating a joint motion strategy for the pursuers.
To explore the space of possible pursuer motion strategies, the
algorithm utilizes a trio of hierarchical graph data structures
that each capture certain elements of the problem such as
connectivity (valid single pursuer motion), coordination (mul-
tiple pursuer motion), and tracking information (evaluating
where an evader may be). The algorithm is inspired by well-
known methods in the motion planning literature and inherits
its asymptotic optimality from those techniques. In addition,
we describe a method that can improve upon solutions found
during the formative stages of the main algorithm, using a
“fast-forward” approach that foregoes guarantees of asymptotic
optimality, implementing heuristics that concentrate future
samples into improving the path quality of the nominal solution.
The algorithms were validated in simulation and results are
provided.

I. INTRODUCTION

Scenarios where an agent, or group of agents, attempts
to track down and locate members of another group form
the foundation of the problems known as pursuit-evasion
problems. These problems are often formulated as a two-
player game to capture the competing interests of the two
groups. The searchers, generally referred to as pursuers
attempt to detect or capture the members of the other group,
the evaders. In many instances, the evaders may not neces-
sarily be actively evading the pursuers. However, the game
formulation is beneficial as it leads to “winning conditions”
for the players which are useful in evaluating the ability of
the players to achieve their goal, namely can the pursuers
guarantee capture/detection of their target. In fact, a plethora
of everyday tasks can be constructed as pursuit-evasion prob-
lems such as environmental surveying [4], [20], [43], search-
and-rescue [3], [30], [31], and monitoring/surveillance [2],
[13], [29].

This paper considers a geometric form of the pursuit-
evasion problem where a group of pursuers are tasked with
exploring a polygonal environment to determine the presence
or absence of an intruder (the evader). This exploration
presents a greater computational challenge compared to other
tasks in the literature, like coverage and navigation, because
it involves the additional requirement of finding the evader,
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Fig. 1. The “pure” algorithm was able generate a solution strategy for
the 36-room environment shown above. The search produced a G0 graph
containing 1,019 nodes, a G1 graph with 792 nodes, and a G2 graph with
203,996 nodes.

who is capable of moving within the environment. It is
insufficient for the pursuers to “visit” every region in the
environment. Rather, the pursuers must reason over the space
of potential evader motions. Specifically, the pursuers must
reason about the areas of the environment currently beyond
the view of their sensing capability and how these regions
evolve as the pursuers move within the environment.

An emerging trend is the study of multi-pursuer variants of
the pursuit-evasion problem. The increased complexity that
arises when incorporating multiple pursuers has historically
been an inhibiting factor to investigating the multi-pursuer
visibility-based pursuit-evasion problem [39]. However, a
number of recent results have begun to explore the viability
of applying common sampling techniques found in the mo-
tion planning literature to the pursuit-evasion domain [33],
[40]. An important distinction between the two approaches is
that, much like the difference between coverage/navigation
and pursuit-evasion, the space over which we are searching is
more complex than the standard configuration space in which
many of these applications have shown utility. Thus, while
existing techniques have been able to leverage sampling
techniques to show tractability, they often emit solutions of
poor quality.

This paper bridges that knowledge gap by introducing
an asymptotically-optimal algorithm for computing solution
strategies for the multi-robot visibility-based pursuit-evasion
problem. Our specific contributions are:

1) An introduction of a hierarchical three-tier graph struc-
ture that maintains a separation of concerns when rea-
soning over the space of possible pursuer strategies.

2) An algorithm that uses the aforementioned data struc-
ture to generate asymptotically-optimal pursuit strate-
gies.



3) A heuristic extension to this algorithm that takes for-
mative solutions born of the asymptotically-optimal
algorithm and does some targeted sampling to improve
the solution quality of the reported solution more rapidly
than the base algorithm.

The remainder of the paper is structured as follows: A
review of related work (Section II) is followed by a precise
statement of the problem (Section III). Section IV describes
the three data structures leveraged by the algorithms. The
primary asymptotically-optimal algorithm appears in Sec-
tion V before discussing an adaptive heuristic-based variant
(Section VI). Finally, Section VII presents a quantitative
evaluation of the algorithms, just before we conclude in
Section VIII.

II. RELATED WORK

This work is at the intersection of search and target-
tracking and sampling-based motion planning. As such, there
are elements from both communities with whom this work
draws inspiration and shares similarity.

A. Search and Target Tracking

Pursuit-evasion represents a specific subproblem within
the broader field of search and target tracking. Born of the
seminal work of Isaacs [19] and Ho et. al. [18] pursuit-
evasion was first discussed in the context of game theory
as a differential game [7], [9]. Parsons [34] and Petrov [35],
[36] are generally acknowledged as being at the forefront
of graph-based pursuit-evasion where the domain is mod-
eled as a graph [1], [8], [34]. The visibility-based pursuit-
evasion problem discussed in this paper has its roots in
the work of Suzuki and Yamashita [42], which offered the
first geometric formulation of the pursuit-evasion problem.
Guibas, Latombe, LaValle, Lin, and Motwani’s pioneering
work [17] resulted in a complete algorithm for the single-
pursuer visibility-based pursuit-evasion problem, which has
since been iterated upon in a number of contexts with various
constraints on the motion and sensing capabilities of the
pursuer [6], [14], [27], [44]. By comparison, the multi-robot
visibility-based pursuit-evasion problem is in its infancy [12],
[16], [24].

B. Sampling-Based Motion Planning

Sampling-based motion planning is a subfield born out
of the computational intractability of reasoning over vast
search spaces. Two popular techniques, which originated
as path planning algorithms for individual robots, are the
Probabilistic Roadmap (PRM) [23] and Rapidly-Exploring
Random Trees (RRTs) [25]. These methods have inspired
a wide range of variants and generalizations [21], [45].
Karaman and Frazzoli [22] improved upon these techniques
by providing asymptotically-optimal variants of the original
algorithms.

One caveat of the aforementioned sampling-based methods
is that they quite often suffer from the curse of dimension-
ality [5] whereby, as the number of dimensions increases,
the number of samples required for adequate coverage of

the space increases exponentially. It is non-trivial to adapt
sampling-based methods to the multi-robot domain [37].
Intuitively, the number of samples required to adequately
sample an exponentially larger underlying space makes the
problem computationally challenging. Thus, we are left with
a few techniques such as implicit representation [38], sparse
well-represented samples representative of a larger space
[28], and cleverly designed sampling to avoid scenarios
where the local planning step is efficient but the connection
problem is difficult [15], [46].1

III. PROBLEM STATEMENT

To formalize the multi-robot visibility-based pursuit-
evasion problem considered in this paper, we begin by
describing the models used to represent the environment,
evader(s), and pursuit team. We then provide the formalism
used by the pursuit team to reason about the observed
and unobserved areas of the environment. We characterize
solutions, which are the joint paths followed by our pursuit
team, that ultimately lead to the determination of whether
the evader(s) have been detected.

A. Environment, Evader, and Pursuers

The environment W is a closed, bounded, and connected
polygonal region in R2. A single evader seeks to avoid
detection by the pursuers by moving continuously within the
environment with a finite unbounded speeds. We denote the
evader’s location, as a function of time, by the continuous
function e(t) : [0,∞) → W , unknown to the pursuers.
Observe that, because we plan for the worst case, any pursuit
strategy employed by the pursuers that guarantees detection
of a single evader can also guarantee detection for arbitrarily
many evaders.

The motion of a single pursuer p can be described by a
continuous function p : [0,∞) → W , so that p(t) ∈ W
denotes the position of the pursuer at time t ≥ 0. The
function p is called a motion strategy for the pursuer. This can
be extended to a team of n pursuers, p̂ = (p1, p2, . . . , pn) :
[0,∞) → Wn, to discuss the joint motion strategy of
the pursuers. Thus the n-robot joint pursuer configuration
(henceforth referred to as JPC) at time t is defined as
p̂(t) = (p1(t), p2(t), . . . , pn(t)) ∈Wn.

The pursuers are each equipped with a sensor capable of
detecting the evader. The sensor model assumes an omnidi-
rectional line-of-sight with an unlimited range that extends
unobstructed to the environment boundary. That is, a pursuer
at point q ∈ W can detect anything within its visibility
polygon V (q) = {r ∈ W | qr ⊂ W}. By extension, a team
of pursuers creates a visibility region defined as the union
of each pursuer’s visibility polygon. The visibility region at
time t is defined as V (p̂(t)) = V (p1(t)) ∪ V (p2(t)) ∪ · · · ∪
V (pn(t)).

The time of capture for an evader following trajectory e
and a team of pursuers executing joint motion strategy p̂ is
defined as tc(p̂, e) = min {t ≥ 0 | e(t) ∈ V (p̂(t))}.

1This observation appeared in [25] and is exactly the problem we face in
the pursuit-evasion domain.
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Fig. 2. Two pursuers p1 and p2 execute a joint motion strategy over the
interval [0, t′′] where 0 < t < t′ < t′′. Note that at time t′ the pursuer p2
is capable of detecting the evader e.

Fig. 3. A problem state with a JPC comprised of two robots ( ), and
a shadow label of 011 corresponding to a cleared shadow ( ) and two
contaminated shadows ( ). This is one of eight possible problem states for
the pursuers at this JPC.

The pursuers’ objective is to establish visibility with the
evader regardless of the evader’s motion. A joint pursuer
motion strategy p̂ is a solution strategy if there exists a
finite time of capture, denoted tc(p̂) and defined as tc(p̂) =
maxe tc(p̂, e). Note that tc(p̂) is the least upper bound
over all valid evader motions when the pursuers employ
joint motion strategy p̂. An optimal solution strategy occurs
when tc(p̂) is minimized. Note that there can be uncountably
many such p̂ that result in tc(p̂) being an infimum. Figure 2
illustrates the notation.

B. Shadows

We define the shadow region, S(t) = W \ V (p̂(t)) as
the portion of the environment unobservable by any pursuer
at time t. The maximal connected components of S(t) are
called shadows.

When reasoning about shadows, the pertinent piece of
information is whether it is possible, based upon the pur-
suers’ motions up to the current time t, for an evader to
be concealed somewhere within the shadow. A shadow is
deemed to be cleared if, based upon the pursuers’ motions
up to the current time t, it is guaranteed to not contain
an unseen evader. Any shadow that is not cleared is called
contaminated, and may still contain an evader within.

We employ a simple binary representation to describe the
cleared/contaminated status for a shadow where a 1 indicates
that the shadow is contaminated and a 0 indicates that the
shadow is cleared. We can thus capture the status of multiple
shadows by establishing an arbitrary but fixed ordering and
concatenating the individual shadow statuses to create a
binary string we refer to as a shadow label. As the pursuers
move within the environment, the shapes of the shadows
will change continuously, but the number of shadows and
the cleared/contaminated status of individual shadows will
change at discrete points in time.

C. Redefining the objective

A problem state is defined as the 2-tuple whose elements
are a JPC and a shadow label. This representation is expres-
sive enough to encode any information about past movements
relevant to the problem. For a JPC with m shadows, there
exist 2m distinct problem states, each with a distinct binary
shadow label. Figure 3 illustrates this idea.

As the pursuers conduct their search, the problem state
is continually evolving. This affords the opportunity to state
the pursuers’ objective in terms of problem states as opposed
to reasoning explicitly over the space of all possible evader
trajectories. Under this viewpoint, a solution strategy is a
motion strategy for the pursuers that, starting with a shadow
label that is fully contaminated (1 · · · 1), forms a sequence
of problem states ending in a problem state with a shadow
label that is fully cleared (0 · · · 0). An optimal strategy is the
shortest path that achieves this, measured by total travel for
all of the pursuers.

IV. DATA STRUCTURES: ENVIRONMENT GRAPH, JPC
GRAPH, AND PROBLEM STATE GRAPH

This section introduces the data structures used to solve
the multi-robot visibility-based pursuit-evasion problem in-
troduced above. These data structures form the basis for the
algorithms introduced in Sections V and VI. The main idea
is to explore the space of possible solution strategies by
forming three distinct graphs, each of which captures certain
elements of the problem.

At the bottom level, the environment graph G0 captures
the connectivity of collision-free movements in the environ-
ment for a single pursuer. Next, the JPC graph G1 describes
coordinated motions that the entire team can make within
the environment. Finally, within the problem state graph
G2, paths correspond to joint pursuer strategies, tracking the
appropriate shadow labels at each step. These three graphs
are constructed in harmony with one another, so that vertices
in G2 refer to G1 and vertices in G1 refer to G0; details
about these connections are described below. This “stack of
graphs” structure enables the full complexity of the problem
to be represented, while avoiding duplication of computation
and enabling an effective balance of exploration of the space.
The remainder of this section describes each of the graph data
structures, including the operations that can be performed on
each, in more detail.

A. The Environment Graph

The environment graph, denoted G0 = (V0, E0), is a
weighted undirected graph. Each vertex in V0 corresponds to
a position within W . Each edge in E0 corresponds to a line
segment fully within W between the two vertices connected
by the edge. An edge’s weight is assigned according to the
Euclidean distance between the endpoints.

a) Operation 1: Add and connect a specified point to
G0: The simplest operation in G0 is to add a new vertex at a
specified location q ∈W . A new vertex, a0, at this location
is inserted into the graph. Then, the algorithm identifies the
other vertices within some maximum connection distance



Fig. 4. [left] An example of graph G0, constructed by repeated application
of Operation 1 to insert random samples. [right] A different G0, constructed
by repeated application of Operation 2 with δ0 = 0.99 and k0 = 10.

dmax. For each such vertex b0 ∈ V0, the algorithm checks
whether a0b0 ⊂ W ; if so, the algorithm inserts an edge
between a0 and b0 into E0. (The astute reader will note
strong similarities between this operation and the standard
probabilistic roadmap algorithm [23]; additional features,
specific to visibility and pursuit-evasion, appear in G1 and
G2 below.)

b) Operation 2: Add and connect a well-spaced point
to G0: Our algorithms also utilize a variant of Operation 1
that aims to select points for addition to the graph that are
well-spaced throughout the environment. The objective is to
ensure that the dispersion of the points in G0 remains low,
avoiding the clusters and barren spots that are characteristic
of uniform random samples.

The value of low-dispersion sample sequences in gen-
eral motion planning contexts has been known for some
time [26]. Such factors are likely even more important in
the context of these pursuit-evasion problems: Because so
much additional processing is needed at the G1 and G2

levels, a small investment of time in constructing G0 well
can accelerate the algorithm as a whole.

To achieve this well-spaced sampling in a straightforward
manner, the G0 data structure maintains a real number χ0

representing the minimum allowable distance between a
potential new vertex and the nearest existing vertex. At the
start, χ0 is initialized to the diameter of W . Operation 2
uses χ0 for rejection sampling: It generates a random sample
q ∈ W and performs a nearest-neighbor query to identify
the closest existing vertex q′ ∈ E0. If the Euclidean distance
between q and q′ is less than χ0, i.e ||q − q′|| < χ0, the
sample q is rejected and a new sample is selected. If k0
samples in a row are rejected in this way — here k0 is
a positive integer parameter of the algorithm — then χ0 is
multiplied by a small constant factor δ0 < 1. When a sample
q is ultimately found that is distance at least χ0 from the
existing vertices, it is added to the graph using Operation 1.
Note that the rejection process cannot continue indefinitely,
since repeated failures drive χ0 exponentially toward 0. As
illustrated in Figure 4, this process forces vertices added to
G0 to be well-spaced throughout W . In addition, the variable
χ0 can be used as a proxy for the dispersion of the samples
represented by G0.

B. The JPC Graph

The JPC graph, denoted G1 = (V1, E1), is also a weighted
undirected graph. Each vertex in V1 is a JPC; each edge in
E1 represents a direct collision-free path in Wn.

The graph G1 builds upon G0 by enforcing the following
constraint: For every vertex a1 ∈ V1, consider the associated
JPC (pa1

1 , pa1
2 , . . . pa1

n ). We require that every pursuer posi-
tion pa1

i in the JPC appears as a vertex in G0. In practice, this
is most easily implemented by constructing a1 as a collection
of n references to vertices in G0. The advantage of this
linking between G1 and G0 is that edges and vertices can
be added to G1 without any geometric computation to detect
collisions, since the necessary information about collisions
with the environment is fully encapsulated within G0. This
sort of construction shares some similarity with the dRRT∗

work of Dobson, Solovey, Shome, Halperin, and Bekris [11],
but requires an explicit construction of the multi-robot graph
because of the need, in this pursuit-evasion context, to track
shadow labels.

In addition to tracking the structure of the graph G1, this
data structure also labels each edge e ∈ E1 from a1 ∈ V1

to b1 ∈ V1 with a shadow influence relation Re. This is a
binary relation between the shadows at a1 and the shadows
at b1. Specifically, for a shadow sa1

at a1 and another
shadow sb1 at b1, if (sa1

, sb1) ∈ Re, then there exists a
path segment for the evader starting in sa1

and ending in
sb1 which remains unseen by the pursuers as they move
from a1 to b1. This information is relevant for computing
problem states: After a motion along e from a1 to b1, a
given shadow sb1 is contaminated if and only if there exists
a contaminated shadow sa1

for which (sa1
, sb1) ∈ Re. The

shadow influence relation is computed each time an edge is
added to E1, and used in the construction of G2, as described
later. These shadow influence relations generalize the shadow
influence caches recently introduced in a somewhat different
context [32].

To construct G1, we utilize two main operations that echo
those for G0.

a) Operation 3: Add and connect a specified JPC to
G1: A new vertex a1 is added to V1, at a JPC specified by
indicating vertices in V0 for each of the n pursuers. Then
new edges in E1 connect a1 to any other vertex b1 ∈ V1

for which edges exist in E0 to confirm that such motion is
collision-free.

b) Operation 4: Add and connect a well-spaced JPC
to G1: Similar to Operation 2, we use rejection sampling
to select JPCs, selected at random from (V1)

n, maintaining
a minimum distance from each other, with the minimum
distance adjusted downward upon repeated failures. This
operation is governed by parameters δ1 and k1, analogous to
the δ0 and k0 utilized in Operation 2. When a suitably-spaced
sample JPC is identified, we add it to G1 using Operation 3.

C. The Problem State Graph

The final layer in our stack of graphs is the problem state
graph, a directed graph G2 = (V2, E2). Each vertex in V2

represents a full problem state; each edge in E2 represents a
feasible direct transition from one problem state to another.
Analogously to the connection between G0 and G1, the
problem state for each vertex in G2 shares its JPC with some
vertex in G1. This constraint enables us to use the shadow



influence relations stored in G1 to compute transitions in
G2 rapidly. Specifically, for a vertex a2 ∈ V2, we identify
its associated a1 ∈ V1. Then each edge a1 → b1 ∈ E1 forms
an out edge in G2 from a2.

Additionally, at each vertex a2 ∈ V2, the data structure
also maintains two additional attributes: (i) A parent ρ(a2) ∈
V2 ∪ {NIL}, either a reference to another vertex in V2 or
NIL. (ii) A distance d(a2) ∈ R≥0∪{∞}, a nonnegative real
number or infinity. These attributes play similar roles to the
parent and distance attributes used in most implementations
of Dijkstra’s algorithm [10]: The parent ρ(a2) tracks the next
vertex to visit along the best known path from a2 to an
all-clear vertex, and the distance d(a2) tracks the length of
that path. Each new vertex a2 begins with ρ(a2) = NIL
and d(a2) = ∞ if the problem state of a2 has at least one
contaminated shadow, or d(a2) = 0 if the problem state of
a2 has all cleared shadows.

a) Operation 5: Add and connect vertices for all prob-
lem states at a given JPC: Given a specific JPC correspond-
ing to a G1 vertex a1 ∈ V , this operation adds a collection
of vertices to G2 that share that same JPC, but differ in
their respective shadow labels. Let k denote the number
of shadows at the JPC in question. We create 2k vertices,
encompassing all possible shadow labels. Out edges from
these new vertices can be constructed in a straightforward
way from the corresponding edges in E1: The targets of
those edges indicate the correct JPC and the edge’s associated
shadow influence relation, applied to the k shadows at a1, as
label in the problem state of a2, directly yield the resulting
shadow labels.

b) Operation 6: Update parents and distances: The
final basic operation is to inspect the parent and distance
pointers in G2 to determine whether additions to the graph
since the previous call to this operation has created any
shorter paths, and if so to update those attributes. This
relies on the standard edge relaxation, wherein for any edge
e ∈ E2 connecting a2 to b2, if d(a2) > w(e)+d(b2), we set
ρ(a2)← b2 and d(a2)← w(e)+d(b2). A call to Operation 6
performs these updates until d(a2) ≤ w(e)+d(b2) for every
edge e ∈ E2.

V. ALGORITHM: ASYMPTOTICALLY-OPTIMAL

The three graph data structures G0, G1, and G2 introduced
in Section IV form the basis for the main contribution of
this paper: an asymptotically optimal algorithm that solves
the multi-robot visibility-based pursuit-evasion problem. The
intuition is that as the number of samples approaches infinity,
the solution provided by the algorithm will converge to the
optimal solution.

The main idea, starting from empty graphs for G0, G1,
and G2, is to incrementally add to these graphs using
Operations 2, 4, and 5 while maintaining the shortest path
information in G2 using Operation 6. (Operations 1 and
3 are used indirectly; recall that they are subroutines to
Operations 2 and 4 respectively.)

The algorithm starts with a short initial phase of singular
focus on G0, ending when G0 becomes a non-trivial (i.e.

more than one vertex) connected graph. After that, the chal-
lenge in the algorithm is to determine where computational
effort should be invested as time progresses. For simplicity,
our algorithm always applies Operations 4, 5, 6 in tandem, so
that G2 always has vertices linked to each of the vertices in
G1 and the shortest path information in G2 is always up-to-
date. Thus, at each iteration of the main algorithm, it remains
to determine whether to expand G0, exploring the space of
individual pursuer movements more fully; or to expand G1

and G2, exploring the space of coordinated movements and
their impact on the shadow labels.

We resolve this tension using the minimum spacing vari-
ables χ0 and χ1. The intuition is to treat these values as
proxies for the dispersion of the samples added thus far at
each level. We aim to split the exploration evenly between
these layers, but this is complicated by the fact while G0

lives within W , G1 lives in Wn, and therefore distances in
G1 have the capacity to be larger than in G0. Consequently,
instead of comparing χ0 and χ1 directly, we scale these
values based on the maximum possible distance. Specifically,
at each iteration, if χ0 ≤ χ1/

√
n, we perform Operation 2

to add to G0. Otherwise, we perform Operations 4, 5, and
6 to add to G1. This process continues as long as time
permits. At any point, if there exists a vertex v2 ∈ V2 whose
problem state shows all shadows contaminated and for which
ρ(v2) ̸= NIL, then a correct solution strategy starting from v2
can be extracted from the graph. As the algorithm proceeds
shorter solution paths may be found, gradually converging
to the optimal solution.

Though space limitations prohibit a detailed argument for
the asymptotic optimality of this approach, the intuition fol-
lows directly from the well-known arguments for asymptotic
optimality of motion planners like RRT∗ and PRM∗: For a
given optimal solution, the ‘rewiring’ process ensures that
the paths encoded in G2 represent the shortest paths to
all clear within that graph, and the underlying sampling
process ensures that samples adequate to yield an close
approximation of the optimal solution will eventually be
included in G2.

VI. ALGORITHM: HEURISTIC-BASED

Next, we describe a variation of the main algorithm
introduced in Section V. The idea is to rapidly improve upon
the correct but inefficient solutions found during the early
stages of the search by targeting graph additions in places
intuitively likely to lead to improvements.

To avoid the heavy computational burden that arises as the
graphs grow in size, we begin by “resetting” the graphs G0,
G1, and G2 and seeding them with the points, JPCs, and
problem states of the solution via repeated application of
Operations 1, 3, 5. Using these newly formed sparse graphs
as a basis, we employ a series of “fast-forward” operators
designed to add specific vertices around the existing solution.
The algorithm applies these operations repeatedly, selecting
at random from a pool of operators in each of its iterations.

Several of these operators have proven effective in prac-
tice. Each one takes as input a solution strategy in the form



Fig. 5. A comparison between results of the main algorithm ( ), the
fast-forward solution ( ), and a known optimal solution ( ). Notice several
improvements in the fast-forward solution, including the initial point (bottom
right) being adjusted toward the optimal starting position and the motion
along the middle corridor being been smoothed.

Fig. 6. Solution strategies generated by our algorithms. [left ] The
asymptotically optimal algorithm. [right ] fast-forward algorithm. (The
optimal solution is not shown; to the authors’ knowledge, no existing
algorithm is able to generate those path.)

of a sequence of JPCs and add new vertices to any of the
three graphs with appropriate applications of Operations 1, 3,
5 before updating the distance calculations with Operation 6.

• Short-cutting: Select an arbitrary index i from the
solution sequence and add a new JPC at the midpoint
of the JPCs at indices i− 1 and i+ 1 JPC.

• Endpoint contraction: Generate a new JPC between the
first and second (or next-to-last and last) JPC of the
solution sequence.

• Guarding: Select an arbitrary index from the solution
sequence and generate a new JPC that holds one of the
pursuers back at the sample position at that index.

• Endpoint adjustment: Generate a new JPC where each
pursuer is within dmax of its position in the initial (or
final) JPC.

• Interior adjustment: Select an arbitrary index from the
solution sequence and generate a new JPC where each
pursuer remains within dmax of its position in the
original JPC.

Note that because these operations bias the selection of
samples which can be added in future iterations, the usual
argument for asymptotic optimality does not apply to these
operations in isolation.

VII. QUANTITATIVE RESULTS

This section evaluates the algorithms described in Sec-
tions V and VI using a implementation in Python 3 and
executed on a computer with an Intel Core i7-10510U CPU
with 16GB of RAM. All results in this section used δ1 =
δ2 = 0.99, and k0 = k1 = 10. The implementation of
the fast-forward-algorithm samples uniformly from the fast-
forward operators described in Section VI.

Figures 1, 5, and 6 show solution strategies computed by
this implementation. In particular, Figure 5 shows a compar-
ison to the known optimal single-pursuer solution [41]. The
solutions generated by the asymptotically optimal algorithm,

Fig. 7. Five trials illustrating the performance of the main algorithm [left]
vs. the fast-forward algorithm [right] in the environment shown in Figure 3.

Fig. 8. Five trials illustrating the performance of the main algorithm [left]
vs. the fast-forward algorithm [right] in the environment shown in Figure 6.

even in a relatively short execution, generally trace the same
path as the true optimal solution; the fast-forward algorithm
does so even more closely. Interestingly, in Figure 1, al-
though G0 and G1 remain relatively small (approximately
1000 and 800 vertices, respectively), the G2 graph already
has more than 200,000 nodes. This is a direct consequence
of the geometry of that environment, in which many JPCs
have many disjoint shadows. Our implementation was unable
to solve the two-pursuer instance of this problem without
exhausting memory, because the larger G1 led to excessive
growth of G2, far beyond the 200,000 vertices in Figure 1.

To measure the utility of fast-forward operators introduced
in Section VI, we applied both the main algorithm and the
fast-forward algorithm to the environments in Figures 3 and
6, conducting 5 trials. In each trial, both algorithms received
the same seed for their pseudorandom number generators,
so their constructions of all three graphs were identical
until such time as the first solution was generated. For each
trial, we measured the length of the best known solution,
as a function of time throughout the algorithm’s execution.
Results appear in Figures 7 and 8.

Notice that, in the main algorithm, progress generally
stalled after finding the first solution. In contrast, the fast-
forward algorithm made rapid improvements to the initial
solution in all cases. We conclude that, while it is possible
for the main algorithm to generate solutions of high quality
(See, for example, Trial 5 of Figure 7), a much more
likely outcome is that the main algorithm will discover a
solution strategy with ample opportunity for the style of local
optimizations performed in the fast-forward algorithm.

VIII. CONCLUSION

This paper presented an asymptotically optimal algorithm
for generating motion strategies for visibility-based multi-
robot pursuit-evasion. Opportunities for additional research
include reducing the number of parameters, adjusting the
connection distance in G0 as the algorithm proceeds (as in
RRT∗) and a more thorough exploration of the best ways to
fuse the main ‘pure’ algorithm with the heuristic operators
and the graph reset operation, to obtain fast performance
while retaining the optimality guarantees.
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