
A Complete Algorithm for Visibility-Based Pursuit-Evasion

with Multiple Pursuers

Nicholas M. Stiffler Jason M. O’Kane

Abstract— We introduce a centralized algorithm for a
visibility-based pursuit-evasion problem in a two-dimensional
environment for the case of multiple pursuers. The input for our
algorithm is an environment represented as a doubly-connected
edge list and the initial positions of the pursuers. The output
is a joint strategy for the pursuers that guarantees that the
evader has been captured, or a statement that no such strategy
exists. We create a Cylindrical Algebraic Decomposition(CAD)
of the joint configuration space by using polynomials that
capture where critical changes can occur to the region of the
environment hidden from the pursuers. Then after computing
the adjacency graph for the CAD we construct a Pursuit
Evasion Graph(PEG) induced by the adjacency graph. A search
through the PEG can produce one of the following outcomes;
the search can reach a vertex where the pursuers’ motions up
to this point ensure that the evader has been captured, or the
search terminates without finding a solution and produces a
statement recognizing that no solution exists.

I. INTRODUCTION

The visibility-based pursuit-evasion problem requires a

pursuer to systematically search an environment to locate

one or more evaders ensuring that all evaders will be found

by the pursuer in a finite time.

Visibility-based pursuit-evasion has many important appli-

cation areas. In a intruder detection scenario, the evaders are

antagonistic and are actively trying to avoid pursuit. In the

context of search and rescue the victims can be treated as

evaders, and although they are not antagonistic, we still wish

to guarantee that all “evaders” are captured, which in this

case is equivalent to finding all of the victims. Area patrol is

another application of visibility-based pursuit-evasion where

a searcher wants to employ a route that can detect the

intrusion of an evader.

The specific problem we consider is a variation on the

visibility-based pursuit-evasion problem presented in [6] that

utilizes a team of pursuers as seen in Figure 1. The pursuers

move through a polygonal environment seeking to locate

an unknown number of evaders, each of which may move

arbitrarily fast. The pursuers have an omni-directional field-

of-view that extends to the environment boundary. The goal

is to compute a joint strategy for the pursuers, or identify

when such a strategy does not exist.

There has been abundant research in the context of the

single pursuer visibility-based pursuit-evasion problem that

has yielded complete [6], randomized [9], and optimal [22]

solutions. The downfall of these techniques centers around

the complexity of the environments in which such algorithms

N. M. Stiffler and J. M. O’Kane are with the Department of Computer
Science and Engineering, University of South Carolina, 301 Main St.,
Columbia, SC 29208, USA. {stifflen,jokane}@cse.sc.edu

Fig. 1: A configuration of three robots searching an envi-

ronment. The shaded regions represent areas hidden to the

pursuers.

can yield solution strategies for the pursuers. All of the above

require the environment to be a simply-connected polygon.

This requirement is a limitation because the above utilize

only a single pursuer.

When an environment with holes is encountered, a search

strategy requires the use of multiple pursuers. In the context

of visibility coverage in environments with holes, a provably

distributed algorithm was presented that uses robots with

an omnidirectional field-of-view but require line of sight

communication between one another [17]. Note that while

complete visibility coverage does solve the pursuit-evasion

problem, it is not a necessary condition. The number of

robots required for visibility coverage often exceeds the

minimum number of pursuers needed to execute a solution

strategy in visibility-based pursuit-evasion.

The main contribution of this work is a complete algo-

rithm for multiple pursuer visibility-based pursuit-evasion

that generates a solution strategy for the pursuers to execute

through the joint configuration space. Our algorithm is a

generalization of the previously-known complete algorithm

for the case of a single pursuer [6].

The remainder of this paper is structured as follows:

a review of related work (Section II), a formal problem

statement (Section III), followed by details describing the

area of the environment not visible to any of the pursuers:

• A formal definition for the area not visible to the



pursues, called shadows (Section IV).

• A decomposition of the joint configuration space into

conservative regions (Section V), that allows a reduc-

tion of the problem to a discrete graph search. This

decomposition is based on an analysis of the critical

boundaries (Section VI).

We then provide an algorithm that uses Cylindrical Algebraic

Decomposition over these critical boundaries to produce a

solution, or to conclude that none exists (Section VII). A

synopsis of our algorithm and ideas for future work are found

in Section VIII.

II. RELATED WORK

A. Pursuit-evasion

The pursuit-evasion problem was originally posed in the

context of differential games [7], [8]. Pursuit-evasion was

introduced as graph problem in which multiple pursuers and

an evader move from vertex to vertex within the graph until

one of the pursuers lies on the same vertex as the evader [18].

The visibility-based pursuit-evasion problem proposed by

Suzuki and Yamashita [23] is an extension of the watchman

route problem [2], in which the objective is to compute the

shortest path that a guard should take to patrol an entire

area populated with obstacles, given only a map of the area.

A complete solution [6] and an optimal shortest path [22]

solution have been found for the single pursuer visibility-

based pursuit-evasion problem.

Others have studied scenarios where there are additional

constraints on the pursuer, such as a limited field-of-view [5],

[15], curved environments [14], an unknown environment

[20], or a maximum bounded speed [24].

Multiple pursuer visibility-based pursuit-evasion has been

studied when there are sensing and communication con-

straints on the pursuers. One technique organizes the pursuers

into teams, whose joint sensing capability are a set of moving

lines, each of which is spanned between obstacles. By using

these teams of robots as sweep lines, the authors guaran-

tee detection of the evaders [11]. Another technique uses

a distributed algorithm built around maintaining complete

coverage of the frontier between cleared and contaminated

regions while expanding the cleared region [4].

There are other variants of the pursuit-evasion problem

where the pursuers are teams of unmanned aerial vehicles

[10]. Beyond this visibility-based formulation there are many

different variations of the pursuit-evasion problem. In the lion

and man game, a lion tries to capture a man who is trying

to escape [16]. In game theory, the homicidal chauffeur is

a pursuit evasion problem which pits a slowly moving but

highly maneuverable runner against the driver of a vehicle,

which is faster but less maneuverable, who is attempting to

run him over [8], [19].

B. Cylindrical algebraic decomposition

A cylindrical decomposition of Rn is a partition of the

space into cells that are constructible sets, such that the cells

in the partition are cylindrically arranged. This means the

projection of any two cells onto any lower dimensional space

are either equal or disjoint. A semi-algebraic decomposition

is a partition of Rn over a set of polynomials into a finite

set of disjoint connected regions that are each sign invariant.

This means that inside of each region, the sign for each

polynomial remains constant (negative, zero, positive).

A cylindrical algebraic decomposition (CAD) [3] is a

cylindrical semi-algebraic decomposition. Collins [3] is the

original developer of CAD, and provided an algorithm that

takes as input a collection of polynomials in Q[x1 . . . xn]
and constructs a sign invariant CAD of Rn.

CAD was originally designed to solve the quantifier elim-

ination problem, but with the advent of a cell adjacency test

[1], CAD could be effectively used in other domains, notably

motion planning [12], [13], [21].

III. PROBLEM STATEMENT

A. Representing the environment, evaders, and pursuers

1) The environment: The environment is a polygonal free

space, defined as a closed and bounded set F ⊂ R2, with

a polygonal boundary ∂F . The environment is composed of

m vertices.

2) The evader: The evader is modeled as a point that

can translate within the environment. Let e(t) ∈ F denote

the position of the evader at time t ≥ 0. The path e is a

continuous function e : [0,∞) → F , in which the evader is

capable of moving arbitrarily fast (i.e. a finite, unbounded

speed) within F . Note that, by assuming that there is a

single evader, we have not sacrificed any generality. If the

pursuers can guarantee the capture of a single evader, then

the same strategy can locate multiple evaders, or confirm that

no evaders exist.

3) The pursuers: A collection of n identical pursuers

cooperatively move to locate the evader. We assume that the

pursuers know F , and that they are centrally coordinated.

Therefore, from a given collection of starting positions, the

pursuers’ motions can be described by a continuous function

p : [0,∞) → Fn, so that p(t) ∈ Fn denotes the joint

configuration of the pursuers at time t ≥ 0. The function

p, which our algorithm generates, is called a joint motion

strategy for the pursuers. We use the notation pi(t) ∈ F to

refer to the position of pursuer i at time t. Likewise, xi(t)
and yi(t) denote the horizontal and vertical coordinates of

pi(t). Without loss of generality, we assume that the pursuers

move with maximum speed 1.

Each pursuer carries a sensor that can detect the evader.

The sensor is omnidirectional and has unlimited range, but

cannot see through obstacles. For any point q ∈ F , let V (q)
denote the visibility region at point q, which consists of the

set of all points in F that are visible from point q. That is,

V (q) contains every point that can be connected to q by a

line segment in F . Note that V (q) is a closed set.

When considering the maximal path connected component

of V (q), the edges of its boundary are either along ∂F or

belong to an occlusion ray.

Definition An occlusion ray, −→qr, is a ray starting at a

pursuer position q tangent to a visible environment reflex

vertex r.



p1
p2

Fig. 2: An environment with two pursuers and three shadows

Informally, an occlusion ray originating at point q is a ray

that acts as a boundary separating a visible and non-visible

portion of F .

B. Capture conditions

The pursuers’ goal is to guarantee the capture of the evader

for any continuous evader trajectory.

Definition A joint motion strategy is a solution strategy if,

for any evader trajectory e : [0,∞)→ F , there exists some

time t and some pursuer i such that e(t) ∈ V
(

pi(t)
)

.

C. Algorithm inputs and outputs

In the remainder of this paper, we describe an algorithm

for the following problem:

• Input: An environment F , represented as a doubly-

connected edge list, and a list of n starting pursuer

positions p1(0), . . . , pn(0) ∈ F .

• Output: A solution strategy for those pursuers in F , or

a statement that no such strategy exists.

IV. SHADOWS

The key difficulty in locating our evader is that the

pursuers cannot, in general, see the entire environment at

once. This section contains some definitions for describing

and reasoning about the portion of the environment that is

not visible to the pursuers at any particular time.

Definition The portion of the environment not visible to

the pursuers at time t is called the shadow region S(t), and

defined as

S(t) = F −
⋃

i=1,...,n

V
(

pi(t)
)

.

Note that the shadow region may contain zero or more

nonempty path-connected components as seen in Figure 2.

Definition A shadow is a maximal path connected compo-

nent of the shadow region.

Notice that S(t) is the union of the shadows at time t. The

important idea is that the evader, if it has not been captured,

is always contained in exactly one shadow, in which it can

move freely.

As the pursuers move, the shadows can change in any of

four ways, called shadow events.

• Appear: A new shadow can appear, when a previously

visible part of the environment becomes hidden.

• Disappear: An existing shadow can disappear, when

one or more pursuers move to locations from which

that region is visible.

• Split: A shadow can split into multiple shadows, when

the pursuers move so that a given shadow is no longer

path-connected.

• Merge: Multiple existing shadows can merge into a

single shadow, when previously disconnected shadows

become path-connected.

These events were originally enumerated in the context of

the single-pursuer version of this problem [6] and examined

more generally by Yu and LaValle [25].

For our pursuit-evasion problem, the crucial piece of

information about each shadow is whether or not the evader

might be hiding within it.

Definition A shadow s is called clear at time t if, based

on the pursuers’ motions up to time t, it is not possible for

the evader to be within s without having been captured. A

shadow is called contaminated if it is not clear. That is, a

contaminated shadow is one in which the evader may be

hiding.

Notice that, since the evader can move arbitrarily quickly,

the pursuers cannot draw any more detailed conclusion about

each shadow than its clear/contaminated status; if any part of

a shadow might contain the evader, then the entire shadow

is contaminated.

Our algorithm tracks the clear/contaminated status of each

shadow. Each time a shadow event occurs, the labels can be

updated based on worst case reasoning.

• Appear: New shadows are formed from regions that had

just been visible, so they are assigned a clear label.

• Disappear: When a shadow disappears, its label is

discarded.

• Split: When a shadow splits, the new shadows inherit

the same label as the original.

• Merge: When shadows merge, the new shadow is as-

signed the worst label of any of the original shadows’

labels. That is, a shadow formed by a merge event is

labeled clear if and only if all of the original shadows

were also clear.

Notice in particular that, if all of shadows are clear, then

we can be certain the evader has been seen at some point.

The result of this reasoning is that we can connect the

shadow labels to our goal of finding a solution strategy. A

pursuer strategy is a solution strategy if and only if, after its

execution, all of the shadows are clear.

V. CONSERVATIVE REGIONS

As mentioned above, during the execution of a strategy

the pursuers need to identify contaminated shadows. This

information depends on the initial positions of the pursuers

and their history of past positions. As the pursuers move, the

shapes of the shadows change continuously. However, our

algorithm only needs to track times at which the shadows

change combinatorially. That is, we are only concerned with

pursuer movements that generate shadow events, as seen in



Boundary

p

Contaminated Shadow
Path does not cross a critical boundary

p

Cleared shadow
Path crosses a critical boundary

Fig. 3: An illustration of the concept of conservative regions.

p1
p2

II

III III

II
II

IV

II

I

II III

I

Fig. 4: An environment with two pursuers illustrating the

different types of shadow vertices.

Figure 3. Our algorithm exploits this idea by partitioning

the joint configuration space into regions where no shadow

events occur.

Definition A region R ⊆ Fn is a conservative region if any

path that remains within R generates no shadow events.

Given a partition of Fn into conservative regions, the

original problem of generating a continuous solution strategy

can be reduced to a simpler discrete problem of selecting a

sequence of adjacent conservative regions.

VI. CRITICAL BOUNDARIES

In this section, we provide a foundation for dividing

Fn into conservative regions—within which shadow events

cannot occur—by describing a complete set of critical

boundaries at which such events can occur. Specifically, we

examine the four different types of vertices that can compose

the boundary of a shadow and establish critical boundaries

where those vertices can change. The key idea is that each

shadow can be characterized by its set of vertices, and that

no shadow events can occur if the vertex set of every shadow

region remains unchanged.

The vertices of every shadow can be classified into four

types, as shown in Figure 4, which we call Types I, II, III,

and IV.

• Type I vertices are environment vertices for which the

adjacent edges in the shadow boundary lie along ∂F .

Informally, these are vertices of the environment that no

pursuer can see.

• Type II vertices are environment vertices, at which one

of the two adjacent edges in the shadow boundary lies

along ∂F and the other lies along an occlusion ray.

Informally, these are vertices that are visible to some

Event Types Critical boundary occurs when. . . Details

I-III, II-III, II-IV pursuer colinear with two ∂F vertices Sec. VI-A
III-III, III-IV occlusion rays intersect on ∂F Sec. VI-B

IV-IV three occlusion rays share an intersection Sec. VI-C
I-I, I-II, II-II, I-IV never Sec. VI-D

TABLE I: The ten possible shadow vertex merges can be

grouped into four general cases.

pursuer, but that block that pursuer’s view of some other

part of F .

• Type III vertices are the endpoints of occlusion rays.

Each lies on the interior of an edge of ∂F .

• Type IV vertices occur at intersections between occlu-

sion rays.

We use the definition of conservative region from Sec-

tion V to argue that just by thinking about when two shadow

vertices can merge—and the inverse split events where a

shadow vertex can split into two shadow vertices—we have

identified all the ways in which a shadow can change. By

definition a region is conservative if it generates no shadow

events, which means that the cardinality for the vertex set

of the shadow stays the same. It follows that a shadow can

only gain or lose shadow vertices when a pursuer crosses

the boundary between conservative regions. By describing

an exhaustive list of how two shadow vertices can merge

at these critical boundary we have identified all the ways

in which a shadow can lose vertices. A inverse method of

gaining vertices is the result of split events. Note that when

a shadow has less than three shadow vertices the shadow

disappears, likewise a shadow appears when there are at least

three shadow vertices.

The next step is to characterize the sets of joint configura-

tions at which such vertex merges can occur. Considering all

pairs of vertex types, there are ten distinct possible types of

merges. We’ll consider each of these ten cases. Fortunately,

the ten cases can be grouped into four general categories

that can be analyzed in similar ways. Table I summarizes

the merge types.

A. Merges resulting from pursuers colinear with a pair of

environment vertices

First, we argue that merge types I-III, II-III, and II-IV

occur only when some pursuer is colinear with some pair of

environment vertices.

1) I-III merges: Consider the case in which a Type I and

Type III vertex merge. This situation requires a vertex of

∂F to be coincident with the endpoint of an occlusion ray

∂F . Figure 5 shows how this can occur. On one side of



p

I

III

Before

p

At critical boundary

p

III

After
Fig. 5: Type I and Type III vertices merge into a Type III vertex.

q

p

II

III

Before

q p

At critical boundary

q

p

After
Fig. 6: A Type II vertex merges with a Type III vertex, eliminating the shadow.

p q

IV

II

Before

p

q

At critical boundary

p

qIII

After
Fig. 7: A Type II vertex merges with a Type IV vertex, creating a Type III vertex.

this boundary, the shadow has a Type I vertex adjacent to a

Type III vertex; on the other side, those vertices are replaced

with a single Type III vertex.

Specifically, for a Type I vertex at u = (xu, yu) and a

Type III vertex owned by pursuer p = (xp, yp) and induced

by occlusion vertex v = (xv, yv), this kind of event occurs

when ∣

∣

∣

∣

∣

∣

xp yp 1
xu yu 1
xv yv 1

∣

∣

∣

∣

∣

∣

= 0. (1)

Treating xu, yu, xv, and yv as constants, this equation

expands to a polynomial of degree 1 in the variables xp

and yp. To form the complete set of critical boundaries of

this type, we must iterate over all n choices of pursuers, and

all
(

m

2

)

choices for u = (xu, yu) and v = (xv, yv).
2) II-III merges: For a Type II vertex to merge with

a Type III vertex, we must have an occlusion ray of one

pursuer colinear with an occluding vertex of another pursuer,

as illustrated in Figure 6. This requires a pursuer p to be

colinear with the two occluding vertices u = (xu, yu) and

v = (xv, yv). Thus, the critical boundary polynomial is

identical to Equation 1; the only difference is that, in this

case, both u = (xu, yu) and v = (xv, yv) must be reflex (i.e.

non-convex) vertices.
3) II-IV merges: Likewise, for a Type II vertex to merge

with a Type IV vertex, two occlusion rays from two different

pursuers must intersect at the occluding vertex of one of

those rays. See Figure 7. As in the previous two cases, this

can occur only when a pursuer p is colinear with two vertices

u = (xu, yu) and v = (xv, yv) of ∂F , and Equation 1 defines

the critical boundary.
4) Number of polynomials: For a fixed pursuer, the total

number of critical event polynomials for these three merge

types is at most
(

m

2

)

, yielding a maximum of
(

n

1

)(

m

2

)

polynomials across all n pursuers.

B. Merges resulting from two occlusion rays intersecting on

∂F

Next we consider merge types III-III and III-IV, and argue

that these events occur when occlusion rays from two distinct

pursuers meet precisely on the environment boundary.

1) III-III merges: For a Type III vertex to merge with

another Type III vertex, these two vertices must occupy the

same location along an edge of ∂F . Let p and q denote

the pursuers that own these two vertices, and let u and v

denote the respective occlusion vertices that generate the two

Type III vertices. Finally, let w and z denote the endpoints

of the environment edge on which the two Type III vertices

lie. Figure 8 illustrates this situation.

These two vertices merge when the lines ←→pu, ←→qv , and ←→wz

all share an intersection point. This triple intersection occurs

when
∣

∣

∣

∣

∣

∣

yu − yp xp − xu xuyp − xpyu
yv − yq xq − xv xvyq − xqyv
yz − yw xw − xz xzyw − xwyz

∣

∣

∣

∣

∣

∣

= 0. (2)

The equation expands to a polynomial of degree 2 in four

variables—namely xp, yp, xq, and yq—and 8 constants.

2) III-IV merges: For a Type III vertex to merge with a

Type IV vertex, again we need two occlusion rays to meet

on ∂F . This situation is the same as the III-III case above,

except that we are approaching from the opposite side; see

Figure 9. As with the III-III case, this requires three lines

(two occlusion rays and one environment edge) to meet a

single point. As a result, Equation 2 describes the III-IV

critical boundary as well.



p q

III III

Before

p q

At critical boundary

p

q

IV

After
Fig. 8: A Type III vertex merges with a Type III vertex creating a Type IV vertex.

p q

IIIIII

IV

Before

p q

At critical boundary

p q

III III

After
Fig. 9: A Type III vertex merges with a Type IV vertex, creating a Type III vertex.

3) Number of polynomials: These types of critical bound-

aries are defined by a pair of mutually visible environment

vertices, along with an additional environment boundary

edge. Therefore, for a fixed pair of pursuers, it can be

instantiated at most
(

m

3

)

different ways. It also depends on

the positions of two different pursuers, of which there are
(

n

2

)

unique combinations. Therefore, in total—across both III-III

and III-IV—this type of critical boundary yields a maximum

of
(

n

2

)(

m

3

)

polynomials.

C. Merges resulting from three occlusion rays meeting a

single point

The final plausible merge type we consider is IV-IV.

For two Type IV vertices to meet, we must have at least

three occlusion rays that share a single intersection point.

Figure 10 shows this scenario.

Since these two vertices are adjacent, the shadow edge

connecting them must be part of an occlusion ray. Let p

denote the pursuer that owns the occlusion ray. Notice that

the two Type IV vertices must arise from intersections with

occlusion rays owned by two more pursuers, which we

denote q and r. We know that those two additional pursuers

are distinct—that is, q 6= r—because if the vertices do merge,

the occlusion rays will intersect at a location other than

the pursuer’s location itself, which cannot occur unless the

pursuer locations are distinct. The occlusion vertices for p,q,

and r are denoted by u, v, and w respectively.

Thus, a IV-IV merge can occur when three distinct pur-

suers have occlusion rays that meet at a single point. This

is, in principle, similar to the situation from Section VI-

B, except that the pursuers movements can move all three

relevant lines:
∣

∣

∣

∣

∣

∣

yu − yp xp − xu xuyp − xpyu
yv − yq xq − xv xvyq − xqyv
yw − yr xr − xw xwyr − xryw

∣

∣

∣

∣

∣

∣

= 0.

In this equation, the x and y coordinates for each of the three

relevant pursuers form 6 total variables, and the coordinates

of their three occlusion vertices form 6 constants. The

expanded polynomial has degree 3.

This scenario requires three unique environment vertices

to induce occlusion rays from the pursuers, there are at most
(

m

3

)

places where this can occur. This type of merge also re-

quires three pursuers and there are
(

n

3

)

unique combinations

of pursuers. In total this critical boundary yields a maximum

of
(

n

3

)(

m

3

)

polynomials.

D. Merges that never occur

Finally, we argue that the remaining four merge types can

never occur.

• Merges that involve only environment vertices—that is,

merges of types I-I, I-II, and II-II—cannot occur be-

cause environment vertices do not move, and therefore

never merge with one another.

• Merges of type I-IV cannot occur because Type I and

Type IV vertices are never adjacent. Notice that, in a

shadow polygon, a Type I vertex is incident to two

edges along ∂F , whereas a Type IV vertex is incident to

two edges in the interior of F . Therefore, there always

exists at least one other vertex between any Type I and

Type IV pair.

Because these merges cannot occur, they do not generate any

critical boundary polynomials.

VII. ALGORITHM

Armed with this complete description of the critical

boundaries in Fn, we can finally describe our algorithm

for multiple-pursuer visibility-based pursuit-evasion in detail.

The basic process is to use the critical boundaries to form

a partition of Fn into conservative regions, to compute an

adjacency graph of the full-dimensional cells in that partition,

and then to search for a sequence of adjacent conservative

regions that causes all of the shadows to be cleared.

A. Partitioning Fn via Cylindrical Algebraic Decomposition

The first step of our algorithm is to compute each of

the critical boundary polynomials described in Section VI.

This results in a collection P of O
(

n3m3
)

polynomials in

the 2n variables x1, . . . , xn and y1, . . . , yn. Each of these



p

q

r

IV

IV

Before

p

q

r

IV

At critical boundary

p

q

r

IV

After
Fig. 10: A Type IV vertex merging with a Type IV vertex requires multiple robots and creates a single Type IV vertex.

p

Fig. 11: An example of a critical boundary(bitangent) poly-

nomial passing through obstacles. Because the pursuer mo-

tion shown crosses this boundary, it moves to a new CAD

cell, even though no shadow event occurs.

polynomials can be constructed in constant time, so this step

takes time O
(

n3m3
)

.

We then use these polynomials as input to the standard

cylindrical algebraic decomposition (CAD) algorithm [3],

which generates a partition of R2n into cells with dimensions

ranging from 0 to 2n. The CAD algorithm guarantees that,

within each cell of the decomposition, the sign of each

polynomial in P remains constant. In particular, because

P includes every critical boundary curve, this implies that

every cell of dimension 2n is either a conservative region

of the joint free space, or an obstacle portion of the joint

configuration space.

Moreover, each cell of dimension 2n− 1 separates a pair

of adjacent cells of dimension 2n. Each (2n − 1)-cell may

correspond to a shadow event, but may also exist because of

the CAD algorithm’s need to form cells that are cylindrical,

or may occur due to extensions of the critical boundaries—

which, in the CAD algorithm, are treated as polynomials that

do not stop at the environment boundary—beyond the portion

of the free space in which they are relevant. See Figure 11.

B. Computing the adjacency graph of the conservative re-

gions

Next, our algorithm forms an adjacency graph describing

how the pursuers can move through those conservative

regions.

• Each vertex of the adjacency graph corresponds to a

2n-dimensional cell of the CAD within the joint free

space.

• Edges of the adjacency graph correspond to 2n − 1-

dimensional CAD cells, and connect vertices corre-

sponding to conservative regions that share a portion

of their boundaries.

There are two different approaches to the construction

and search of the adjacency graph. The first [1], [12] has

a multiply-exponential dependence on 2n, whereas the sec-

ond [21] takes double exponential time in 2n. The exact

construction and search of the adjacency graph is beyond

the scope of this paper, and the authors refer the reader to

the original text.

In addition, we label each edge of the adjacency graph

with the shadow events, if any, that occur when the pursuers

move between the corresponding conservative regions. By

examining the shadows before and after we can retroactively

assign labels to 2n−1 cells that represent critical boundaries.

C. Path generation

Finally, we can use the adjacency graph to search for a

solution strategy for the pursuers. The intuition is to search

through the pursuit-evasion graph (PEG) induced by the

adjacency graph.

1) Specifically, given a vertex v of the adjacency graph,

let k(v) denote the number of shadows that exist when

the pursuers are within the conservative region corre-

sponding to v. The PEG contains 2k(v) vertices for each

adjacency graph vertex v. Each such vertex is labeled

with a unique binary string of length k(v), representing

one possible combination of clear and contaminated

shadow labels. The total number of PEG vertices is
∑

v 2
k(v).

2) A pair of PEG vertices (u, v) is connected by a directed

edge u→ v if

a) the adjacency graph vertices underlying u and v are

connected in that graph, and

b) the changes in shadow labels between u and v are cor-

rect, according to the rules introduced in Section IV.

The intuition is that each vertex of the PEG fully describes

one discrete information state that the pursuers might reach—

including both their positions and the clear/contaminated sta-

tus of each shadow—and that the edges represent “actions”

that the pursuers can take to change those shadow labels.

Therefore, the final step of the algorithm is a forward

search through the PEG. The search starts from the pursuers’

initial position with all of the shadows labeled as contami-

nated, and terminates at a PEG vertex with all of the shadows

are labeled clear.

The forward search is done using a Breadth-first

search(BFS) algorithm. The search takes time O(V + E)



where V is the number of vertices in the PEG and E is

the number of edges. Since the PEG is induced by the

adjacency graph, any sequence of visited PEG nodes can

be mapped back to the original CAD, and the process of

generating a continuous path is similar to extracting a path

from the original CAD as done in the standard Schwartz and

Sharir algorithm [21]. If the search fails to find a path, we

know that a solution does not exist because BFS performs an

exhaustive search. Since by definition a PEG vertex describes

one discrete information state that the pursuers might reach,

the union of all PEG vertices completely describes all

possible information states for the pursuers. By conducting

an exhaustive search of PEG without finding a solution we

conclude that there is no possible sequence of actions that

the pursuers can take through the joint configuration space

that guarantees the capture of the evader.

D. Algorithm analysis

We begin the analysis of our algorithm by examining the

individual steps of the algorithm. The dimension of the joint

configuration space is 2n. The number of polynomials in

P—which is used as input into the CAD algorithm—is the

sum of the critical boundaries and is bounded by O
(

n3m3
)

.

The maximum degree among the polynomials in P is 3
(which occurs for the IV-IV merge event.)

The total running time [13] for the construction and

adjacency test on our CAD is bounded by (3 · n3m3)O(1)n

where O(·) means that there exists c ∈ [0,∞] such that

the running time is bounded by (3 · n3m3)c
n

[13]. The

number of cells [3], [21] produced by our CAD is bound

by O
(

66n+1 · (n3m3)4n
)

.

VIII. CONCLUSION

In this paper the authors’ presented an algorithm for

computing a pursuer solution strategy for a group of pursuers

searching a polygonal environment for an evader. The algo-

rithm creates a Cylindrical Algebraic Decomposition(CAD)

of the pursuers joint configuration space by using polynomi-

als that capture where critical changes can occur to the region

of the environment hidden from the pursuers. Then after

computing the adjacency graph for the CAD we construct a

data structure called a Pursuit Evasion Graph(PEG), induced

by the adjacency graph. The PEG is then exhaustively

searched and returns either a path through the pursuers joint

configuration space that is a pursuer solution strategy, or a

statement that no such strategy exists.

One avenue of future work is providing a hardness result

for the visibility-based pursuit-evasion problem. Another

open problem is the construction of an incremental solution

to the visibility based pursuit-evasion problem. The idea is

to explore the PEG incrementally, rather than constructing

the full graph explicitly.

ACKNOWLEDGEMENT

We acknowledge support for this work from NSF (IIS-0953503).

REFERENCES

[1] D.S. Arnon. A cellular decomposition algorithm for semi-algebraic
sets. In EUROSAM, volume 72 of Lecture Notes in Computer Science,
pages 301–315. Springer, 1979.

[2] W. Chin and S. Ntafos. Shortest watchman routes in simple polygons.
Discrete and Computational Geometry, 6(1):9–31, 1991.

[3] G. E. Collins. Hauptvortag: Quantifier elimination for real closed
fields by cylindrical algebraic decompostion. In H. Barkhage, editor,
Automata Theory and Formal Languages, volume 33 of Lecture Notes

in Computer Science, pages 134–183. Springer, 1975.
[4] J. W. Durham, A. Franchi, and F. Bullo. Distributed pursuit-evasion

without mapping or global localization via local frontiers. Autonomous

Robots, 32(1):81–95, 2012.
[5] B. P. Gerkey, S. Thrun, and G. Gordon. Visibility-based pursuit-

evasion with limited field of view. International Journal of Robotics

Research, 25(4):299–315, 2006.
[6] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Mot-

wani. Visibility-based pursuit-evasion in a polygonal environment.
International Journal on Computational Geometry and Applications,
9(5):471–494, 1999.

[7] Y. C. Ho, A. Bryson, and S. Baron. Differential games and optimal
pursuit-evasion strategies. IEEE Transactions on Automatic Control,
10(4):385–389, October 1965.

[8] R. Isaacs. Differential Games. Wiley, New York, 1965.
[9] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in a

polygonal environment. IEEE Transactions on Robotics, 5(21):864–
875, 2005.

[10] A. Kleiner and A. Kolling. Guaranteed search with large teams of
unmanned aerial vehicles. In Proc. IEEE International Conference on

Robotics and Automation, 2013.
[11] A. Kolling and C. Stefano. Multi-robot pursuit-evasion without maps.

In Proc. IEEE International Conference on Robotics and Automation,
pages 3045–3051, 2010.

[12] J.-C. Latombe. Robot Motion Planning. Kluwer Academic, 1990.
[13] S. M. LaValle. Planning Algorithms. Cambridge University Press,

Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.
[14] S. M. LaValle and J. Hinrichsen. Visibility-based pursuit-evasion:

The case of curved environments. IEEE Transactions on Robotics

and Automation, 17(2):196–201, April 2001.
[15] S. M. LaValle, B. Simov, and G. Slutzki. An algorithm for searching

a polygonal region with a flashlight. International Journal on

Computational Geometry and Applications, 12(1-2):87–113, 2002.
[16] N. Noori and V. Isler. Lion and man with visibility in monotone

polygons. In Proc. Workshop on the Algorithmic Foundations of

Robotics, volume 86 of Springer Tracts in Advanced Robotics, pages
263–278. Springer, 2013.

[17] K. J. Obermeyer, A. Ganguli, and F. Bullo. Multi-agent deployment for
visibility coverage in polygonal environments with holes. International

Journal of Robust and Nonlinear Control, 21(12):1467–1492, 2011.
[18] T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick,

editors, Theory and Application of Graphs, pages 426–441. Springer-
Verlag, Berlin, 1976.

[19] U. Ruiz and R. Murrieta-Cid. Time-optimal motion strategies for
capturing an omnidirectional evader using a differential drive robot.
IEEE Transactions on Robotics, 21(3), June 2013.

[20] S. M. LaValle S. Sachs and S. Rajko. Visibility-based pursuit-evasion
in an unknown planar environment. International Journal of Robotics

Research, 23(1):3–26, 2004.
[21] J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem: II.

General techniques for computing topological properties of algebraic
manifolds. Advances in Applied Mathematics, 4(3):298–351, 1983.

[22] N. M. Stiffler and J. M. O’Kane. Shortest paths for visibility-based
pursuit-evasion. In Proc. IEEE International Conference on Robotics

and Automation, pages 3997–4002. IEEE, 2012.
[23] I. Suzuki and M. Yamashita. Searching for a mobile intruder in

a polygonal region. SIAM Journal on Computing, 21(5):863–888,
October 1992.

[24] B. Tovar and S. M. LaValle. Visibility-based pursuit-evasion with
bounded speed. In Proc. Workshop on the Algorithmic Foundations of

Robotics, 2006.
[25] J. Yu and S. M. LaValle. Shadow information spaces: Combinatorial

filters for tracking targets. IEEE Transactions on Robotics, 28(2):440–
456, 2012.


