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Abstract

This paper computes a minimum-length pursuer trajectory that solves a visibility-based pursuit-evasion problem in which

a single pursuer moving through a simply-connected polygonal environment seeks to locate an evader which may move

arbitrarily fast, using an omni-directional field-of-view that extends to the environment boundary. We present a complete

algorithm that computes a minimum-cost pursuer trajectory that ensures that the evader is captured, or reports in finite

time that no such trajectory exists. This result improves upon the known algorithm of Guibas, Latombe, LaValle, Lin, and

Motwani, which is complete but makes no guarantees about the quality of the solution. Our algorithm employs a branch-

and-bound forward search that considers pursuer trajectories that could potentially lead to an optimal pursuer strategy.

The search is performed on an exponential graph that can generate an infinite number of unique pursuer trajectories,

so we must conduct meticulous pruning during the search to quickly discard pursuer trajectories that are demonstrably

suboptimal. We describe an implementation of the algorithm, along with experiments that measure its performance in

several environments with a variety of pruning operations.

Keywords

Pursuit-evasion, optimal path planning, computational geometry

1. Introduction

Pursuit-evasion algorithms, in which one group of agents,

the pursuers, attempts to systematically locate the mem-

bers of another group, the evaders, have a multitude of

applications in robotics. For example, beyond the obvi-

ous adversarial scenarios, many kinds of search and rescue

problems (Baxter et al., 2007; Calisi et al., 2007; Kleiner

et al., 2013; Murphy, 2014) can be viewed as pursuit-

evasion problems. Although the victims in such situations

are unlikely to avoid detection actively, their movements

might be erratic and unpredictable. As a result, a strategy

that treats the victims as evaders is necessary to guarantee

that they are found.

This paper considers a specific form of pursuit-evasion

problem which requires a pursuer to locate an arbitrarily fast

evader using an omni-directional field-of-view that extends

to the environment boundary. The goal is to compute a

search strategy for the pursuer that ensures that the evader

is seen at some point during the pursuer’s search.

Guibas, Latombe, LaValle, Lin, and Motwani presented

a complete algorithm (which we call, for brevity, GL3M)

for this problem (Guibas et al., 1999), based on track-

ing the occluded portions of the environment in which the

evader may be hiding, decomposing that environment into a

finite collection of regions called conservative regions, and

searching over a directed graph induced by that decompo-

sition. However, that prior work considers only feasibility;

it does not attempt to minimize the distance traveled by the

pursuer. The contribution of this paper is to improve upon

this work by describing an algorithm that is guaranteed to

find a strategy that minimizes the distance traveled. Figure

1 shows an example, illustrating the difference in outputs

between GL3M and our new algorithm.

Our approach starts from the same decomposition as

GL3M, and adds three new elements.

1. First, we consider a simpler problem in which, given a

path for the pursuer, we compute the shortest path that

visits the same conservative regions in the same order.

We solve this problem by enumerating the line segments

shared between each successive pair of conservative

regions visited by the original path. This ordered list

of line segments forms the input to a new algorithm
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Fig. 1. The path returned by the GL3M algorithm ( ) and our

optimal algorithm ( ).

that computes the optimal tour of segments, that is, the

shortest path that visits the given segments in order.

2. The tour of segments algorithm allows us to treat the

pursuit-evasion problem as a search over sequences of

conservative regions, rather than over the underlying

continuous path space. In contrast to the vanilla breadth-

first search used in GL3M, our algorithm uses a for-

ward search in which each search node represents a

sequence of conservative regions. The search queue is

ordered by the length of the tour of segments through

the corresponding region sequence.

3. Finally, we introduce a family of pruning operations,

that allow the search to discard region sequences that

certainly cannot lead to any optimal solution. This kind

of pruning is both necessary for correctness (to elim-

inate long sequences that repeatedly revisit the same

regions without increasing the length of the tour of

segments) and useful for dramatically improving the

runtime of the algorithm. We provide a collection of

pruning operations, ranging from very naïve to very

aggressive. The resulting algorithm is complete, in the

sense that if a solution exists, our algorithm will gener-

ate this path, even in cases that require recontamination

of a previously searched portion of the environment.

The optimal paths generated by this algorithm are of interest

because they can drastically decrease the worst-case time

to capture an evader. In applications such as search and

rescue, this improvement may, in principle, mark the dif-

ference between life and death for the victims. Though the

computation time for GL3M is less than that of our algo-

rithm, in most reasonable circumstances, this time deficit is

recovered by the decrease in execution time.

This article expands a preliminary version of this work

that appeared at ICRA 2012 (Stiffler and O’Kane, 2012).

This version describes the tour of segments algorithm

more rigorously, including details about its internal data

structures that were omitted from the conference version

and provides new theoretical results, new pruning opera-

tions, and new experimental evaluations. The text has been

entirely rewritten.

The structure of this paper is as follows. Section 2

reviews related work, followed by a formal problem state-

ment in Section 3. A brief overview of GL3M appears in

Section 4. Section 5 presents a new result characterizing the

quality of solutions the GL3M algorithm produces, which

motivates our work. A description of our algorithm, follow-

ing the structure of the bullet list above, spans Sections 6

(tour of segments), 7 (forward search), and 8 (pruning

operations). The paper closes with experimental results in

Section 9 and concluding remarks in Section 10.

2. Related work

This section examines existing literature in the field of

pursuit-evasion. Although this paper presents results for

a visibility-based pursuit-evasion problem, we discuss

the evolution of the pursuit-evasion problem from dif-

ferential games (Section 2.1) to a graph-based formula-

tion (Section 2.2) and finally to a geometric formulation

(Section 2.3).

2.1. Differential games

The pursuit-evasion problem was originally posed in the

context of differential games (Ho et al., 1965; Isaacs,

1965) and has produced an abundance of related prob-

lems. Given motion models for the pursuer and evader,

the goal in these formulations is to determine the condi-

tions necessary for them to collide in the open plane. A

bound suggests that the number of pursuers required to

satisfy this capture condition exceeds that needed for the

visibility-based pursuit-evasion problem (Klein and Suri,

2013). More recent results have used optimal control theory

to analyze differential games arising from visibility-based

target tracking problems (Zou and Bhattacharya, 2016).

Several variations of pursuit-evasion games appear in dif-

ferential game theory, of which two are of particular inter-

est: the lion-and-man game and the homicidal chauffeur. In

the lion-and-man game, a lion tries to capture a man who is

trying to escape (Karnad and Isler, 2009; Noori and Isler,

2012, 2014; Sgall, 2001; Vander Hook and Isler, 2014). In

game theory, the homicidal chauffeur is a pursuit evasion

problem which pits a slowly moving but highly maneuver-

able runner against the driver of a vehicle, which is faster

but less maneuverable, who is attempting to run him over

(Isaacs, 1965; Ruiz and Murrieta–Cid, 2013). These prob-

lems are notable because they accentuate the two divergent

ways of considering pursuit-evasion problems by consider-

ing winning conditions for each of the players (the pursuer

and the evader). What conditions guarantee that a pursuer

will capture the evader? What conditions guarantee that

the evader can escape? Can any definitive conclusions be
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drawn for particular initial conditions? This approach dif-

fers from the visibility-based formulation considered in this

paper, because our “detection” criterion is satisfied when

the evader lies within the pursuer’s sensor footprint; we do

not require the pursuer to physically capture the evader to

win the game.

2.2. Graph-based formulation

A different formulation in which the domain is restricted to

a discrete graph can be traced back to the independent work

done by Parsons and Petrov. The motivation behind the Par-

sons’ problem (Parsons, 1976) was the desire for a graphical

model to represent the problem of finding an explorer who

is lost in a complicated system of dark caves. This is one of

the first formulations that considered an evader who was not

necessarily adversarial. However, the worst-case assump-

tions provide bounds that could just as easily apply to an

adversarial evader.

The Parsons’ problem, also known as the edge-searching

problem, is to compute a sequence of moves for the pur-

suers that can detect all intruders in a graph using the

least number of robots. A move consists of either plac-

ing or removing a robot on a vertex, or sliding it along

an edge. A vertex is considered guarded as long as it has

at least one robot on it, and any intruder located therein

or attempting to pass through will be detected. A sliding

move detects any intruder on an edge. In relation to the cur-

rent paper, it is known that for any instance of the Parsons’

problem described by a planar graph, there exists an equiva-

lent instance of the visibility-based pursuit-evasion problem

considered in this paper (Guibas et al., 1999). In that sense,

the problem we consider is more general.

The Parsons’ problem and some of its results were later

independently rediscovered by Petrov (1982) using slightly

different motivating problems. Petrov’s formulation consid-

ered the Cossacks and the robber game (Petrov, 1983) and

the princess and the monster problem (Isaacs, 1965). Golo-

vach showed that both problems considered an equivalent

discrete game on graphs (Golovach, 1989).

There are variations of graph-based pursuit-evasion that

consider both edge guarding and node guarding. One

such formulation that differs from edge-searching (where

searchers move across edges and guard vertices) that has

a direct application to robotics is the Graph–Clear prob-

lem (Kolling and Carpin, 2010). Graph–Clear is a pursuit-

evasion problem on graphs that models the detection of

intruders in an environment by robot teams with limited

sensing capabilities. This approach presents a plausible

extension to physical robots by providing a nonintuitive way

of overcoming the sensing requirements of the geometric

formulation of pursuit-evasion that appears in the next sec-

tion. For a more comprehensive review of recent results in

graph-based pursuit-evasion we direct the reader to sev-

eral relevant surveys (Abramovskaya and Petrov, 2013;

Alspach, 2004; Bienstock, 1991; Borie et al., 2013; Fomin

and Thilikos, 2008).

2.3. Geometric formulation

The visibility-based pursuit-evasion problem was proposed

by Suzuki and Yamashita (1992) as an extension of the

watchman route problem (Chin and Ntafos, 1991).1 In this

formulation, the capture condition is defined as having an

evader lie within the pursuer’s capture region, usually its

visibility polygon or some subset thereof.

The remainder of this section reviews a portion of the

substantial body of work in visibility-based pursuit-evasion,

partitioned based on the number of pursuers involved in the

search, organized according to results for the single pur-

suer and multiple pursuer variants of the problem. Though

our algorithm presents an optimal strategy for the case of

a single pursuer, the existing literature in multiple pursuer

pursuit-evasion suggests that it is reasonable to expect our

approach to be ill-fitted for this scenario.

2.3.1. Single pursuer visibility-based pursuit-evasion. We

begin our discussion on single pursuer visibility-based

pursuit-evasion by investigating the various models for the

sensing capabilities for the pursuer. The k-searcher, first

introduced by Suzuki and Yamashita, is a pursuer with k vis-

ibility beams (LaValle et al., 2002; Suzuki and Yamashita,

1992). These beams have an unlimited range that extends

to the environment boundary—though they cannot see

through walls—and can be freely rotated about the searcher

at bounded speed independent of the pursuer’s motion. This

idea was later extended beyond individual rotatable beams

to sensing regions where the pursuer is capable of detect-

ing an evader that enters into its sensing region. The ∞-

searcher is one such representation in which the pursuer has

an omni-directional field of view (Guibas et al., 1999; Park

et al., 2001). A restricted version, called the φ-searcher, is a

pursuer whose field-of-view (Gerkey et al., 2006) is limited

to an angle φ ∈( 0, 2π]. Though intuition might suggest that

the∞-searcher is more powerful than the k-searcher, how-

ever Park et al. (2001) showed that any environment that

is searchable by a single ∞-searcher is also searchable by

a single 2-searcher (a k-searcher with k = 2), implying

some parity of capabilities between the two. Our formu-

lation for the pursuer’s sensing capability, which appears

more formally in Section 3, assumes that the pursuer is an

∞-searcher.

There are many interesting results for the single pursuer

visibility-based pursuit-evasion problem that address ques-

tions of feasibility and completeness (but not optimality).

The complete solution presented in GL3M (Guibas et al.,

1999) has a running time exponential in the number of

inflection rays (LaValle, 2006). There exists a more com-

plicated algorithm capable of searching an environment in

time quadratic in the number of environment edges (Lee

et al., 2002). This approach takes advantage of the above



926 The International Journal of Robotics Research 36(8)

result that any instance of the search solvable by an ∞-

searcher can also be solved using a 2-searcher. This sim-

plification in sensor complexity significantly reduces the

apparent time complexity of the problem, though the paths

generated by this algorithm are neither optimal nor nearly

optimal. The algorithm presented in this paper, though more

computationally intensive, guarantees to find an optimal

solution, in any environment for which a solution exists.

This paper is, to the authors’ knowledge, the first that shows

how to solve this kind of problem optimally.

An abundance of literature focuses on specific subprob-

lems that arise in pursuit-evasion when additional con-

straints are placed on the environment and/or the pur-

suer. These subproblems often contain some nuance that

necessitates approaching it differently than the previ-

ously mentioned complete algorithms. For instance, not

all simply-connected polygonal environments are guaran-

teed to be searchable with a single pursuer. However, if

we relax this constraint there are known results for gen-

erating randomized strategies (Isler et al., 2005) that are

likely to capture an evader. Others have studied scenarios

where there are additional constraints, such as the case of

curved environments (LaValle and Hinrichsen, 2001), an

unknown environment (Sachs et al., 2004), a maximum

bounded speed for the pursuer (Tovar and LaValle, 2006), a

finite collection of non-rotating beam sensors (Stiffler and

O’Kane, 2016), or constraints on the pursuer like those of a

typical bug2 algorithm (Rajko and LaValle, 2001). Though

these results address more constrained models of sensing

than the present paper, they produce only feasible, rather

than optimal, solutions.

2.3.2. Multiple pursuer visibility-based pursuit-evasion.

Because of the problem complexity, there is a wide range of

literature with differing techniques attempting to solve the

multi-robot visibility-based pursuit-evasion problem. Some

recent results involve using some of the pursuers as station-

ary sentinels while other pursuers continue with the search

(Kolling and Carpin, 2009). Another approach involves

maintaining complete coverage of the frontier (Durham

et al., 2012). Complete (Stiffler and O’Kane, 2014a) and

sampling-based (Stiffler and O’Kane, 2014b) algorithms for

the multi-robot visibility-based pursuit-evasion exist that

identify where critical visibility events occur amongst a

team of pursuers. There are other variants of the pursuit-

evasion problem where the pursuers are teams of unmanned

aerial vehicles (Kleiner and Kolling, 2013). Due to the

substantial increase in problem complexity over the single-

pursuer form of the problem, we defer the question of opti-

mal multi-robot visibility-based pursuit-evasion to future

work.

3. Problem statement

This section formalizes the visibility-based pursuit-evasion

problem considered in this paper. We begin by describ-

ing the model used to represent the environment, evader,

and pursuer (Section 3.1) and then give a formal definition

for the areas of the environment not visible to the pursuer,

called shadows (Section 3.2). Finally, we characterize the

solutions, which are shortest paths that guarantee that the

pursuer will see the evader (Section 3.3).

3.1. Representing the environment, evader, and

pursuer

The environment is a simply connected polygonal region,

defined as a closed and bounded set W ⊂ R
2, with a

polygonal boundary ∂W . The boundary of the environment

is composed of m vertices, each of which may be either con-

vex (interior angle less than 180 degrees) or reflex (interior

angle greater than 180 degrees).

The evader is modeled as a point that can translate within

the environment. Let e(t)∈ W denote the position of the

evader at time t ≥ 0. The path e is a continuous function

e : [0,∞)→ W , in which the evader can move arbitrarily

fast (i.e. a finite, unbounded speed) within W . The evader

trajectory e is unknown to the pursuer. Without loss of gen-

erality, we assume that there is exactly one evader. If the

pursuer can guarantee the capture of a single evader, then

the same strategy can locate multiple evaders, or confirm

that no evaders are present.

A pursuer moves to locate the evader. We assume that

the pursuer knows W . Therefore, from a given start posi-

tion, the pursuer’s motions can be described by a continuous

function p : [0,∞)→ W , so that p(t)∈ W denotes the posi-

tion the pursuer at time t ≥ 0. The function p is called a

motion strategy for the pursuer. Without loss of generality,

we assume that the pursuer moves with maximum speed 1.

The pursuer carries a sensor that can detect the evader.

The sensor is omnidirectional and has unlimited range, but

cannot see through obstacles. For any point q ∈ W , let V ( q)

denote the visibility region at point q, which consists of the

set of all points in W that are visible from point q. That is,

V ( q) contains every point that can be connected to q by a

line segment in W . Note that V ( q) is a closed set.

For any q ∈ W , consider the boundary of V ( q). The

edges of this boundary are either along ∂W or belong to

an occlusion ray.

Definition 1. An occlusion ray, −→qr , is a ray starting at

the pursuer position q and tangent to a visible environment

reflex vertex r.

Informally, an occlusion ray originating at point q is a ray

that acts as a boundary separating a visible and non-visible

portion of W .

The time of capture for an evader following trajectory e

and a pursuer executing motion strategy p is defined as

tc(p, e)= min {t ≥ 0 | e(t)∈ V (p(t) )}

The pursuer’s goal is to capture the evader regardless of the

evader’s trajectory.
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Fig. 2. An environment with a pursuer (red circle) and six shad-

ows (filled path-connected regions).

Definition 2. A pursuer motion strategy p is a solution

strategy if there exists a finite time of capture, denoted tc(p)

and defined as

tc(p)= max
e

tc(p, e)

The time tc(p) is the least upper bound for the time of cap-

ture over all valid evader trajectories when the pursuer fol-

lows the motion strategy p. Let p∗ denote a solution strategy

that minimizes this capture time

p∗ = argmin
p

(

tc(p)
)

Our goal is to compute this optimal pursuer strategy p∗.

3.2. Shadows.

The key difficulty in locating the evader is that the pursuer

cannot, in general, see the entire environment at once. This

section contains some definitions for describing and reason-

ing about the portion of the environment that is not visible

to the pursuer at any time.

Definition 3. The portion of the environment not visible to

the pursuer at time t is called the shadow region S(t), and

defined as

S(t)= W − V (p(t) )

Note that the shadow region may contain zero or more

nonempty path-connected components, as seen in Figure 2.

Definition 4. A shadow is a maximal path-connected com-

ponent of the shadow region.

Notice that S(t) is the union of the shadows at time t. The

important idea is that the evader, if it has not been captured,

is always contained in exactly one shadow, in which it can

move freely.

3.2.1. Shadow labels. For our pursuit-evasion problem, the

crucial piece of information about each shadow is whether

the evader might be hiding within it.

Definition 5. A shadow s is called cleared at time t if, based

on the pursuer’s motions up to time t, it is not possible for

the evader to be within s without having been captured.

Definition 6. A shadow is called contaminated if it is not

clear. That is, a contaminated shadow is one in which the

evader may be hiding.

We can assign a binary label to each shadow corresponding

to the cleared/contaminated status of the shadow. A label of

0 means that the shadow is cleared and similarly, a label of

1 means that the shadow is contaminated. Notice that, since

the evader can move arbitrarily quickly, the pursuer cannot

draw any more detailed conclusion about each shadow than

its clear/contaminated status; if any part of a shadow might

contain the evader, then the entire shadow is contaminated.3

Using this worst-case reasoning, we can completely repre-

sent the pursuer’s progress in searching for the evader by its

current configuration and the current shadow labels.

3.2.2. Shadow events. As the pursuer moves, the shadows

can change in any of five ways, called shadow events.

1. Appear: A new shadow can appear, when a previously

visible part of the environment becomes hidden.

2. Disappear: An existing shadow can disappear, when the

pursuer moves to a location from which that region is

fully visible.

3. Split: A shadow can split into multiple shadows, when

the pursuer moves in such a way that a given shadow is

no longer path-connected.

4. Merge: Multiple existing shadows can merge into a

single shadow, when previously disconnected shadows

become path-connected.

5. Push: An existing shadow can be pushed between pairs

of neighboring environment reflex vertices, when the

pursuer’s motion changes the cardinality of the set of

visible environment reflex vertices.

These events, which are illustrated in Figures 3 to 5, were

originally enumerated in the context of the single-pursuer

version of this problem (Guibas et al., 1999) and examined

more generally by Yu and LaValle (2012).

Assuming that the vertices of the environment are in gen-

eral position4, we need only be concerned with a single

shadow event occurring at a given moment. However, if the

environment vertices are not in general position, multiple

events may occur simultaneously. The above update rules

still apply, but this may require extra bookkeeping to ensure

that the shadow labels are correctly accounted for. As an

example, consider Figure 6, where a split occurs and one of

the shadows is instantaneously pushed.

3.2.3. Label update rules. Each time a shadow event

occurs, the labels can be updated based on worst case rea-

soning. Below we describe the update rules for a shadow’s

label according to the shadow event that has occurred. Each



928 The International Journal of Robotics Research 36(8)

Fig. 3. An appear event increases the number of shadows by one, and the new shadow is labelled clear (green region). A disappear

event decreases the number of shadows; its label is discarded.

Fig. 4. When a shadow splits into multiple shadows, they inherit the same label as the original shadow. When a merge event occurs, the

new shadow is clear if and only if all the original shadows are also clear.

rule describes how a label preceding the shadow event is

updated immediately following a given shadow event.

1. Appear: New shadows are formed from regions that had

just been visible, so they are assigned a clear label.

2. Disappear: When a shadow disappears, its label is

discarded.

3. Split: When a shadow splits, the new shadows inherit

the same label as the original.

4. Merge: When shadows merge, the new shadow is

assigned the worst label of any of the original shadows’

labels. That is, a shadow formed by a merge event is

labeled clear if and only if all the original shadows were

also clear.

5. Push: When a shadow is pushed, it maintains its current

label.

Figures 3 to 5 illustrate the shadow label update rules

where cleared shadows are represented as the filled
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Fig. 5. A push event occurs when a shadow gets pushed between neighboring pairs of environment reflex vertices.

Fig. 6. A scenario where multiple events occur simultaneously. To ensure that the correct labels are computed it may be necessary to

evaluate all permutations of the events. This occurs because the update rules are applied successively one after another, and an improper

ordering may result in an incorrect final labeling. In the above scenario, a correct final labeling can result by first processing the split

event followed by the push event.

path-connected green regions and contaminated shadows

are represented as the filled path-connected purple regions.

3.3. Objective

We can incorporate this idea of reasoning about evaders

via shadows to reformulate the pursuer’s goal in terms of

shadows rather than evader positions. Recall the definition

of solution strategy from Definition 2 where the pursuer’s

goal was stated as computing a finite time of capture for an

evader over all possible evader trajectories. Using the defi-

nitions of cleared and contaminated from above to describe

a shadow’s current status, we know that if all the shadows

in the shadow region are cleared, then we can be certain the

evader has been seen at some point. The result of this rea-

soning is that we can connect the shadow labels to our goal

of finding a solution strategy.

Definition 7. A pursuer motion strategy is a solution strat-

egy if and only if it reaches a pursuer configuration in finite

time in which all the shadows are cleared.

We now have two distinct but equivalent definitions of a

solution strategy.

4. GL3M

The prior work of Guibas, Latombe, LaValle, Lin, and Mot-

wani is integral to understanding the techniques in this

paper. As such, this section summarizes their algorithm.

The main idea behind that work is a blueprint for chang-

ing the continuous problem of finding a pursuer trajectory

into a simpler discrete problem. Recall that the goal is to

compute a solution strategy for the pursuer (Definition 2).

The GL3M algorithm considers the boundaries in the envi-

ronment that induce a change to the shadow region. This

view allows them to use the alternative definition of solu-

tion strategy from Definition 7. The problem can now be

rephrased as finding a sequence of shadow events that can

guarantee that the evader is captured. Once a valid sequence

has been found, constructing the pursuer’s trajectory is

trivial.

In the remainder of this section we investigate how pur-

suer motions generate shadow events (Section 4.1), and

describe a graph structure and algorithm for solving the sin-

gle pursuer visibility-based pursuit-evasion problem (Sec-

tion 4.2). The succeeding section (Section 5) presents a new

result, proving that for any arbitrary factor, an environment

exists for which the solutions generated by this algorithm

are longer than the optimal solutions by this factor.

4.1. Critical information changes

During the execution of a strategy, the pursuer must iden-

tify the contaminated shadows in the shadow region. This

piece of information is dependent upon the initial position

of the pursuer and the pursuer’s history of past positions,

up to the current time. As the pursuer moves, this informa-

tion changes continuously; however, to develop a complete
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Fig. 7. An illustration of the concept of conservative regions.

Fig. 8. Ray shooting is performed for three general cases to form

the conservative regions.

algorithm, the authors need only be interested in tracking

those instances where the pursuer’s information changes

combinatorially. That is, we are only concerned with pur-

suer movements that generate shadow events, as seen in

Figure 7.

Definition 8. A region R ⊆ W is a conservative region

if every continuous path that remains within R fails to

generate any shadow events.

By definition, a conservative region has the follow-

ing information-conservation property: while the pursuer

remains within a conservative region, the pursuer’s shadow

labels will not change.

The original paper GL3M describes a visibility cell

decomposition of the environment that captures where

changes to the shadow region occur. As mentioned pre-

viously, a shadow event represents a change in the pur-

suer’s knowledge about where the evader may be hiding.

The decomposition of the environment into conservative

regions works by extending rays from inflection points in

the environment, and extending rays outwards from pairs

of mutually visible environment vertices. The inflection

and bitangent ray extensions represent where the pursuer’s

shadow labels change.

There are five shadow events that can occur at a crit-

ical event boundary that cause a change in the pursuer’s

shadow labels as it traverses between conservative regions.

These events (appear, disappear, split, merge, and push)

were mentioned earlier in Section 3.2.

Fig. 9. An example of the Pursuit Evasion Graph for a given

environment.

The procedure used in creating the ray extensions pro-

vides the following information about what type of event

takes place along the boundary of the extension.

(a) Ray extensions caused by an inflection at a single

endpoint of an environment edge generate appear and

disappear events.

(b) Ray extensions caused by a pair of mutually visible

environment vertices (where the vertices are not part of

the same environment edge) generate split and merge

events.

(c) Ray extensions caused by inflections at both endpoints

of an environment edge generate push events.

Figure 8 illustrates the various partitioning operations.

The key idea is that the regions of W induced by these

ray extensions are conservative regions; that is, these rays

represent the only places at which shadow events can occur.

Two conservative regions in this decomposition are

called adjacent if they share an edge. An ordered sequence

r1, . . . , rn of conservative regions is called successively

adjacent if each successive pair ( ri, ri+1) is adjacent.

4.2. The pursuit-evasion graph

With this information, the algorithm constructs a directed

graph, as shown in Figure 9.

Definition 9. The pursuit-evasion graph (PEG) is a

directed graph composed of nodes that contain a shadow

label and a reference to a conservative region. A node exists

in the PEG for each possible shadow label combination for

every conservative region. Its edges are the set of shadow

events that occur from crossing an event boundary from one

adjacent conservative region to another.

For a given PEG-node v, we write cr( v) and label( v) to

denote the conservative region and shadow label associated

with v, respectively. We use the term PEG-path to refer to a

path through the PEG.
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The GL3M algorithm starts at the PEG-node that con-

tains p( 0) with a shadow label of 1 · · · 1. Using this node

as the root of a graph search, the algorithm uses breadth-

first search to find a path to a node with a shadow label

of 0 · · · 0. This PEG-path provides a sequence of conserva-

tive regions to visit. The algorithm then constructs a path

through W by moving to the centroid of each conservative

region that appears in the sequence.

5. Analysis of path length for GL3M

The algorithm described in GL3M employs a breadth-first

search to search the PEG. As a direct result of the breadth-

first search, the returned path minimizes the number of con-

servative regions visited by the pursuer. The authors make

no claims about the length of the pursuer’s path. The fol-

lowing new result establishes that GL3M can produce paths

of arbitrarily poor quality.

Theorem 1. For any ε > 0, there exists an environment Wε

for which the path generated by GL3M is at least 1+ε times

longer than the optimal path.

Proof. Given ε > 0, let a = 1+ε. Define Wε as an 8-vertex

environment, with vertices ( 0,−1), ( 2a, 1), ( 0, 3), ( a, 4),

( 0, 5), (−2a, 3), ( 0, 1), and (−a, 0). Figure 10 illustrates

this construction for two different values of ε.

Starting from p( 0)=( 0, 0), the shortest solution strategy

moves directly upward 3 units, terminating at ( 0, 3). The

output from GL3M, however, visits the centroids of four

conservative regions. These centroids lie at ( a/3, 0), ( a, 1),

( 0, 2), and (−a, 3). Including the travel from the initial

position to the first centroid, this path has length

d = a

3
+

√

4a2

9
+ 1+ 2

√

a2 + 1

We can bound this from above by

d ≥ a

3
+

√

4a2

9
+ 2
√

a2 = a

3
+ 2a

3
+ 2a = 3a = 3( 1+ ε)

Recalling that the optimal path has length 3, we conclude

that GL3M generates a path in Wε that is at least 1+ ε times

longer than optimal.

The upshot of this theorem is that the amount of sub-

optimality produced by GL3M is not negligible, and in

fact cannot be bounded. This difference motivates our new

algorithm, introduced in the following sections.

6. Optimal tours of segments

We now turn our attention to our new algorithm for generat-

ing pursuer strategies that minimize the distance travelled.

We begin, in this section, by describing the subroutine we

use to solve the subproblem of computing the shortest path

that traverses a given sequence of conservative regions.

The next theorem motivates our interest in this problem,

by making a connection between the concept of a solu-

tion strategy for the pursuer and the sequence of conser-

vative region boundary edges crossed by the pursuer while

executing that strategy.

Theorem 2. For any solution strategy γ, let ( r1, . . . , rn)

denote the successively adjacent sequence of conserva-

tive regions visited by γ. Let (s1, . . . , sn−1) denote the

sequence of conservative region boundary edges crossed by

γ, in which si is the shared boundary segment between the

regions ci and ci+1. Then any other pursuer trajectory γ′

that visits (s1, . . . , sn−1) in the same order, without crossing

any other conservative region boundaries, is also a solution

strategy.

Proof. This is a direct consequence of the definition of

conservative region.

See Figure 11. Based on this result, which ties the notion

of a solution strategy closely to the notion of a successively

adjacent sequence of conservative regions, we consider the

following problem (deferring, to Sections 7 and 8, the

question of how to select a such sequence of conservative

regions).

Definition 10. Given a point p and an ordered collection of

segments (s1, . . . , sn−1), the shortest path that starts at p and

visits the segments (s1, . . . , sn−1) in order is called a tour of

segments, denoted ToS(s1, . . . , sn−1).

When there is no ambiguity, we occasionally abuse this

notation by giving a successively adjacent sequence of con-

servative regions or a PEG-path (instead of a sequence of

segments) as the parameter to ToS, to refer to the tour of

segments for the sequence of shared boundary segments.

This section presents an algorithm for computing such

tours of segments. Dror et al. (2003) showed how to com-

pute tours in a similar scenario, in which the intermedi-

ate steps are polygons rather than segments. We adapt this

approach for the specific case of a sequence of segments.

The algorithm proceeds in two basic steps. First, we con-

struct a series of data structures called shortest path maps

(SPMs) that allow us to classify the combinatorial structure

of shortest paths that visit each segment in the tour (Sec-

tion 6.1). Second, we use a series of point location queries

(Section 6.2) on these SPMs to extract the optimal tour

(Section 6.3).

6.1. Shortest path maps

A shortest path map (SPM) is a data structure used to per-

form shortest path queries with the requirement that the

path visit a segment s along the way. Given a start point

p and a segment s, a SPM can be constructed which par-

titions the plane into four two-dimensional cells, five one-

dimensional cells, and two zero-dimensional cells. Figure

12 shows an example. The key idea is that all shortest paths
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(0 , − 1)

(2 a, 1)

(0 , 4)
(a, 4)

(0 , 5)

(− 2a, 3)

(0 , 1)
(− a, 0)

(0 , − 1)

(2 a, 1)

(0 , 4)
(a, 4)

(0 , 5)

(− 2a, 3)

(0 , 1)
(− a, 0)

Fig. 10. Examples of the construction in the proof of Theorem 1. Conservative region boundaries are shown as dashed lines. The

optimal solution strategy is shown in . The path generated by GL3M is in . [left] ε = 1, a = 2. [right] ε = 4, a = 5.

starting from p to all points in one of the aforementioned

cells will have an equivalent combinatorial structure.

SPM: zero-dimensional cells The two 0D cells in a SPM

correspond to the two endpoints of segment s, left( s) and

right( s).

SPM: one-dimensional cells There are five 1D cells in

a SPM, denoted A, B, C, D, and E. The 1D cells are

constructed from segment s and the start point p. One of

these 1D cells is an open line segment and corresponds to

the interior of s. The four remaining 1-cells are all open

rays, two originating from left( s) and two originating from

right( s). The following table describes each of the 1D cells.

Line segment A Segment s.

Ray B (upper left ray) A ray originating from left( s)

(the left endpoint of s) in the

direction left( s)−p.

Ray C (lower left ray) A reflection of ray B over the

line segment s.

Ray D(upper right ray) A ray originating from

right( s) (the right endpoint of

s) in the direction right( s)−p.

Ray E (lower right ray) A reflection of ray D over the

line segment s.

SPM: two-dimensional cells There are four 2D cells in

a SPM that are separated by the 1D cells. The following

describes which 1-cells form the boundary of our 2D cells.

6.2. Queries in a shortest path map

Using this structure, and given a query point q, we can com-

pute the shortest path from p to q via s, as shown in Figure

13. There are four general cases which correspond to the

2D cells in of our SPM.

(a) If q is in region R1, then the shortest path from p to q

via s is a “left turn” at the left endpoint of s.

Region R1 The region of the plane between ray B,

left( s), and ray C.

Region R2 The region of the plane between ray B,

left( s), segment A, right( s), and ray D.

Region R3 The region of the plane between ray D,

right( s), and ray E.

Region R4 The region of the plane between ray C,

left( s), segment A, right( s), and ray E.

Fig. 11. [left] A sequence of four conservative regions to be vis-

ited in order from right to left, along with the corresponding short-

est path. [right] The shortest path can be found by considering only

the shared boundary segments.

A

R2

R4

R1 R3

p

C

B
D

E

Fig. 12. A single shortest path map. These four rays and one

segment subdivide the plane into regions with combinatorially

equivalent shortest paths.

(b) If q is in region R2, then the shortest path from p to q

via s is to go “through” s directly to q.

(c) If q is in region R3, then the shortest path from p to q

via s is a “right turn” at the right endpoint of s.

(d) If q is in region R4, then the shortest path from p to q

via s is to “bounce” off s.

We have described the procedure for creating a sin-

gle SPM, however when computing multiple SPMs for a
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Fig. 13. The SPM for the first segment s divides the plane according to the combinatorial structure of the shortest path from p to s to a

query point q.

sequence of segments we will need a more general con-

struction that has two start points pL and pR which are

determined by point location queries in the previous SPMs,

as shown in Figure 14(a). The construction is like the con-

struction of a single SPM as described above, except that

rays B and C are constructed using pL, whereas rays D and

E are constructed using pR.

Algorithm 1 shows the process for selecting these two

start points. Throughout, we use a point-location subrou-

tine called LOCATE that takes as input the index of a specific

SPM and a query point q, and returns the k-dimensional cell

containing q in that SPM. The idea is to recurse backward

through the previously constructed SPMs until we reach a

left or right turn. The intuition is that these left and right

turns are points that are known with certainty to lie on the

ToS; in contrast, for through or bounce steps, additional

segments may change that portion of the ToS. Figure 14(b)

illustrates this process.

6.3. Extracting the optimal tour of segments

The final step of our ToS algorithm is to extract the com-

plete optimal tour using the SPMs described above. The

algorithm begins by computing the set of intersection points

between sn−1 and all of the SPMs. This produces a subdi-

vision of sn−1 into a collection of O( n) subsegments. Note

that, due to our construction of the subsegments, each sub-

segment is fully contained in a single region of each SPM.

For each subsegment we locate the largest i for which the

subsegment is in either the left or right region of the SPM

for si. Then we construct the complete path by execut-

ing EXTRACTPATH( i − 1, left(si) ) or EXTRACTPATH( i −

Algorithm 1 SELECTSTARTPOINT(i, q)

Input: An index i for a specific SPM and a query point q

1: if i = 0 then
2: return p

3: end if

4: r←LOCATE(i− 1, q)

5: switch ( r )

6: case R1 or B or C :

7: return left(si−1)

8: case R2 or A or left( s) or right( s) :

9: return SELECTSTARTPOINT(i− 1, q)

10: case R3 or D or E :

11: return right(si−1)

12: case R4 :

13: return SELECTSTARTPOINT
(

i− 1, REFLECT(q, si−1)
)

14: end switch

1, right(si) ) respectively, appended with the shortest direct

path from that point to the subsegment, with appropriate

reflections for bounce regions along the way from si to the

subsegment of sn−1. If there is no such i, the technique is

similar, but uses the start point p instead, treating it as a

degenerate segment. Pseudocode for the path extraction for

each candidate can be found in Algorithm 2; the intuition is

to traverse backward through the SPMs to p, adding a new
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s i
s i− 1

pC

B

D

E

p
L

p
R

s i

C

B

E

D

Fig. 14. Computing the shortest path map for segment si depends on the shortest path map for segment si−1.

Fig. 15. A non-trivial tour constructed by visiting segments 1, 2,

3, and 4 in order before reaching the query segment. From the

start point, the optimal tour takes a left turn at segment 1, a right

turn at segment 2, bounces off segment 3, and then travels through

segment 4 to reach the query segment.

edge to the path at each left, right, and bounce event. In

this way, each subsegment generates a candidate path, and

the ToS algorithm simply selects the shortest from among

these candidate paths.

Computing the optimal tour to reach the nth segment

takes O
(

n2
)

. Segment sn can potentially be partitioned a lin-

ear number of times via the SPMs for segments s1, . . . , sn−1.

Then for each subsegment of sn, the algorithm may need to

scan back through all O(n) SPMs. Usually, this computa-

tion can be performed faster, as we expect to hit a left or

right endpoint prior to recursing all the way back to the start.

A non-trivial example for computing the tour of segments

appears in Figure 15.

The correctness of the algorithm can be established by

induction on the number of segments n. For the base case of

a single segment, the generated path is simply the shortest

straight line segment connecting the start point to the query

segment. For the inductive step, assume for the induction

Algorithm 2 EXTRACTPATH(i, q)

Input: A SPM index i, and a query point q

Data: A list tour which stores points along the optimal

tour

1: if i = 0 then
2: tour.insert(startpt)

3: return tour

4: end if

5: r← LOCATE
(

i, q
)

6: switch ( r )

7: case R1: B : C :

8: tour← EXTRACTPATH
(

i− 1, left(si)
)

9: return tour.insert
(

left(si−1)
)

10: case R2: A : left( s) : right(s) :

11: tour← EXTRACTPATH
(

i− 1, q
)

12: case R3: D : E :

13: tour← EXTRACTPATH
(

i− 1, right(si)
)

14: return tour.insert
(

right(si−1)
)

15: case R4 :

16: reflectpt← REFLECT( q, si)

F reflect point across segment
17: tour← EXTRACTPATH

(

i− 1, r
)

18:

19: F calculate “bounce” point

20: bouncept← LINEINTERSECTION

(si, ( r, tour.back( ) )

21: return tour.insert( bouncept)

22: end switch

23:

24: return tour

that the algorithm correctly solves problems of size n − 1,

and note that both SELECTSTARTPOINT and EXTRACT-

PATH recursively solve a family instances of size n − 1,

considering each potential start point induced by the SPMs.
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7. Algorithm description

This section introduces the main body of our algorithm

for the problem introduced in Section 3. Algorithm 3

summarizes the approach.

Starting from the same cell decomposition and PEG as

GL3M (recall Section 4), we perform a branch and bound

forward search (LaValle, 2006) in which each search node

corresponds to a PEG-path. (The more obvious, simpler

approach in which each search node is a single PEG-node,

rather than a PEG-path, would be incorrect because the

additional cost of adding a new PEG-node to the end of

a partial plan is not necessarily additive.)

The search begins with a one-element path, containing

only the PEG-node which corresponds to the pursuer’s ini-

tial position, with these shadows contaminated. Then for

each search node, we determine the boundary segments

crossed by visiting the underlying PEG-nodes in the given

order, and then use Algorithm 2 to compute the ToS for that

segment sequence. The forward search uses a priority queue

of search nodes ordered the length of ToS, with the search

nodes with the shortest tours extracted first.

At each iteration, the PEG-path v̂ =(v1, . . . , vn) at the

head of the priority queue is extracted. This corresponds to

a path from the root PEG-node to the current PEG-node vn.

New PEG-paths are generated by iterating over all of vn’s

outgoing directed edges (Algorithm 3 Line 10) and append-

ing the target of the directed edge to the current PEG-

path (Algorithm 3 Line 11). Recall from Section 4.2 that

these directed edges correctly account for label updates that

appear in Section 3.2.3, including any shadows that might

be cleared or recontaminated. Before adding a new PEG-

path to the priority queue, we apply a pruning operation

(PRUNABLE) that determines whether the PEG-path can be

safely discarded. This pruning is essential to the operation

of the algorithm; details about how it can be performed

appear in Section 8.

The termination conditions for our algorithm are twofold.

First, if the priority queue becomes empty, the search ter-

minates and reports that no solution exists. Second, if the

head of our priority queue ever corresponds to a PEG-path

ending at a PEG-node whose shadow labels are all clear

( 0 · · · 0), then we know that no additional expansions will

generate a shorter solution strategy, so the search termi-

nates successfully, returning the ToS of this sequence as the

optimal solution strategy.

Figure 16 shows a simple example environment. Cor-

rect solution strategies in this environment clear both the

left and right sides, and optimality requires the pursuer

to choose which of these two tasks to complete first. The

figure, which shows solution strategies computed by Algo-

rithm 3 for a variety of starting positions, illustrates that

the algorithm can make this distinction correctly: Starting

points on the left search the left side first, and vice versa.

The correctness of this approach derives from Theo-

rem 2. The termination condition for the search guarantees

that any PEG-path that is not considered has either (a) been

Algorithm 3 FORWARDSEARCH(p)

Input: a start point p, a pruning unary operator prune

Data: a priority queue pq for PEG-paths ordered by length

of the ToS

1: pq.insert
(

GETROOT(p)
)

F start with single contaminated node

2: while not pq.empty() do

3: v̂← pq.top( ) F top PEG-path in the pq

4: vn← last(v̂) F PEG-node reached by following v̂

5: if label(vn)= 0 · · · 0 then F test for a solution

6: return v̂

7: end if

8:

9: F Outgoing directed edges from PEG-node

10: for each out ∈ OUTGOINGNODES(vn) do

11: path← (v1, . . . , vn, out)

F append node
12: if notPRUNABLE( path) then

13: pq.insert( path)

F add new PEG-path to pq

14: end if

15: end for

16: end while

17:

18: return NO SOLUTION

pruned by the PRUNABLE test, indicating that it cannot be

part of an optimal solution, or (b) has a longer ToS than

the generated solution. We are assured, therefore, that there

does not exist another PEG-path corresponding to a shorter

solution strategy.

8. Sequence dominance and pruning

strategies

This section expounds upon the pruning strategy employed

by Algorithm 3. The intuition is that we want the algorithm

to discard any partial solutions that we can guarantee do not

serve as a prefix to the optimal solution. We describe six

options of varying complexity and effectiveness for realiz-

ing this test. These six pruning strategies can be understood

in three groups.

1. The first strategy, UNAVAILING pruning, trivially

declines to prune any PEG-paths. It serves to motivate

the need for pruning by showing that the search gener-

ally cannot succeed, in any length of time, if pruning is

not considered during the search.

2. The next two strategies, CYCLE-FREE and REGRES-

SION, are related in that they consider specific prop-

erties of a single PEG-path when determining whether

that PEG-path should be added to the priority queue.

The idea is to identify redundancies (in the case of
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Fig. 16. A collection of 200 optimal pursuer strategies, computed by our approach, for various starting points within a simple

environment. Notice that the algorithm correctly determines whether the shortest path should start by moving to the left or to the

right.

Fig. 17. Preview of the pruning strategies discussed in this section

to reduce the number of PEG-paths that our algorithm must con-

sider. These are ordered in increasing order of both computation

time and pruning effectiveness.

CYCLE-FREE) or regressions (in the case of REGRES-

SION) in the PEG-nodes visited by the path.

3. The remaining three strategies, PATH DOMINANCE,

ENDPOINT, and LOOKAHEAD pruning, are based on

comparisons between pairs of PEG-paths. They seek to

identify conditions under which a given PEG-path is

provably inferior to some other PEG-path terminating

in the same conservative region. Each one maintains a

list of non-dominated PEG-paths for each conservative

region. These lists are updated as the search proceeds.

These three pruning strategies differ in the specifics

of how path dominance is confirmed, generally trad-

ing extra computation time for more aggression in the

pruning.

A preview appears in Figure 17.

8.1. Unavailing pruning

A naïve approach to implementing the forward search is

to ignore the concept of pruning altogether, adding every

newly generated PEG-path to the priority queue. Algo-

rithm 4 illustrates this UNAVAILING pruning strategy.

Unfortunately, this approach has the critical ruination

of not progressing beyond the first conservative region

boundary edge. The following claim and the accompanying

discussion illustrate why this occurs.

Theorem 3. If PRUNABLE is equivalent to UNAVAILING,

then the forward search will never progress beyond the first

encountered conservative region boundary edge.

Proof. Suppose we have the following: a forward search

which begins in PEG-node v at point p. PEG-node v cor-

responds to a convex conservative region with k ≥ 3 sides.

Without loss of generality, we say that the nearest point on

edge e1 is a distance of 1 away from point p and all points

on edges e2, . . . , ek are a distance of at least 1+ε away from

p where ε > 0, as seen in Figure 18. When the single ele-

ment PEG-path v is expanded, there are k new PEG-paths

added to the priority queue. The next PEG-path to appear

at the front of the priority queue will be ( v, u), where u

is a PEG-node reached by travelling from v and crossing

the critical boundary associated with e1. This PEG-path has

a cost of 1. Like node v, node u corresponds to a convex

conservative region with j sides where j ≥ 3. We already

know that the cost of getting to node u via edge e1 is 1. The

cost to reach any other edge will be some positive value

greater than 1. So, during the expansion phase, a three ele-

ment PEG-path ( v, u, w) will be generated. This PEG-path

has a cost of 1, which is smaller than all the preexisting two-

element PEG-paths and the newly generated three-element

PEG-paths. This PEG-path is unique because the conserva-

tive region that corresponds to v is the same conservative

region that corresponds to w. At each successive iteration,

the PEG-path that appears at the top of the priority queue

will reside either in the conservative region corresponding

to v (odd length paths) or the conservative region corre-

sponding to u (even length paths) and will have a cost of

1. No PEG-path with a ToS of length longer than 1 will

ever be expanded.

This unsatisfying result demonstrates the necessity of

non-vacuous pruning. Without discarding at least some

PEG-path, the algorithm will never terminate.



Stiffler and M O’Kane 937

Fig. 18. The scenario that occurs when the UNAVAILING prun-

ing strategy is used. Initially the pursuer must travel to the closest

critical boundary edge. Then for PEG-paths of even length, the

pursuer will be in the blue conservative region. For PEG-paths of

odd length, the pursuer will be in the green conservative region.

Algorithm 4 UNAVAILING

Input: a PEG-path v̂ =(v1 . . . vn)

1: function PRUNABLE(v̂)

2: return false

3: end function

Algorithm 5 CYCLE-FREE PRUNING

Input: a PEG-path v̂ =(v1, . . . , vn)

1: function PRUNABLE(V )
2: for each vi ∈ v̂, i 6= n do
3: if cr(vi)= cr(vn) and label(vi)= label(vn) then

4: return true

5: end if

6: end for

7: return false

8: end function

8.2. Cycle-free pruning

One simple approach that can eliminate the oscillations that

occur in the proof of Theorem 3 is to prune paths in which a

PEG-node appears twice. Algorithm 5 illustrates this idea.

Prior to adding each new PEG-path to the priority queue,

the path is checked to ensure that the newly appended node

is unique in that path. Because each PEG-path is formed

by appending a single PEG-node to an existing path that

has previously passed the CYCLE-FREE test, we need only

check for duplicates with the new final PEG-node, rather

than between all pairs.

The following table shows some illustrative examples for

how the CYCLE-FREE pruning would process a PEG-path in

a hypothetical environment. Recall that a PEG-path is repre-

sented by a sequence of PEG-nodes, within which a single

PEG-node is represented as a conservative region (shown

below by their integer labels) and shadow label pair.

Note that a more restrictive approach in which we con-

sider pruning PEG-paths that revisit the same conservative

region (rather than the same PEG-node) would be incorrect.

There are many environments for which backtracking to a

previously visited portion of the environment is necessary

PEG-path Pruned? Reasoning

(7,111), (8,11),

(4,10), (8,10)

No The most recent PEG-node

(8,10) does not appear previ-

ously in the PEG-path.

(7,111), (8,11),

(3,101), (8,11)

Yes The most recent PEG-node

(8,11) appears previously in

the PEG-path.

to catch the evader. For instance, if the pursuer were to start

in the central region of Figure 9, a solution strategy would

require the pursuer to revisit this region during its search.

8.3. Pruning via shadow label dominance

This pruning technique can be extended by not only check-

ing for cycles, but also, checking to make sure a path does

not visit a PEG-node whose shadow label is dominated by

a PEG-node that appears earlier in the path, in the sense of

reaching the same conservative region having cleared only

a subset of the shadows cleared by the other PEG-node.

The general idea is that if by following a path that corre-

sponds to the current PEG-path, pursuers “loses” informa-

tion, then that path has a suffix that can be safely discarded,

since the original path contains at least as much information

as the new, longer path.

The following definitions formalize this idea, introducing

a dominance relation for shadow labels that can be used to

prune suboptimal paths. Consider two shadow labels L =
(l1l2 · · · lk) and L′ =

(

l′1l′2 · · · l′k
)

for the same conservative

region.

Definition 11. A shadow label L dominates another shadow

label L′, denoted L�L′, if

∀i 1 ≤ i ≤ k : li ≤ l′i

A shadow label L strictly dominates another shadow label

L′, denoted L� L′, if L�L′ and L 6= L′.

Informally, L dominates L′ if for every shadow that is

cleared in L′, the corresponding shadow in L is also cleared.

The intuition is that L provides at least as much information

as L′, and can potentially contain more information in the

case where li = 0 and l′i = 1.

The value of this relation is that, if L�L′, then any pur-

suer path that captures the evader starting from L′ will also

capture the evader starting from L. A pruning strategy that

uses this idea to prune suboptimal partial solutions appears

in Algorithm 6. Note that this approach subsumes the

simpler CYCLE-FREE pruning operation from Section 8.2.

The following table shows some illustrative examples for

how the REGRESSION pruning would process a PEG-path.

As in the previous table, each PEG-path is a sequence of

PEG-nodes, each of which is represented as a conservative

region identifier along with shadow labels.
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Algorithm 6 REGRESSION PRUNING

Input: a PEG-path v̂ =(v1, . . . , vn)

1: function PRUNABLE(v̂)
2: for each vi ∈ v̂, i 6= n do
3: if cr(vi)= cr(vn) and label(vi)�label(vn) then

4: return true

5: end if

6: end for

7: return false

8: end function

PEG-path Pruned? Reasoning

(7,111),

(8,11),

(4,10),

(8,10)

No The most recent PEG-node (8,10) is

not dominated by another PEG-node

that appears earlier in the sequence.

(7,111),

(8,11),

(3,101),

(8,11)

Yes The most recent PEG-node (8,11)

is strictly dominated by PEG-node

(8,11) which appears earlier in the

sequence. In this scenario, we have

encountered a cycle which is encap-

sulated in our definition of strict

dominance.

(9,1011),

(2,110),

(13,1001),

(7,111),

(9,1101)

No The most recent PEG-node (9, 1101)

is not strictly dominated by another

PEG-node that appears earlier in the

sequence.

(9,1011),

(2,110),

(6,11),

(11,111),

(9,1111)

Yes The most recent PEG-node (9,1111)

is strictly dominated by PEG-node

(9,1011) which appears earlier in

the sequence. By having the pur-

suer visit the PEG-nodes between

(9,1011) and (9,1111) we are less

informed about the evader’s potential

location.

8.4. Pruning via path dominance

The previous two pruning operations have been based on

identifying redundancies within a single PEG-path. We now

consider pruning operations that are based on comparisons

between pairs of paths. We introduce a notion of PEG-

path dominance that we use to construct more aggressive

pruning strategies.

The next definition introduces a relation between pairs of

PEG-paths that allows us to establish that one of those paths

can be pruned.

Definition 12. A PEG-path v̂ =(v1, . . . , vn) dominates

another PEG-path û =(u1, . . . , um) if

(i) cr(vn)= cr(um);

(ii) label(vn)� label(um); and

(iii)for any successively adjacent sequence of conservative

regions â =( a1, . . . , ak), with a1 = cr(vn)= cr(um), we

have

length( ToS( cr(v1) , . . . , cr(vn−1) , a1, . . . , ak) )

≤ length( ToS( cr(u1) , . . . , cr(um−1) , a1, . . . , ak) )

The intuition is to describe conditions under which v̂ can

be treated as a “replacement” for û, without any chance of

increasing the length of the final solution strategy. If v̂ dom-

inates û, it is harmless to discard û. The following theorem

makes this idea more precise.

Theorem 4. Consider any two PEG-paths v̂ =(v1, . . . , vn)

and û =(u1, . . . , um), for which v̂ dominates û. Then for

any solution strategy that starts by passing through û, there

exists another solution strategy of equal or lesser length

that starts by passing though v̂.

Proof. Let ToS(u1, . . . , um−1, w1, . . . , wk) denote a solution

strategy, in which w1, . . . , wk is the unique suffix PEG-

path reached after passing through û. Consider the path

ToS( cr(v1) , . . . , cr(vn−1) , cr( w1) , . . . , cr( wk) ). Conditions

(i) and (ii) of Definition 12 ensure that this path is a solu-

tion strategy. Condition (iii) ensures that is path is of equal

length or shorter.

To leverage this idea in the context of a pruning operation

for Algorithm 3, we maintain, for each conservative region

r, a list nd( r) of PEG-paths that reach this region, for which

no other dominating path is known. When a new PEG-path

v̂ =(v1, . . . , vn) is generated, there are two cases.

1. If nd( cr(vn) ) contains a PEG-path û that dominates v̂,

we return true to prune v̂.

2. If no PEG-path in nd( cr(vn) ) dominates v̂, then we (a)

remove from nd( cr(vn) ) any û dominated by v̂, and (b)

insert v̂ into nd( cr(vn) ). The pruning operation then

returns false.

Unfortunately, this approach relies on an ability to test

for dominance between pairs of PEG-paths. Because con-

dition (iii) of Definition 12 must account for any suf-

fix of successively adjacent conservative regions, it is not

immediately clear how to perform this test.

Given a pair of PEG-paths v̂ =(v1, . . . , vn) and û =
(u1, . . . , um), that satisfy conditions (i) and (ii) of Defini-

tion 12, let sv and su denote the final conservative region

boundary edges crossed by v̂ and û respectively. Then, a

conservative condition for verifying that condition (iii) of

Definition 12 is satisfied is to show that

length
(

ToS( v̂)
)

+ max
(p,q)∈sv×su

||p− q|| ≤ length
(

ToS( û)
)

See Figure 19. This inequality implies condition (iii),

because it tests for worst-case behavior, in which the ToS

for v̂ arrives at sv at a maximal distance from su which
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Fig. 19. An illustration of the QUADRILATERAL PRUNING test

performed by Algorithm 7 which computes the diameter of the

quadrilateral formed by segments sv and su (the final conservative

region boundaries crossed by v̂ and û respectively).

Algorithm 7 QUADRILATERAL PRUNING

Input: a PEG-path v̂ =(v1, . . . , vn)

Data: a data structure nd that maintains a list of non-

dominated PEG-paths that reach a given conservative

region

1: function PRUNABLE(v̂)
2: for each û ∈ nd( cr(vn) ) do F û =(u1, . . . , um)

3: sv← BOUNDARYSEGMENT( cr(vn−1) , cr(vn) )

4: su← BOUNDARYSEGMENT( cr(um−1) , cr(um) )

5: lengthU ← TOUROFSEGMENTS( û)

6: dist← max(p,q)∈sv×su ||p− q||
7: lengthV ← TOUROFSEGMENTS( v̂)

8: if label(um)� label(vn) then F û dominates v̂

9: if lengthU +dist < lengthV then F û is

always preferable

10: return true

11: end if

12: else if label(vn)� label(um) then F v̂ strictly

dominates û
13: if lengthV +dist < lengthU then F v̂ is

always preferable

14: nd.remove( û)

F Remove û from the “non-dominated” list
15: end if

16: end if

17: end for

18: return false

19: end function

is the entry point for û into the conservative region. Note

that, aside from the two ToS queries (whose values would

already have been computed and cached), this inequality

can be evaluated in constant time.

A pruning strategy based on this approach appears in

Algorithm 7.

Fig. 20. An illustration of the ENDPOINT PRUNING test per-

formed by Algorithm 8 which requires the ToSes through v̂ that

terminate on the left and right endpoints of segment tm−1 to

outperform the ToSes through û that terminate on tm−1.

8.5. Endpoint pruning

A slightly more aggressive condition for stating that condi-

tion (iii) of Definition 12 is satisfied for PEG-paths v̂ =
(v1, . . . , vn) and û =(u1, . . . , um) is to show that, for any

successively adjacent sequence of conservative regions â =
( a1, . . . , ak), with a1 = cr(vn)= cr(um), we have

length( ToS
(

cr(v1) , . . . , cr(vn) , cr(um−1) , a1, . . . , ak)
)

≤ length( ToS
(

cr(u1) , . . . , cr(um−1) , a1, . . . , ak)
)

One sufficient condition for testing this property is to let

s1, . . . , sn−1 denote the conservative region boundary seg-

ments crossed by v̂, and let tm−1 denote the final such

segment crossed by û. We then check whether

length
(

ToS(s1, . . . , sn−1, left(tm−1)
)

≤ length
(

ToS( û)
)

and

length
(

ToS(s1, . . . , sn−1, right(tm−1)
)

≤ length
(

ToS( û)
)

in which left side of each inequality uses degenerate seg-

ment, that is, a single point, as the final step.

The intuition is that by evaluating the distance at each

of the endpoints of tm−1, we can find worst-case distance

that any optimal tour would travel through v̂ followed by

tm−1. This occurs because the furthest distance between a

point and a line segment occurs at one of the endpoints. An

illustration of this process appears in Figure 20.

A pruning operation, based on this idea along with the

non-dominated lists introduced in Section 8.4, appears in

Algorithm 8. Compared to Algorithm 7, which takes a small

constant amount of time, this approach must solve two new

ToS queries each time. Our evaluation in Section 9 demon-

strates that the improved pruning capability outweighs the

overhead of associated with computing the additional tours.
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Algorithm 8 ENDPOINT PRUNING

Input: a PEG-pathOv =(v1, . . . , vn)

Data: a data structure nd that maintains a list of non-dominated PEG-paths that reach a given conservative region

1: function PRUNABLE(v̂)
2: for each û ∈ nd( cr(vn) ) do F û =(u1, . . . , um)

3: s1 . . . sn−1← BOUNDARYSEGMENTS
(

cr(v1) , . . . , cr(vn)
)

4: t1 . . . tm−1← BOUNDARYSEGMENTS
(

cr(u1) , . . . , cr(um)
)

5: if label(um)� label(vn) then F û dominates v̂

6: lengthUL
← TOUROFSEGMENTS

(

t1, . . . , tm−1, left(sn−1)
)

7: lengthUR
← TOUROFSEGMENTS

(

t1, . . . , tm−1, right(sn−1)
)

8: lengthV ← TOUROFSEGMENTS(s1, . . . , sn−1)

9:

10: F Path through û is always preferable

11: if
(

( lengthup1
< lengthV ) and ( lengthup2

< lengthV )
)

then

12: return true

13: end if

14: else if label(vn)� label(um) then F v̂ strictly dominates û

15: lengthVL
← TOUROFSEGMENTS

(

s1, . . . , sn−1, left(tm−1)
)

16: lengthVR
← TOUROFSEGMENTS

(

s1, . . . , sn−1, right(tm−1)
)

17: lengthU ← TOUROFSEGMENTS(t1, . . . , tm−1)

18:

19: F Path through v̂ is always preferable

20: if
(

( lengthVL
< lengthU ) and ( lengthVR

< lengthU )
)

then

21: nd.remove( û)

F Remove û from the “non-dominated” list
22: end if

23: end if

24: end for

25: return false

26: end function

8.6. Lookahead pruning

A final, more aggressive pruning strategy can be

formed by considering the conservative region bound-

ary segment crossed to leave the final conservative

region.

Given a pair of PEG-paths v̂ =(v1, . . . , vn) and û =
(u1, . . . , um), let s1, . . . , sn−1 denote the conservative region

boundary segments crossed by v̂, and let t1, . . . , tm−1 denote

the segments crossed by û.

Consider the final conservative region r = cr(vn)=
cr(um). Any extension of these paths must exit region

r on its next step. Let s denote the segment, which

must be a boundary segment of r, on which this

occurs.

Then if, for any s on the boundary of r, we have

length
(

ToS(s1, . . . , sn−1, left( s)
)

≤ length
(

ToS(t1, . . . , tm−1, left( s)
)

and

length
(

ToS(s1, . . . , sn−1, right( s)
)

≤ length
(

ToS(t1, . . . , tm−1, right( s)
)

then for any successively adjacent sequence of conservative

regions ( a1, . . . , ak) with a1 = r, we have

length( ToS( cr(v1) , . . . , cr(vn−1) , a1, . . . , ak) )

≤ length( ToS( cr(u1) , . . . , cr(um−1) , a1, . . . , ak) )

The intuition is that by performing the ToS subroutine

on every potential future segment s, we can test to see if

sequence v̂ will always be preferred to sequence û. Like the

reasoning behind the Endpoint Pruning, we check both end-

points because the farthest distance between a point and a

line segment occurs at one of the endpoints. This effectively

means that sequence v̂ must have a shorter tour to both end-

points of any potential future segment s for it to dominate

sequence û. An implementation of this strategy appears in

Algorithm 9.
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Algorithm 9 LOOKAHEAD PRUNING

Input: a PEG-path v̂ =(v1, . . . , vn)

Data: a data structure nd that maintains a list of non-dominated PEG-paths that reach a given conservative region

1: function PRUNABLE(v̂)
2: for each û ∈ nd

(

cr(vn)
)

do F û =(u1, . . . , um)

3: s1, . . . , sn−1← BOUNDARYSEGMENTS
(

cr(v1) , . . . , cr(vn)
)

4: t1, . . . , tm−1← BOUNDARYSEGMENTS
(

cr(u1) , . . . , cr(um)
)

5: if label(um)� label(sn) then F û dominates v̂

6: for each seg ∈ CRBOUNDARYSEGMENTS
(

cr(vn)
)

do

7: lengthUL
← TOUROFSEGMENTS

(

t1, . . . , tm−1, left( seg)
)

8: lengthUR
← TOUROFSEGMENTS

(

t1, . . . , tm−1, right( seg)
)

9: lengthVL
← TOUROFSEGMENTS

(

s1, . . . , sn−1, left( seg)
)

10: lengthVR
← TOUROFSEGMENTS

(

s1, . . . , sn−1, right( seg)
)

11: F Path through û is not preferable for all potential segments

12: if
(

( lengthUL
> lengthVL

) or ( lengthUR
> lengthVR

)
)

then

13: Continue to next û

14: end if

15: end for

16: F Path through û is always preferable

17: return true

18: else if label(vn)� label(um) then F v̂ strictly dominates û

19: for each seg ∈ CRBOUNDARYSEGMENTS
(

cr(vn)
)

do

20: lengthUL
← TOUROFSEGMENTS

(

t1, . . . , tm−1, left( seg)
)

21: lengthUR
← TOUROFSEGMENTS

(

t1, . . . , tm−1, right( seg)
)

22: lengthVL
← TOUROFSEGMENTS

(

s1, . . . , sn−1, left( seg)
)

23: lengthVR
← TOUROFSEGMENTS

(

s1, . . . , sn−1, right( seg)
)

24: F Path through v̂ is not preferable for all potential segments

25: if
(

( lengthVL
> lengthUL

) or ( lengthVR
> lengthUR

)
)

then

26: Continue to next û

27: end if

28: end for

29: F Path through v̂ is always preferable

30: nd.remove( û)

F Remove û from the “non-dominated” list
31: end if

32: end for

33: return false

34: end function

9. Evaluation

We have implemented all the algorithms described in this

paper. In this section, we provide simulated results to eval-

uate the effectiveness of our approach. Our implementation

uses C++, and timing results are for a single core of an

2.4Ghz Intel i7 processor.

We used our implementation to solve the visibility-based

pursuit-evasion problem in five different environments.

1. Figure 21. This environment has 57 conservative

regions, with a total of 21, 806 PEG-nodes. The num-

ber of shadows per conservative region is at most 11.

The PEG was constructed in 1.112 seconds.

2. Figure 22. This environment has 125 conservative

regions, with a total of 35, 530 PEG-nodes. The num-

ber of shadows per conservative region is at most 10.

The PEG was constructed in 2.840 seconds.
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3. Figure 23. This environment has 213 conservative

regions, with a total of 24, 620 PEG-nodes. The num-

ber of shadows per conservative region is at most 11.

The PEG was constructed in 43.396 seconds.

4. Figure 24. This environment has 491 conservative

regions, with a total of 56, 888 PEG-nodes. The num-

ber of shadows per conservative region is at most 11.

The PEG was constructed in 1011.800 seconds.

5. Figure 25. This environment has 282 conservative

regions, with a total of 69, 806 PEG-nodes. The num-

ber of shadows per conservative region is at most 11.

The PEG was constructed in 65.636 seconds.

We attempted to solve each environment with several

different algorithms.

1. The original GL3M algorithm.

2. A modified version of GL3M, in which the generated

path undergoes a post-processing step, a ToS, to find

the shortest path that follows the same PEG-path. This

approach is intended to provide a more fair comparison

to our approach.

3. Five variations of our algorithm, one for each of the

pruning operations described in Algorithms 5 to 9.

The paths generated by these approaches are shown in

Figures 21 to 25.

Observe in Figures 21, 23, and 24 that the optimal paths

require the pursuer to change direction at a point that is

neither an environment vertex nor a vertex of the decom-

position. These direction changes arise from bounce events

in the shortest path maps.

We also measured the run time of each algorithm for each

of these environments. Each trial was limited to 15 min-

utes of CPU time and 8Gb of RAM. Trials that exceeded

these limits were considered failures. Figure 26 shows the

results. For those trials unable to generate a solution strat-

egy within the constraints described above, we measured

the ToS length of the longest path expanded. Figure 27

shows these results as a percentage of the optimal path

returned using the LOOKAHEAD pruning. Since the search

would terminate upon expanding the actual optimal path,

one can think of these fractions as a proxy for progress

made by the algorithm. Finally, for those trials that gen-

erated a solution strategy, we display the length of the

returned strategy (as a percentage of the optimal strategy

length) in Figure 28.

For the non-trivial environments that appear in Figures 21

to 25, several of the pruning strategies were unable to gen-

erate a solution strategy. The CYCLE-FREE pruning tech-

nique from Algorithm 5 exceeded the memory allotment

of 8Gb. The other pruning strategies that were unable to

generate a solution; REGRESSION, QUADRILATERAL, and

ENDPOINT; all failed due to the time constraint. The results

in Figure 27 suggests that there is some tradeoff between

employing computationally expensive pruning strategies

and the progress made by the search. In general, we have

seen that the benefits of using one of the more rigorous

Fig. 21. An environment (21a) where the optimal pursuer strat-

egy (21b) returned by our algorithm looks vastly different from

both the original GL3M strategy (21c) and the GL3M strategy

optimized using a ToS (21d).

pruning strategies to disregard suboptimal partial strategies

outweighs the overhead they incur. Only the environments

that appear in Figures 21 and 22 have instances where

the naiver strategies outperform their more complicated

brethren.

The results of Figure 28 clearly indicate that our algo-

rithm that uses the LOOKAHEAD pruning strategy returns

solution strategies that are far superior to that of the

GL3M algorithm and the GL3M algorithm that uses the ToS

subroutine as a post-processing improvement. Figures 21

and 22 show the drastic improvement in tour length that

occurs as a result of using our algorithm. Even the more

typical office-like environments of Figures 23 and 24 expe-

rience an improvement by employing our algorithm. The

environment in Figure 25 is yet another example where

our algorithm significantly outperforms the GL3M algo-

rithm. This environment is of historical interest because it

is a known environment presented in the Guibas, Latombe,

LaValle, Lin, and Motwani work that requires the pursuer to

revisit the topmost portion of the environment a linear num-

ber of times (based on the number of forked corridors at the

bottom) due to recontamination. The solution generated by

our algorithm is a marked improvement over the GL3M and

GL3M with ToS algorithms which have the pursuer travel

down the left-side of the environment prior to visiting each

pair of forked corridors.
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Fig. 22. An environment (22a) where the optimal pursuer strat-

egy (22b) returned by our algorithm looks vastly different from

both the original GL3M strategy (22c) and the GL3M strategy

optimized using a ToS (21d).

Fig. 23. An environment (23a) where the optimal pursuer strat-

egy (22b) returned by our algorithm looks fairly similar to both

the original GL3M strategy (22c) and the GL3M strategy optimized

using a ToS (22d).

10. Conclusion

This result improves upon the known result of Guibas,

Latombe, LaValle, Lin, and Motwani that returns a feasible

solution strategy for a single pursuer in a simply-connected

polygonal environment by solving for the minimal length

solution strategy. The remainder of this section considers

two orthogonal threads of future work.

First, similar to how this work extends the GL3M algo-

rithm by computing optimal solutions, a potential avenue

Fig. 24. An environment (24a) where the optimal pursuer strat-

egy (24b) returned by our algorithm looks fairly similar to both

the original GL3M strategy (24c) and the GL3M strategy optimized

using a ToS (24d).

for future work would be to perform a similar optimiza-

tion on other pursuit-evasion problems. Recall from Sec-

tion 2.3.1 the variety of single pursuer visibility-based

pursuit-evasion problems that differ based on the pursuer’s

sensing and motion capabilities.

Lastly, due to the exponential nature of the PEG, it is

reasonable to expect problem instances where the number

of candidate sequences to consider will begin to make

the problem computationally intractable. Under these cir-

cumstances, it would be beneficial to investigate how an

approximation algorithm (Vazirani, 2001; Williamson and

Shmoys, 2011) could be harnessed to provide some sem-

blance of performance guarantees. The general idea behind

an approximation algorithm is that it produces solutions

that remain within some constant factor of the optimal

solution while typically requiring reduced computation

expense. The potential performance gains are enough of an

incentive to at least motivate discussion of the applicabil-

ity of approximation algorithms in solving visibility-based

pursuit-evasion problems.
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Fig. 25. An environment (25a) where the optimal pursuer strat-

egy (25b) returned by our algorithm looks fairly similar to both

the original GL3M strategy (25c) and the GL3M strategy optimized

using a ToS (25d).

Fig. 26. Timing results, in seconds, for the environments in

Figures 21 to 25. ‘MLE’ indicates ‘memory limit exceeded’.

‘DNF’ indicates that the algorithm ‘did not finish’ within the

time allotted. All pruning strategies are denoted by the first let-

ter in the pruning strategies name. Cycle-free=C, Regression=R,

Quadrilateral=Q, Endpoint=E, Lookahead=L.

Fig. 27. The ToS length for the longest expanded PEG-path as a

percentage of the length of the optimal solution strategy. Values

for successful runs are omitted. All pruning strategies are denoted

by the first letter in the pruning strategies name. Cycle-free=C,

Regression=R, Quadrilateral=Q, Endpoint=E, Lookahead=L.
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Notes

1. The objective of the watchman route problem is to compute

the shortest path that a guard should take to patrol an entire

area populated with obstacles, given only a map of the area.

2. Bug algorithms (Lumelsky and Stepanov, 1987) assume only

local knowledge of the environment and a global goal. The

behaviors typically available to a “bug” include wall following

and straight line motions toward the goal. Most instances of

bug algorithms lack a map and the ability to construct a map

and may account for imperfect navigation.

3. Note that an individual shadow may change between cleared

and contaminated many times; a shadow whose label changes

from cleared to contaminated is said to be recontaminated.

There are problem instances that require the pursuer to clear

a recontaminated shadow (Guibas et al., 1999). Our algo-

rithm correctly handles the issue of recontamination when

generating plans for the pursuer.

4. In this context, general position assumes that no three envi-

ronment vertices are colinear.
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