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Abstract— We introduce a probabilistically complete algo-
rithm for solving a visibility-based pursuit-evasion problem
in two-dimensional polygonal environments with multiple pur-
suers. The inputs for our algorithm are an environment and
the initial positions of the pursuers. The output is a joint
strategy for the pursuers that guarantees that the evader has
been captured. We create a Sample-Generated Pursuit-Evasion
Graph (SG-PEG) that utilizes an abstract sample generator to
search the pursuers’ joint configuration space for a pursuer
solution strategy that captures the evaders. We implemented
our algorithm in simulation and provide results.

I. INTRODUCTION

There are many variants of the pursuit-evasion problem.

The common theme amongst them is that one group of

agents, the “pursuers”, attempts to track members of another

group, the “evaders”.

This paper considers a specific variant of the pursuit-

evasion problem called visibility-based pursuit-evasion,

which requires the pursuer(s) to systematically search an

environment to locate the evaders, ensuring that all evaders

will be found by the pursuers in a finite time. The specific

problem we consider is a visibility-based pursuit-evasion

problem that utilizes a team of pursuers. The pursuers

move through a polygonal environment seeking to locate

an unknown number of evaders, which move at a finite but

unbounded speed. The pursuers have an omni-directional

field-of-view that extends to the environment boundary. The

goal is to find a joint strategy for the pursuers that ensures

that all of the evaders are seen.

The visibility-based pursuit-evasion problem has an extra

layer of complexity beyond the standard motion planning

problem because of its capture guarantee. It is not enough

to simply select a standard motion planner and attempt to

generate a path for each pursuer through the environment.

To guarantee that the pursuer strategy does indeed capture

an evader if one exists, the planner must also reason about

the regions of the environment that are not currently in

the pursuers’ visual field-of-view and how these regions

interact with one another as the pursuers move within the

environment.

Two dominant threads of research involve the number

of deployable pursuers available to solve the visibility-

based pursuit-evasion problem. Using only a single pursuer,

there are results that yield complete [4], randomized [8],

and optimal [22] solutions, as well as many other variants
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Fig. 1: A pursuer strategy generated by our algorithm. Filled

circles represent the pursuers’ initial positions and open

circles represent their goal positions.

discussed in Section II. A consequence of using only a single

pursuer is that these algorithms are only applicable when

the environment can be represented as a simply-connected

polygon.

The authors considered the multiple pursuer visibility-

based pursuit-evasion problem [23] in the past. In that

work, we introduced a centralized algorithm for computing

a pursuer solution strategy. The general idea is to create a

Cylindrical Algebraic Decomposition (CAD) of the pursuers’

joint configuration space by using polynomials that capture

where critical changes to the regions of the environment

hidden from the pursuers occur. Then we compute the

adjacency graph for the CAD and construct a Pursuit Evasion

Graph (PEG) induced by the adjacency graph. A search

through the PEG can produce one of the following outcomes:

the search can reach a vertex where the pursuers’ motions up

to this point ensure that the evader has been captured, or the

search terminates without finding a solution and produces a

statement recognizing that no solution exists. The drawback

of the technique is the computational complexity required to

construct the CAD and perform the adjacency test, which

is doubly exponential in the number of pursuers. This paper

differs from that work in that we no longer discretize the

configuration space and maintain a CAD nor compute the

adjacency graph.

The main contribution of this work is a probabilisti-

cally complete algorithm for multiple pursuer visibility-based

pursuit-evasion that generates a solution strategy for the



pursuers to execute (Figure 1) through the joint configuration

space. Our algorithm creates a graph that maintains the pur-

suers’ information state, and utilizes a sample generator that

we treat as a “black box” to reason about unexplored areas

in the pursuers’ joint configuration space. Our algorithm

has some similarity to the Probabilistic Roadmap (PRM)

algorithm [10], but differs in that our algorithm maintains

information concerning the areas of the environment where

the evader might be. The need for this additional information

complicates both the update operations for the graph and the

selection of samples.

The remainder of this paper is structured as follows. In

Section II we discuss related work to our problem. Section III

contains a formal problem statement. A formal definition for

the area not visible to the pursuers, called shadows, appears

in Section IV. This paper makes several new contributions:

1) We introduce a graph that maintains a representation of

the reachable parts of the pursuers’ joint information

space and provide details about its construction (Sec-

tion V).

2) We introduce an algorithm that uses this graph to search

for a pursuer solution strategy (Section VI).

3) We present simulation results (Section VII) that show

our algorithm’s ability to generate solution strategies for

various sample generators.

Discussion and concluding remarks appear in Section VIII.

II. RELATED WORK

The pursuit-evasion problem was originally posed in the

context of differential games [5], [7]. The lion and man game

and the homicidal chauffeur are two such differential games.

In the lion and man game, a lion tries to capture a man who

is trying to escape [15], [21]. In game theory, the homicidal

chauffeur is a pursuit-evasion problem which pits a slowly

moving but highly maneuverable runner against the driver

of a vehicle, which is faster but less maneuverable, who is

attempting to run him over [7], [19].

The first recognized instance of pursuit-evasion on a graph

is the Parsons problem [17]. The idea behind the Parsons

problem, also known as the edge-searching problem, is to

determine a sequence of moves for the pursuers that can

detect all intruders in a graph using the least number of

pursuers. A move consists of either placing or removing a

pursuer on a vertex, or sliding it along an edge. A vertex

is considered guarded as long as it has at least one pursuer

on it, and any evader located therein or attempting to pass

through will be detected. A sliding move detects any evader

on an edge.

The visibility-based pursuit-evasion problem was proposed

by Suzuki and Yamashita [24] as a geometric formulation of

the graph-based problem and can be viewed as an extension

of the watchman route problem [1], in which the objective

is to compute the shortest path that a guard should take to

patrol an entire area populated with obstacles, given only a

map of the area.

A. Single Pursuer

The capture condition for the general visibility-based

pursuit-evasion problem [4] is defined as having an evader lie

within a pursuer’s capture region. There has been substantial

research focused how the visibility-based pursuit-evasion

problem changes when a robot has different capture regions.

The k-searcher is a pursuer with k visibility beams [14],

[24], the ∞-searcher is a pursuer with omnidirectional field

of view [4], [16], and the φ-searcher is a pursuer whose field-

of-view [3] is limited to an angle φ ∈ (0, 2π]. Note that all

of these approaches consider evaders with unbounded speed.

Others have studied scenarios where there are additional

constraints, such as the case of curved environments [13], an

unknown environment [20], a maximum bounded speed for

the pursuer [26], or constraints similar to those of a typical

bug algorithm [18].

B. Multiple Pursuer

As a result of the problem complexity, there is a wide

range of literature with differing techniques attempting to

solve the multi-robot visibility-based pursuit-evasion prob-

lem. One technique organizes the pursuers into teams, whose

joint sensing capability are a set of moving lines, each

of which is spanned between obstacles. By using these

teams of robots as sweep lines, the authors guarantee de-

tection of the evaders [12]. Other researchers have used

a mixed integer linear programming approach to solve a

multi-pursuer visibility-based pursuit-evasion problem [25].

Another approach involves maintaining complete coverage

of the frontier [2]. There are other variants of the pursuit-

evasion problem where the pursuers are teams of unmanned

aerial vehicles [11].

III. PROBLEM STATEMENT

Portions of this section appear in the authors’ prior work

[23] and are included here for completeness.

A. Representing the environment, evaders, and pursuers

1) The environment: The environment is a polygonal free

space, defined as a closed and bounded set F ⊂ R
2, with

a polygonal boundary ∂F . The environment is composed of

m vertices.

2) The evader: The evader is modeled as a point in F that

can translate within the environment. Let e(t) ∈ F denote

the position of the evader at time t ≥ 0. The path e is a

continuous function e : [0,∞) → F , in which the evader is

capable of moving arbitrarily fast (i.e. a finite, unbounded

speed) within F . Note that, by assuming that there is a

single evader, we have not sacrificed any generality. If the

pursuers can guarantee the capture of a single evader, then

the same strategy can locate multiple evaders, or confirm that

no evaders exist.

3) The pursuers: A collection of n identical pursuers

cooperatively move to locate the evader. We assume that the

pursuers know F , and that they are centrally coordinated.

Therefore, from a given collection of starting positions, the

pursuers’ motions can be described by a continuous function
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Fig. 2: An environment with two pursuers and three shadows.

p : [0,∞) → Fn, so that p(t) ∈ Fn denotes the joint

configuration of the pursuers at time t ≥ 0. The function

p, which our algorithm generates, is called a joint motion

strategy for the pursuers. We use the notation pi(t) ∈ F to

refer to the position of pursuer i at time t. Likewise, xi(t)
and yi(t) denote the horizontal and vertical coordinates of

pi(t). Without loss of generality, we assume that the pursuers

move with maximum speed 1.

Each pursuer carries a sensor that can detect the evader.

The sensor is omnidirectional and has unlimited range, but

cannot see through obstacles. For any point q ∈ F , let V (q)
denote the visibility region at point q, which consists of the

set of all points in F that are visible from point q. That is,

V (q) contains every point that can be connected to q by a

line segment in F . Note that V (q) is a closed set.

B. Capture conditions

The pursuers’ goal is to guarantee the capture of the evader

for any continuous evader trajectory.

Definition A joint motion strategy is a solution strategy if,

for any continuous evader trajectory e : [0,∞) → F ,

there exists some time t and some pursuer i such that e(t) ∈
V
(

pi(t)
)

.

IV. SHADOWS

The key difficulty in locating our evader is that the

pursuers can not, in general, see the entire environment at

once. This section contains some definitions for describing

and reasoning about the portion of the environment that is

not visible to the pursuers at any particular time.

Definition The portion of the environment not visible to

the pursuers at time t is called the shadow region S(t), and

defined as

S(t) = F −
⋃

i=1,...,n

V
(

pi(t)
)

.

Note that the shadow region may contain zero or more

nonempty path-connected components, as seen in Figure 2.

Definition A shadow is a maximal path connected compo-

nent of the shadow region.

Notice that S(t) is the union of the shadows at time t. The

important idea is that the evader, if it has not been captured,

is always contained in exactly one shadow, in which it can

move freely.

As the pursuers move, the shadows can change in any of

four ways, called shadow events.

• Appear: A new shadow can appear, when a previously

visible part of the environment becomes hidden.

• Disappear: An existing shadow can disappear, when

one or more pursuers move to locations from which

that region is visible.

• Split: A shadow can split into multiple shadows, when

the pursuers move so that a given shadow is no longer

path-connected.

• Merge: Multiple existing shadows can merge into a

single shadow, when previously disconnected shadows

become path-connected.

These events were originally enumerated in the context of

the single-pursuer version of this problem [4] and examined

more generally by Yu and LaValle [28].

A. Shadow Labels

For our pursuit-evasion problem, the crucial piece of

information about each shadow is whether or not the evader

might be hiding within it.

Definition A shadow s is called clear at time t if, based

on the pursuers’ motions up to time t, it is not possible for

the evader to be within s without having been captured. A

shadow is called contaminated if it is not clear. That is, a

contaminated shadow is one in which the evader may be

hiding.

Notice that, since the evader can move arbitrarily quickly,

the pursuers cannot draw any more detailed conclusion about

each shadow than its clear/contaminated status; if any part of

a shadow might contain the evader, then the entire shadow

is contaminated.

Therefore, our algorithm tracks the clear/contaminated

status of each shadow. Each time a shadow event occurs,

the labels can be updated based on worst case reasoning.

• Appear: New shadows are formed from regions that had

just been visible, so they are assigned a clear label.

• Disappear: When a shadow disappears, its label is

discarded.

• Split: When a shadow splits, the new shadows inherit

the same label as the original.

• Merge: When shadows merge, the new shadow is as-

signed the worst label of any of the original shadows’

labels. That is, a shadow formed by a merge event is

labeled clear if and only if all of the original shadows

were also clear.

Notice in particular that, if all of shadows are clear, then

we can be certain the evader has been seen at some point.

The result of this reasoning is that we can connect the

shadow labels to our goal of finding a solution strategy. A

pursuer strategy is a solution strategy if and only if, after its

execution, all of the shadows are clear.

B. Label Dominance

The following provides some insight to the hierarchy of

preferable shadow labels. Informally, we prefer one shadow



label to another if in addition to having the same shadows

labelled as cleared, there are additional shadows in the label

that are also labelled as cleared. This allows us to say that

one shadow label dominates another shadow label.

Definition Given two shadow labels corresponding to a

shadow region S, we say that a label l dominates a label l′

if the following condition holds:

∀s ∈ S If l′s = clear then ls = clear

This relation is useful because our algorithm discards any

shadow labels that are dominated by another shadow label

reachable at the same pursuer configuration.

V. SAMPLE-GENERATED PURSUIT-EVASION GRAPH

This section introduces the primary data structure used in

our algorithm. We begin by describing the graph’s structure

and also elaborate on a non-trivial graph operation.

A. Graph Structure

The Sample-Generated Pursuit-Evasion Graph (SG-PEG)

is a rooted directed graph whose vertices represent joint

pursuer configurations. A vertex in the SG-PEG contains

1) a joint pursuer configuration (denoted jpc), and

2) the set of non-dominated shadow labels reachable by

following a path from the root, through the graph, to

that configuration.

For an edge to exist between any two vertices in the SG-

PEG there must be a line segment in Fn that connects the

joint pursuer configuration at the source vertex with the joint

pursuer configuration at the target vertex. Given an arc of

the SG-PEG, e = (x, y), the edge stores a mapping from the

reachable shadow labels in x to the corresponding shadow

labels in y.

The operations available to a SG-PEG graph are ADD-

VERTEX and ADDEDGE. These operations differ from the

corresponding operations on a standard graph because of

the book-keeping needed to keep track of the reachable

shadow labels. The ADDVERTEX operation is trivial, but

details concerning the ADDEDGE operation appear in the

next section.

B. Edge Creation

When a new connection is established between a source

and target vertex in the SG-PEG, the source’s reachable

shadow labels are used to update the target’s reachable labels

(Algorithm 1). In this section we discuss the shadow label

update criterion, the update label subroutine, and the process

of adding a new reachable label to a vertex.

1) Computing a New Label: In the authors’ prior work

[23], we provided a family of polynomials that capture where

critical changes can occur to the region of the environment

hidden from the pursuers. Although complete, the quantity

and complexity of the polynomials (there are O
(

n3m3
)

polynomials, where n corresponds to the number of pursuers

and m corresponds to the number of environment vertices) in

this family makes the task of analytically identifying where

Algorithm 1 ADDEDGE(v, v′)

Input: a source vertex v and a target vertex v′

1: for each label in v’s reachable set do

2: updated ← COMPUTELABEL(v.jpc, label, v′.jpc)

3: ADDREACHABLE(v′, updated)

these changes occur computationally expensive. Instead, we

update the shadow labels numerically.

The general idea is that if we partition the line segment

connecting any two joint pursuer configurations in Fn into a

collection of evenly spaced joint pursuer configurations we

can incrementally track the shadow changes. To ensure that

all of the shadow events are captured there must be at least

one sample capable of capturing each successive shadow

event while traversing along the segment.

The computation of a new shadow label (Algorithm 2)

takes as input two joint pursuer configurations, a source

and target, and a shadow label corresponding to the shadow

region at the source configuration. The output is the shadow

label that results from the pursuers moving from the source

configuration to the target configuration given the initial

shadow label. Figure 3 illustrates this process. Initially, there

are two contaminated shadows. As the pursuers move to the

target configuration, a shadow appears as the pursuers move

to the right (a cleared shadow). As the pursuers reach the

target configuration the central shadow disappears.

We begin by partitioning (Algorithm 2 line 2) the segment

connecting the source and target configurations in Fn into

a finite collection of evenly spaced joint pursuer configura-

tions. We then loop through this collection of joint pursuer

configurations, updating the shadow label along the way,

returning the final label of the sequence.

The process of computing the new shadow labels for our

discretized segments appears in Algorithm 2 lines 4-11. The

process starts by computing the shadow regions of both

the source and target configurations. We initialize the label

corresponding to the target configuration as all cleared. We

check all of the shadows in the shadow region of the goal

configuration for an intersection with contaminated shadows

belonging to the shadow region of the source configuration.

If an intersection with a contaminated shadow occurs then

the corresponding shadow in the target configuration is also

labelled as contaminated.

2) Adding a Reachable Label: The final step involves

adding the newly computed shadow label to the target vertex

(Algorithm 3). It may also be the case that the individual

shadows of the new label are all cleared, in which case

a solution has been found. If the target vertex contains a

shadow label in its set of reachable labels that dominates the

new shadow label, then the new label does not contribute any

new information and we return. Similarly, if there are labels

in the vertex’s set of reachable labels that are dominated by

the new shadow label then those labels are removed. If the

new shadow label is not dominated and is not a solution

strategy then we add the new shadow label to the vertex’s
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Fig. 3: An illustration of the update step. Initially there are two contaminated shadows (red). After running the

COMPUTELABEL method, there is a cleared shadow (green) and a contaminated shadow (red).

Algorithm 2 COMPUTELABEL(p, l, p′)

Input: a starting configuration p, starting label l, and

a goal configuration p′

1: label ← l

2: < p1, . . . , pk > ← DISCRETIZE(p, p′)

3: for each pi, pi+1 where i < k do

4: oldshadows ← SHADOWREGION(p)

5: newshadows ← SHADOWREGION(p′)

6: newlabel ← 0 · · · 0 ⊲ initially all cleared

7: for each s′ in newshadows do

8: for each s in oldshadows do

9: if labels = 1 and s′ intersects s then

10: newlabels′ ← 1

11: label ← newlabel

12: return label

Algorithm 3 ADDREACHABLE(v, l)

Input: a SG-PEG vertex v and a label l

1: function ADDREACHABLE(v, l)

2: if v contains a label that dominates l then return

3: add l to v as a reachable label

4: delete labels in v dominated by l

5: if ALLCLEAR(l) then

6: Output Solution v ⊲ Is l a solution?

7: for each out in Neighbors(v) do

8: newlabel ← COMPUTELABEL(v.jpc, l, out.jpc)

9: ADDREACHABLE(out, newlabel)

reachable set. This label now permeates the graph recursively

via the vertex’s outgoing edges. A label is calculated for each

of the vertex’s neighbors, and if this label is added to the

neighbors reachable set, then the process repeats itself. The

process ends when no additional reachable labels are found.

Note that if a vertex does not belong to the same connected

component as the root vertex then its set of reachable labels

is empty. Because of the recursive nature of Algorithm 3,

a vertex that serves as a bridge between the connected

component containing the root vertex and another connected

component will cause the reachable data to permeate through

the SG-PEG.

Algorithm 4 SOLVE(p, F,A)

Input: a starting configuration p, an environment F , and

an abstract sampler A

1: ADDVERTEX(p, {0 · · · 0})
2: while a solution has not been found do

3: s ← A.GETSAMPLE()

4: x ← ADDVERTEX(s)

5: for each y in SG-PEG vertices do

6: if (xy ⊂ Fn) and

length(x, y) < maxlength and

cycleLength(x, y) > mincycle then

7: ADDEDGE(x, y) ⊲ Digraph edge

8: ADDEDGE(y, x) ⊲ Digraph edge

9: return EXTRACTSOLUTION(solution)

VI. ALGORITHM

In this section we detail how our algorithm uses a SG-

PEG to search for a pursuer solution strategy. Our algorithm

(Algorithm 4) begins by creating a SG-PEG vertex. This

vertex’s joint pursuer configuration is the initial joint pur-

suer configuration supplied to our algorithm and it’s set of

reachable shadow labels contains only a single label whose

shadows are all contaminated. This is the root vertex of

our SG-PEG. We then proceed by obtaining samples in

Fn, checking these samples for potential connections with

existing vertices in the SG-PEG graph, and update the SG-

PEG where necessary when edges are created.

A. Abstract Sampler

Our main search algorithm uses an abstract sampler to

return a joint pursuer configuration (Algorithm 4 line 3).

Definition An abstract sampler is a joint probability density

function whose continuous random variables are the pur-

suers’ positions in F .

The only functionality that we require an abstract sampler

to have is the ability to generate a point in Fn. The benefit

of using an abstract sampler is that our algorithm is not

dependent on a specific sampler to generate a solution

strategy. This allows us to choose samplers that efficiently

explore Fn. Note that the goal of catching the evaders

means that the best sampling strategies may differ from those

used in traditional motion planning algorithms. However, for



our algorithm to be probabilistically complete, the abstract

sampler must have a support equal to Fn (Section VI-D).

We demonstrate the feasibility of using an abstract sample

generator in our algorithm by providing simulation results

that utilize various sample generators (Section VII).

B. Edge Criteria

In this section we discuss the constraints used in our main

algorithm that determine whether an edge should connect

two vertices (Algorithm 4 line 6). The three constraints can

be categorized as visibility, edge length, and cycle length

constraints.

1) Visibility Condition: The visibility condition states that

for two vertices to share a pair of directed edges, the vertices

corresponding joint pursuer configurations must be mutually

visible to one another. This corresponds to the ith pursuer of

one configuration residing within the visibility region of the

ith pursuer in a neighboring configuration. Another way of

interpreting this constraint is that only straight line motions

are permitted between corresponding pursuers in neighboring

vertices. This constraint prevents the generation of strategies

in which the pursuers collide with obstacles.

2) Edge Length: To limit the amount of time spent

computing the reachable data when an edge is added in the

SG-PEG we place a constraint on the length of the segment

connecting the vertices joint pursuer configurations in Fn.

The idea is that given two joint configurations that are far

apart, requiring multiple intermediary vertices as opposed

to a single long connection is preferred. The intermediary

vertices provide additional opportunities for any potential

subsequent samples to become connected.

3) Minimum Cycle Length: To avoid an oversaturation

of edges we enforce a minimum cycle length in the SG-

PEG. The intuition is that if a large number of samples

in Fn that are relatively close together, a large amount of

resources could potentially be used computing all of the

nearby transitions without necessarily revealing any new

information. This optimization is aimed at minimizing the

number of samples between which no shadow events occur.

C. Search for a solution strategy

The intuition is that given an initial joint pursuer configu-

ration, we assume that all the shadows in the shadow region

are contaminated. We then build a SG-PEG using an abstract

sampler to select new points in Fn.

Since we maintain the reachable shadow labels during

the construction of the SG-PEG, we know that a solution

strategy exists if we encounter a reachable shadow label that

is completely cleared. At that point we use the reachable

data stored in the vertices and the shadow label mappings

stored in the edges to recover a solution by following those

mappings back to the root. This solution should appear as a

collection of vertices in the SG-PEG. Using the joint pursuer

configurations stored in the vertices as intermediary steps that

the pursuers need to reach, we will have generated a joint

motion strategy that is also a solution strategy.

D. Probabilistic Completeness

Finally, we argue that under certain conditions, Algo-

rithm 4 is probabilistically complete.

Theorem 1: If the abstract sampler has a support equal to

Fn, and there are no constraints on the edge length and cycle

length, then our algorithm is probabilistically complete. That

is, the probability of our algorithm finding a solution, if one

exists, tends to 1 as the number of samples goes to infinity.

Proof Sketch: The argument proceeds in the same fashion

as the probabilistic completeness proof for PRM presented

by Kavraki, Kolountzakis, and Latombe [9]. The only signif-

icant difference is that, instead of considering the clearance

between a solution strategy and the obstacle boundaries, we

must consider the clearance from the critical boundaries at

which shadow events that are not part of the final solution

strategy would occur.

VII. SIMULATION RESULTS

We implemented our algorithm in simulation and provide

some results for three different environments, using three

different sample generators, and three different cycle con-

straints. The environments (Figure 4) all require at least

two pursuers to generate a solution strategy. As such we

have deployed two pursuers to test our algorithm. The three

different sample generators have the following behavior:

• SG1 - Returns a uniform sample in Fn. This is a

baseline sample generator that produces independent

and identically distributed samples in Fn. This sample

generator satisfies the completeness constraint.

• SG2 - Chooses samples such that no two pursuers are

mutually visible. By ensuring that the pursuers can not

see one another, we attempt to maximize exploration

by generating samples where the pursuers’ visibility

regions don’t overlap. Note that this sample generator

does not satisfy the completeness constraint.

• SG3 - Selects an existing SG-PEG vertex, and for each

pursuer selects a new target position from the pursuer’s

current visibility region. This is a local randomized sam-

pler. By sampling within an existing SG-PEG vertex’s

field-of-view, we are essentially causing the search to

“bloom” from the root vertex. This sample generator

does not satisfy the completeness constraint.

For each combination of environment, sample generator,

and cycle constraints we ran 10 trials, each with a unique

starting position. The simulations were implemented in C++

on a machine running Ubuntu 12.04 64-bit with an Intel

Core 2 Duo E8400 processor and 4GB of RAM. Each

simulation was given a maximum computation time limit of

1200 seconds. If the algorithm could not generate as solution

strategy within the allotted time, we assumed that it failed.

The cycle constraints represent the extremes and one

intermediary constraint. By not allowing any cycles, the SG-

PEG has a tree structure, and may encounter environments

where this limitation prevents our algorithm from generating

a solution strategy. The other extreme has no constraint on

the cycles. This means that if the samples are close together,



(a) A brick environment. (b) An “H” environment. (c) An office room environment.

Fig. 4: Environments used in our simulations.

then our algorithm will spend a lot of time computing

reachable shadow labels as opposed to exploring.

We report a number of statistics (Tables I, II, and III) for

each scenario. The first item that we report is the number of

successes (Was a solution strategy found?) across all trials.

For the following we report both the mean and standard

deviation: the computation time in seconds, the number of

SG-PEG vertices created, the number of reachable labels

computed, and the total distance travelled by the pursuers.

All of the sample generators were able to produce solution

strategies for the “brick” environment and had a success rate

of 100% with sample generator SG2 having the least number

of vertices, reachable labels, solution length, and minimum

computation time.

In the “H” environment sample generator SG3 performed

very poorly. It had only a 70% success rate when no cycles

were permitted, 10% success rate for the intermediary cycle

constraint, and was unable to find a solution in any of the

trials when there were no cycle constraints.

In the “office room” environment sample generator SG1

and SG2 finally had some failures, while SG3 continued to

struggle. In this environment our algorithm was unable to

generate a single solution strategy in the allotted time when

no constraints were placed on the cycle length.

There are two main conclusions that we can draw from our

simulations. The first is the effect the cycle length constraint

has on all of the metrics that appear in Tables I, II, and III.

When cycles were not allowed, the algorithm was able to

generate a solution faster, requiring the pursuers to travel

a shorter distance, often with a negligible increase in the

number of vertices and reachable labels. When no constraints

were placed on the cycle length, there was a noticeable

decrease in performance. None of the samplers were able to

generate a solution to the “office room” environment within

the allotted time without the cycle length constraint.

The second conclusion we can draw from the simulations

is the effect various samplers have on our algorithm’s ability

to generate a solution. The local randomized sampler (SG3)

performed poorly across all environments compared to the

uniform sampler (SG1) and the non-mutually-visible sam-

pler (SG2). This disparity should serve as motivation for

determining what sampling strategy is most appropriate for

the visibility-based pursuit-evasion problem.

VIII. CONCLUSION

In this paper the authors’ presented a data structure called

a SG-PEG that maintains the pursuers joint information

No Cycles

SG1 SG2 SG3

success rate 100% 100% 100%

mean std mean std mean std

computation time (sec) 4.63 3.77 2.28 2.31 12.84 11.19
vertices 33.90 16.78 26.90 13.01 50.80 44.75
reachable labels 23.50 16.91 12.20 9.87 56.60 46.08
solution distance (m) 78.30 32.77 55.27 22.58 58.34 20.37

Cycle Length > 15

SG1 SG2 SG3

success rate 100% 100% 100%

mean std mean std mean std

computation time (sec) 8.76 10.13 4.46 5.55 54.14 80.72
vertices 31.10 15.60 26.90 13.01 33.80 34.46

reachable labels 22.00 16.07 12.70 10.54 43.30 39.75
solution distance (m) 99.79 74.21 61.41 37.92 78.98 62.97

No Constraints

SG1 SG2 SG3

success rate 100% 100% 100%

mean std mean std mean std

computation time (sec) 9.51 11.83 4.83 6.26 72.17 116.21
vertices 31.10 15.60 26.90 13.01 32.90 34.83
reachable labels 21.20 16.05 12.80 10.78 43.00 40.33
solution distance (m) 88.07 50.64 60.79 36.18 80.14 76.18

TABLE I: Simulation Results for the brick environment.

state (position and reachable shadow labels). The authors’

introduce an algorithm to generate a pursuer solution strategy

that builds and maintains a SG-PEG. The algorithm is

probabilistically complete if the sample generator used to

produce samples has a support that is equal to the pursuers’

joint configuration space.

There are a number of avenues for future work. Contrary

to the numerical approach taken in this paper to identify

shadow events, we could analytically solve the polynomials

that identify changes in the shadow region.

Another avenue of potential future work centers on the

sampler that we use in our algorithm. There is an abundance

of research on different sampling techniques [6], [27], and

it would be interesting to see the solution strategies our

algorithm would generate using various sampling strategies.

Finally, we plan to investigate techniques for improving

the quality of solutions, as measured by the time needed for

the pursuers to execute the final solution strategy. As Figure 1

shows, paths through the SG-PEG often contain large-scale

motions that appear to be unnecessary. We anticipate that a

combination of both modifications to the graph construction

algorithm and post-processing will be able to make substan-

tial reductions in the path length.
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No Cycles

SG1 SG2 SG3

success rate 100% 100% 70%

mean std mean std mean std

computation time (sec) 57.64 30.00 141.99 290.43 411.55 354.69
vertices 96.90 47.91 380.90 777.73 276.29 198.23
reachable labels 106.30 39.37 143.20 176.06 449.71 218.49
solution distance (m) 231.57 45.19 165.58 43.94 142.24 21.96

Cycle Length > 15

SG1 SG2 SG3

success rate 100% 100% 10%

mean std mean std mean std

computation time (sec) 145.44 76.80 209.16 318.14 685.19 0.00
vertices 95.70 48.27 380.90 777.73 75.00 0.00

reachable labels 132.10 43.82 99.00 48.61 161.00 0.00
solution distance (m) 511.61 329.79 473.10 569.87 144.42 0.00

No Constraints

SG1 SG2 SG3

success rate 100% 100% 0%

mean std mean std

computation time (sec) 177.91 120.23 182.42 114.42
vertices 95.70 48.27 380.90 777.73
reachable labels 120.60 45.78 91.60 39.56
solution distance (m) 543.08 373.22 362.73 348.46

TABLE II: Simulation Results for the H environment.

No Cycles

SG1 SG2 SG3

success rate 100% 100% 30%

mean std mean std mean std

computation time (sec) 507.59 299.96 380.35 277.18 621.78 511.67
vertices 104.90 58.38 77.40 24.45 58.33 37.81
reachable labels 162.40 89.15 126.60 81.80 139.00 98.75
solution distance (m) 272.33 132.78 279.56 112.25 176.12 38.40

Cycle Length > 15

SG1 SG2 SG3

success rate 80% 90% 20%

mean std mean std mean std

computation time (sec) 540.06 365.80 421.60 252.18 813.89 11.61
vertices 75.12 26.86 72.11 18.91 37.00 11.31

reachable labels 136.12 68.73 117.22 66.25 89.00 1.41
solution distance (m) 326.52 156.00 437.35 316.35 151.22 20.30

No Constraints

SG1 SG2 SG3

success rate 0% 0% 0%

TABLE III: Simulation Results for the room environment.
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