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Abstract— We present an algorithm that uses a
sparse collection of noisy sensors to characterize the
observed behavior of a mobile agent. Our approach
models the agent’s behavior using a collection of
randomized simulators called implicit agent models
and seeks to classify the agent according to which of
these models is believed to be governing its motions.
To accomplish this, we introduce an algorithm whose
input is an observation sequence generated by the
agent, represented as sensor label-time pairs, along
with an observation sequence generated by one of
our implicit agent models and whose output is a
measure of the similarity between the two observation
sequences. Using this similarity measure, we propose
two algorithms for the model classification problem:
one based on a weighted voting scheme and one that
uses intermediate resampling steps. We have imple-
mented these algorithms in simulation, and present
results demonstrating their effectiveness in correctly
classifying mobile agents.

I. Introduction

Many different kinds of distributed sensing systems
have been proposed to observe the movements of various
kinds of agents (such as humans, animals, or robots)
through their environments. In this paper we consider
the problem of classifying the behaviors of those agents,
based on the observations of a sparse collection of unre-
liable, very-low-resolution sensors.

Specifically, we describe an algorithm whose input is
a sequence of observations generated by these kinds of
sensors, along with two or more agent models that predict
how the observed agents might move through the envi-
ronment. The output of the algorithm is the index of the
agent model that best describes the observed behavior,
along with a measure of the algorithm’s confidence in
that selection.

In a broad sense, efficient algorithms for these kinds of
problems would have a variety of practical applications,
including detection of malicious behavior in crowded
places such as the Shilin Night Market in Taipei, or
for monitoring large-scale regions of ocean space using a
relatively sparse density of sensors (Figure 1). In both
of these scenarios, there would be significant value in
having access to a predictive model of how the agents
in the system behave. In this paper, we consider how
to define and utilize such predictive models even when

the behavior of the agents is too complex to be readily

modeled as an explicit probability distribution.
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Fig. 1. Human shoppers at Shilin night market [left] and aquatic
animals at the Georgia aquarium [right]. We describe an algorithm
for identifying the movement patterns of both of these kinds of
agents.

Current methods for these kinds of problems, such as
hidden Markov models (HMMs) generally rely on com-
plex probabilistic models that are difficult for humans to
construct and over which inference can become compu-
tationally expensive if there are many hidden variables.
We avoid these limitations by replacing the standard
probabilistic models for agent movements with implicit
models based on learned or expert-coded simulations.
Such implicit models allow a broad class of agent be-
havior patterns to be modeled and reasoned about with
minimal computational expense.

We are also specifically interested in the effects of
highly unreliable sensors including, in the extreme case
we consider here, one-bit sensors with high rates of false
positive and false negative errors.

The contribution of this research is a pair of classifi-
cation algorithms that use a sparse collection of sensors,
along with a set of implicit agent models, to characterize
the observed behavior of a mobile agent. Specifically:

1) We introduce a formal definition for implicit agent
models by describing a small set of operations that
these models must provide.

2) We present a criterion for measuring the similarity
between two sequences of time-stamped observa-
tions, using a generalization of the classical Leven-
shtein distance algorithm.

3) Based on this similarity measure, we describe two
algorithms that can classify mobile agents, using a
collection of implicit models.

4) We present a series of simulated results to show that
these algorithms solve the classification problem
correctly in a substantial majority of cases.

The remainder of the paper is organized as follows. We
begin with a discussion of related work in Section II. In
Section III we present our problem formulation, followed
by an algorithmic description of our classification algo-



rithms in Section IV. We then present some simulation
results in Section V. We conclude the paper in Section VI
with some closing remarks and thoughts on future work.

II. Related Work

This paper builds upon and extends several bodies of
existing work.

A. Agent movement models

Our problem relies heavily on the existence of pre-
dictive models that attempt to predict how observed
agents will move in the future. There are two principal
trains of thought for how to construct such models.
Most directly, other researchers have created specialized
simulation techniques for various specific kinds of agents,
including crowds [11], evacuees in disasters [24], vehicles
in traffic [1], and evasive people in general [25]. We utilize
models of this type, and build upon the existing work by
using its models for inference.

The other common method for describing the move-
ment patterns of an agent is to use a Markov model,
in which time is divided into a sequence of discrete
stages, and the likelihood of each state at time t is
expressed as a conditional probability given the state
at time t − 1. In this context, the term “state” refers
to the agent’s location, along with any other internal
information that has some impact on how that location
changes. When the state cannot be directly observed, the
resulting model is called a hidden Markov model (HMM)
[3]. These kinds of transition systems also form an in-
tegral part of the study of partially observable Markov
decision processes (POMDPs) [14], [15], [19], [22], [23],
[26], [35], which generalize HMMs by allowing a decision-
maker to choose a sequence of actions that also influence
the state. However, because of the number of parameters
involved, in most cases the state spaces and the transition
models used in this research are relatively simple. The
agent models used in this project can be viewed, in the
strictest sense, as HMMs. However, by using an implicit,
simulation-based representation, it becomes practical to
use realistic models whose states and transitions would
be challenging to represent directly.

B. Probabilistic filtering

Techniques for filtering data from multiple sensors
have been studied extensively in many contexts, includ-
ing the robotics community. Many recent successes have
been based on a probabilistic approach [32], in which
a robot and its sensors are modeled using conditional
probability distributions. In this case, the robots’ knowl-
edge at any point in time is a probability distribution
over a space of possible states. This distribution can
be represented exactly using parametric models [16]–
[18], [20], [30] or approximated by discretization [4], [5],
[10], [28] or sampling [8], [9]. The present research differs
from those methods because we do not require explicit
probability models for the agents’ movements.

Fig. 2. An illustration of our notation. A single agent (circle)
moves through an environment generating an observation sequence
as it crosses the beam sensors.

C. Distributed target tracking

Our research is also closely related to prior work on
target tracking algorithms, in which the goal is generally
to maintain some knowledge about the location of one
or more moving targets. Many of these methods uti-
lize wireless sensor networks and seek to optimize the
communication between the sensor nodes, without much
regard for the reliability or content of the sensor data [2],
[6], [12], [13], [27], [29], [34]. Our work is complementary,
in the sense that we focus on the content of the sensors’
observations and the inferences that can be drawn from
them.

III. Problem Formulation

This section introduces our problem, including some
basic notation (Section III-A), the implicit agent models
that we assume are given as part of a problem instance
(Section III-B), and a precise statement of the classifica-
tion problem we consider (Section III-C).

A. Representing the environment, agent, and sensors

The environment is a closed and bounded set P ⊂ R
2.

A single agent is modeled as a point that moves through
P . The agent’s trajectory is a continuous function x :
[0,∞)→ P , so that x(t) ∈ P denotes the position of the
agent at time t ≥ 0.

Scattered throughout the environment is a collection of
beam sensors, denoted B = {b1, . . . , bn}. Each beam is
a line segment contained in P , with its endpoints on the
boundary of P . The beams are pairwise disjoint, except
possibly at their endpoints. Figure 2 shows this notation.

As the agent moves through the environment, the
beam sensors generate a collection of observations, drawn
from an observation space Y = B× [0,∞), in which each
observation yi = (bi, ti), represents a beam-time pair.
Each observation is caused by one of two kinds of events:

1) The observation might be a false positive error,
indicating that x(ti) 6∈ bi. These errors are assumed
to be random and independent. The probability
that a false positive error will be generated by a
given sensor at each time step is a known parameter
denoted pFP.



2) The observation might be a true positive, which
means that x(ti) ∈ bi. The probability that any
observation is a true positive is (1− pFP).

In addition, it is also possible for the agent to cross a
beam without generating a observation. This situation is
called a false negative error, and occurs with probability
pFN. To simplify the notation, we assume that all of the
sensors are equally reliable, so that pFP and pFN are not
dependent on the specific sensor that may be producing
the error.

B. Implicit agent models

In addition to this sensor data, we assume that our
system has access to a collection M = M1, . . . , Mm of
implicit models of how the agents might behave. The
models are expressed as randomized simulators that
generate plausible motions for the agent. Specifically, we
assume that the following three operations can be carried
out efficiently:

1) An initialization operation

a← initialize(Mi) (1)

that returns a new agent simulation (also called
a trace) a, starting at some randomly determined
location in the environment.

2) A forward simulation operation

〈y1, . . . , yk〉 ← simulate(a, ∆t) (2)

that uses the model to execute the simulation for-
ward by the given time increment, and returns an
ordered collection of beams crossed by the simulated
agent during that time. The simulate operation
will generally operate in a randomized way, in order
to model agents whose movements are not fully
predictable.

3) A “cloning” operation

a′ ← fork(a) (3)

that creates another trace with the same position
and internal state, such that the beam crossings
resulting from future calls to simulate will be
distributed identically for a and a′. The fork oper-
ation will generally involve a simple copying of the
state of the simulation, including the agent’s current
position, along with any internal variables used by
the simulator. The fork operation is crucial to the
efficiency of the algorithms proposed below because
it allows the algorithms to focus more computational
effort on simulation traces that more closely match
the observed/anticipated observation sequences.

The intuition is that our algorithms have access to well-
defined simulators for how the agents it observes might
behave. Any agent model for which these operations
are available is suitable for our approach; we make no
assumptions on the nature of the simulation nor on the
internal data that it maintains.

C. Model classification

Based on these definitions, we can state the model
classification problem.

Problem (model classification):
Input: A sequence YA = 〈y1, . . . , yn〉 of time-

stamped observations, a collection of im-
plicit agent models M1, . . . , Mm, a false pos-
itive probability pFP, and a false negative
probability pFN.

Output: The index i ∈ {1, . . . , m} of the model
employed by the agent, along with a nu-
merical estimate of the probability that
the classification is correct.

IV. Description of Algorithms

This section introduces two algorithms to solve the
model classification problem introduced in the previous
section. The starting point for both of these algorithms
is a method for measuring the similarity between pairs
of observation sequences. Section IV-A describes this
method. We describe the first model classification al-
gorithm, which is based on a relatively straightforward
weighted voting scheme, in Section IV-B. The second
algorithm, which uses a resampling scheme to accelerate
the classification process, appears in Section IV-C.

A. Editing observation sequences

Our classification algorithms are based on a criterion
for measuring the similarity between any two sequences
of observations. The intuition is to compare YA to se-
quences of beam crossings from our implicit agent mod-
els, under the hypothesis that the greater the similarity
between YA and any particular beam sequence generated
by some model Mi, the more likely it is that the agent
belongs to model Mi.

To perform this comparison, we use a generalization
of the Wagner-Fischer algorithm [33] which computes
the Levenshtein distance (also known as minimum edit
distance) between two strings over a finite alphabet [21].
Traditionally, the Levenshtein distance is defined as the
smallest number of single-character insertion, deletion,
and substitution operations needed to “edit” one string
into another. Our problem differs in several important
ways:

1) Instead of discrete characters, we have observations,
each of which combines a discrete beam index with
a real-valued timestamp.

2) The substitution operation is not applicable, be-
cause it does not have a physical analog in this
context.

3) Because the potential sensing errors have different
probabilities of occurring, we assign costs derived
from the error model to each editing operation.

Specifically, our algorithm computes the optimal se-
quence of edits to transform a given observation sequence
S = 〈s1, . . . , sm〉 into another given observation sequence
T = 〈t1, . . . , tn〉, using three distinct operations:



• Insert: This operation accounts for the instance
where T contains an observation that is missing from
S. Because this could be the result of a false negative
occurring in S, we derive the cost of this operation
from the false negative error rate, so that

CI = − log(pFN). (4)

• Delete: This operation occurs when there is an
observation in S that does not appear in T , which
could be the result of a false positive occurring in S.
Therefore the cost of this operation is derived from
the false positive error rate:

CD = − log(pFP). (5)

• Timeshift: This operation occurs when two obser-
vations have the same beam label, but have different
time-stamps

(

b
(s)
i = b
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j and t
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i 6= t

(t)
j

)

. This could
occur when the sequences are generated by the same
model, but have slightly different motions within
the environment. In this case, the two sequences
should generate similar observation sequences, but
with relatively small variations in the timestamps.
In this case, the operation cost is the true positive
rate plus a constant parameter α times the difference
in timestamps:
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We must also take into account the cost of a true positive,
which occurs when two observations “match,” and is
directly related to the false positive rate:

CM = − log(1− pFP). (7)

The values used for pFP and pFN the probabilities
of generating a false-positive and false-negative error,
come directly from the sensors. The α parameter used to
calculate the cost of a timeshift operation is dependent
on a number of variables such as changes to the agent’s
path, velocity differences between the models and the
actual agent, etc. Therefore, this value can and probably
should be learned from empirical data.

Our dynamic programming algorithm for computing
the Levenshtein distance between observation sequences
under these operations appears in Algorithm 1. The
approach is closely modeled after the standard algorithm.

B. Model classification via direct voting

Perhaps the most obvious way to use the similarity
measure introduced in Section IV-A for model classi-
fication is to (1) initialize equally-sized collections of
simulation traces for each of our m implicit models; (2)
simulate each of these traces for the same interval of
time as the true observation sequence YA, recording the
sequence of beam crossings for each; (3) compute the
edit distance between YA and the each of these beam
sequences; and (4) for each model Mi, sum the edit
distance values for its traces. The algorithm then selects

Algorithm 1 ObsEditDist(S, T )

Input: Sequences S = 〈s1, . . . , sm〉 and T = 〈t1, . . . , tn〉
Output: Cost value for the similarity between S and T

for i← 0 to m do d[i, 0] = i · CD end for
for j ← 0 to n do d[0, j] = j · CI end for

for i← 1 to m do
for j ← 1 to n do

if b
(s)
i = b

(t)
j then ⊲ Same beam label

if t
(s)
i = t

(t)
j then ⊲ Observations match

⊲ true positive
d[i, j]← d[i− 1, j − 1] + CM

else ⊲ Observations do not match
⊲ insert, delete, or timeshift

ts ← d[i− 1, j − 1] + CT

(

t
(s)
i , t

(t)
j

)

del← d[i− 1, j] + CD

ins ← d[ i, j − 1] + CI

d[i, j]← min(ts, del, ins)
end if

else ⊲ Not the same beam label
⊲ insert or delete
del← d[i− 1, j] + CD

ins ← d[ i, j − 1] + CI

d[i, j]← min(del, ins)
end if

end for
end for
return d[m, n];

the model with the lowest total distance as the most
likely to have generated the sequence of observations
YA. Details of this approach, which we call direct voting,
appear in Algorithm 2.

C. Filtering with resampling

Although the direct voting scheme described above
works well (see Section V), in many cases it can expend
computational effort performing simulate operations on
traces that can be identified very early on as being a poor
match for the actual observation sequence generated
by the agent. To mitigate this problem, we propose a
second model classification algorithm, inspired by well-
known particle filtering techniques, called filtering with
resampling. The intuition is to perform the simulate

operations in smaller segments, and then use a random-
ized resampling step to eliminate traces with very large
distances, in favor of forks of better-matching traces.

Pseudocode for the approach appears in Algorithm 3.
After using initialize to build a set A of N traces
distributed equally across the m implicit models, the
algorithm alternates between two phases.

• In the simulation phase, the traces are simulated
forward by a small, fixed time interval ∆t and a
container Y is used to store the beam crossings



Algorithm 2 Direct Voting(YA, M, N)

Input: Observation sequence YA = 〈y1, . . . , yn〉,
implicit models M = M1, . . . , Mm, traces N

Output: The index i of the model Mi used by the agent.
Estimate of the probability of the correct classification.

for i← 1 to m do
di ← 0
for j ← 1 to N do

a← initialize(Mi)

〈y
(i)
1 · · · y

(i)
k 〉 ← simulate(a, t)

d[i]← d[i] + ObsEditDist(YA, 〈y
(i)
1 · · · y

(i)
k 〉)

end for
end for
idx← argmin

i=1,...,m

d[i]

maxdist← max
i=1,...,m

d[i]

return









idx ,

maxdist

d[idx]
∑

j=1,...,m

maxdist

d[j]









generated by each trace. The notation is that trace
i generates the observation sequence Y (i).

• In the resampling phase, we compute a weight wi

for each trace, using the edit distance:

wi = 1/ObsEditDist(YA, Y (i)). (8)

After normalizing the weights so that
∑

i wi = 1,
we form a new agent simulation set, A′ of size N by
sampling with replacement from A and performing a
fork on the selected trace. These new traces inherit
both the internal state and the observation histories
of their parents. When the resampling process is
complete, we discard the old A and replace it with
A′. Algorithm 4 shows this resampling step.

The intuition is that over time, traces that are executing
incorrect models will be assigned lower weights, and
therefore fail to be selected in the resampling step and
eventually become “extinct.”

At the beginning of each simulation phase, we inspect
the traces to see if they have reached a consensus on the
model for the agent. If so, this trace is used as a the
output of the algorithm. If the algorithm exhausts YA

without reaching such a consensus, it instead outputs
the model with the largest number of traces.

V. Simulation Results

We implemented this algorithm in simulation. This
section presents some results from that simulation.
Throughout this section, we use pFP = 0.001, pFN =
0.004, and α = 0.001.

Algorithm 3 Filtering with Resampling(YA, M, N)

Input: Observation sequence YA = 〈y1, . . . , yn〉,
implicit models M = M1, . . . , Mm, traces N

Output: The index i of the model Mi used by the agent.
Estimate of the probability of the correct classification.

for i← 1 to N do
ai ← initialize(Mi mod m)

end for
while true do

for i← 1 to N do
〈y

(i)
1 · · · y

(i)
k 〉 ← simulate(ai, ∆t)

Y (i) ← 〈Y (i), y
(i)
1 · · · y

(i)
k 〉

end for
(

A′, Y ′
)

← Resample(A, Y, YA)
A← A′

Y ← Y ′

if all N traces share model Mk then
return (k, 1.0)

end if
if t ≥ tn then ⊲ return the model index with the

⊲ largest number of traces in A.

return

(

argmaxi=1,...,m , Ai⊆A |Ai| ,
|Ai|

N

)

end if
end while

Fig. 3. A simple environment with two obstacles and ten sensors.

A. Comparison of Algorithms 2 and 3

First, we executed both Algorithm 2 and Algorithm 3
using the environment and beam configuration in Fig-
ure 3, using ten implicit agent models:

• M1: Travel in a figure-eight, clockwise around the
left obstacle and counterclockwise around the right
obstacle.

• M2: Travel in a figure-eight, counterclockwise
around the left obstacle and clockwise around the
right obstacle.

• M3: Circle clockwise around the left obstacle.
• M4: Circle counterclockwise around the left obsta-

cle.
• M5: Circle clockwise around the right obstacle.
• M6: Circle counterclockwise around the right obsta-

cle.
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Fig. 4. The success rate vs. the maximum simulation time in sensing intervals for the direct voting method and the filtering with
resampling method. [a] ∆t = 50. [b] ∆t = 125. [c] ∆t = 250, [d] ∆t = 500.

Algorithm 4 Resample(A, Y, YA)

Input: Set of traces A = A1, . . . , AN , set of observation
sequences Y , observation sequence YA = 〈y1, . . . , yn〉

Output: Set of traces A′, set of observations Y ′

declare double w[1, . . . , n] ⊲ resampling weights
for i← 1 to N do

w[i]← 1/
(

ObsEditDist(YA, Y (i))
)

end for
normalize w to sum to 1;
for i← 1 to N do

select trace aj from A with probability w[j]
a′

j ← Fork(aj)
insert a′

j into A′

insert Y (j) into Y ′

end for

return
(

A′, Y ′
)

• M7: Remain motionless.
• M8: Move randomly through the environment.
• M9: Travel clockwise around the outer boundary.
• M10: Travel counterclockwise around the outer

boundary.

Both algorithms were run using N = 1000 simulation
traces. We varied both the amount of time for which
the system was able to observe the mobile agent and
the resampling rate ∆t and performed 10 trials for

each scenario. For each trial we recorded whether or
not the algorithm correctly classified the agent’s model.
Figures 4a-d show the success rate when the resampling
algorithm resamples every 50, 125, 250, and 500 seconds,
respectively.

Two conclusions can be drawn from these results. First,
notice that the filtering with resampling algorithm does
indeed outperform direct voting when the observations
sequences are short. Second, we observe that, if ∆t
is too small, then the resampling algorithm performs
quite poorly, because the resampling steps occur before
sufficiently many observations are available to assign
meaningful weights.

B. Analysis of Confusion Matrices

To better understand the types of errors that the
filtering with resampling algorithm incurs, we performed
a second simulation in which we used each Mi as the
correct model in 50 trials, and recorded the answers
returned by the algorithm. This simulation used ∆t =
250, and allowed the system to observe the agent for
50000 seconds. The simulations produced the confusion
matrix in Table I. The success rates of our algorithm
in correctly predicting the agent’s model appear on the
diagonal of this confusion matrix.

These results show that our algorithm is generally
very accurate, except that model M7 is often mistaken
for model M8. We believe that is occurs because when
there are false positives in the observed sequence, they
all incur a relatively high cost CD when edited into



M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 0.80 0.02 0.08 0.00 0.00 0.08 0.00 0.00 0.00 0.02
M2 0.00 0.86 0.00 0.06 0.08 0.00 0.00 0.00 0.00 0.00
M3 0.18 0.00 0.78 0.02 0.00 0.00 0.00 0.00 0.02 0.00
M4 0.02 0.10 0.04 0.82 0.00 0.00 0.00 0.00 0.00 0.02
M5 0.00 0.30 0.00 0.00 0.62 0.00 0.00 0.00 0.08 0.00
M6 0.24 0.00 0.00 0.00 0.06 0.68 0.00 0.00 0.00 0.02
M7 0.00 0.00 0.00 0.00 0.02 0.02 0.24 0.70 0.00 0.02
M8 0.00 0.00 0.00 0.00 0.12 0.04 0.06 0.76 0.02 0.00
M9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
M10 0.02 0.00 0.00 0.06 0.00 0.04 0.00 0.00 0.00 0.88

TABLE I

Confusion matrix for the environment in Figure 3.

[a] [b]

Fig. 5. [a] An environment that resembles the layout of a city. [b]
A circular hallway with many adjoining rooms.

the empty observation sequence generated by each M7

trace. In contrast, editing this sequence of false positives
into an M8 trace may be able to use some timeshift
operations, whose cost is much lower in our filter. One
possible solution would be to tune the parameter α to
more strongly penalize timeshift operations.

We also repeated this simulation using the two more
complex environments depicted in Figure 5. For the
environment of Figure 5a, we used 10 models similar in
spirit to the ten described above. Similarly, we used six
agent models for the environment in Figure 5b. Detailed
descriptions of these models are omitted due to space
limitations. The results of this experiment, which are
similar to those for the simpler environment, appear in
Tables II and III. In those tables, the motionless model
appears as M10 and M6 respectively.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 0.70 0.10 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.00
M2 0.00 0.80 0.00 0.00 0.10 0.00 0.10 0.00 0.00 0.00
M3 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.10 0.20 0.10
M4 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0.20
M5 0.00 0.10 0.00 0.00 0.50 0.20 0.00 0.00 0.10 0.10
M6 0.00 0.00 0.10 0.00 0.00 0.90 0.00 0.00 0.00 0.00
M7 0.00 0.00 0.00 0.10 0.00 0.00 0.90 0.00 0.00 0.00
M8 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.10 0.00
M9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.10
M10 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.20

TABLE II

Confusion matrix for the environment in Figure 5a.

M1 M2 M3 M4 M5 M6

M1 0.90 0.00 0.00 0.00 0.10 0.00
M2 0.00 0.90 0.00 0.00 0.10 0.00
M3 0.10 0.00 0.80 0.00 0.00 0.10
M4 0.00 0.00 0.10 0.80 0.10 0.00
M5 0.00 0.00 0.00 0.10 0.90 0.00
M6 0.00 0.10 0.00 0.00 0.60 0.30

TABLE III

Confusion matrix for the environment in Figure 5b.
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Fig. 6. The success rate vs. the number of traces in the filter and
resample algorithm.

C. Relationship between success rate and the number of
traces

Finally, we performed a simulation to measure the
relationship between the algorithm’s success rate and the
number N of traces it uses. We used the environment in
Figure 3 with ∆t = 250 and observed the agent for 50000
seconds. For each N = 10, 20, 30, . . . , 350, we performed
ten trials and measured the success rates. The results
appear in Figure 6. We observed in these results that,
once a sufficiently large “critical mass” of traces are in
use (in this case, around N = 70), the performance of
the algorithm is not particularly sensitive to the number
of traces.

VI. Conclusion

In this paper we introduced a notion of implicit models
for agent behavior, and showed how those models can
be used to classify observed agents. Both algorithms
presented in this paper, direct voting and filtering with
resampling use an adaptation of the Levenshtein dis-
tance to measure the similarity between two observa-
tion sequences. The training of tunable parameters that
contribute to the cost calculation of an edit distance
has been successfully performed in other classification
problems [31], and we anticipate that similar methods
may work here.

We have, of course, left several related problems un-
solved. Perhaps most interestingly, we believe that our
implicit models may be useful for active sensor place-
ment, in addition to the passive inference technique
described in this paper.

Moreover, we so far only consider a single agent, but
practical systems of this type are quite likely to observe
multiple agents simultaneously. With sensors that can
only detect when an agent has crossed a beam sensor but
not the identity of that agent, we will encounter a data



association problem when multiple agents are present in
an environment.

Finally, our current problem formulation uses beam
sensors that are pairwise disjoint. To extend this work
to other more interesting sensor models or to relax the
constraint that the beam sensors be pairwise disjoint,
we would have to deal with the case of transpositions,
in addition to insertions, deletions, and time-shifts. This
would require us to adapt our current algorithm (which
is a generalization of the Levenshtein distance), to an
algorithm that can compute the Damerau-Levenshtein
distance [7], which correctly accounts for transpositions.
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