
Shortest Paths for Visibility-Based Pursuit-Evasion

Nicholas M. Stiffler Jason M. O’Kane

Abstract— We present an algorithm that computes a
minimal-cost pursuer trajectory for a single pursuer to solve the
visibility-based pursuit-evasion problem in a simply-connected
two-dimensional environment. This algorithm improves upon
the known algorithm of Guibas, Latombe, LaValle, Lin, and
Motwani, which is complete but not optimal. Our algorithm
uses a Tour of Segments (ToS) subroutine to construct a pursuer
path that minimizes the distance traveled by the pursuer
while guaranteeing that all evaders in the environment will be
captured. We have implemented our algorithm in simulation
and provide results.

I. INTRODUCTION

The visibility-based pursuit-evasion problem requires a

pursuer to systematically search an environment to locate

one or more evaders, in order to guarantee that all evaders

will be found by the pursuer in a finite time. This problem

has important applications for intruder detection, search and

rescue, and patrolling an area. In all of these applications, the

pursuer’s success can be measured by the capture time, which

measures the worst-case time required to locate the evader.

In this paper, we consider an optimal planning algorithm that

minimizes the capture time.

The specific problem we consider is a variation on the

visibility-based pursuit-evasion problem in which a robot

moving through a simply-connected polygonal environment

seeks to locate an unknown number of evaders, each of

which may move arbitrarily fast. The pursuer has an omni-

directional field-of-view that extends to the environment

boundary. The goal is to compute a pursuer strategy such

that all evaders in the environment lie within the pursuer’s

field-of-view at some finite time as the pursuer carries out

its search strategy, or to identify when no such strategy

exists. Guibas, et al. presented a complete algorithm for this

problem [3]. However, the authors consider only feasibility

and do not attempt to compute optimal strategies. We build

upon this work by developing an algorithm that solves

the visibility-based pursuit-evasion problem by returning a

solution strategy that is optimal in the sense that it minimizes

the distance travelled by the pursuer.

We use the same decomposition and pursuit evasion graph

as [3], but our algorithm must simultaneously consider

multiple paths to each node. Each of these paths is a tour

of segments that passes through an ordered sequence of cell

boundaries. We introduce a pruning operation to eliminate

suboptimal paths, and a forward search algorithm whose

termination condition guarantees that an optimal solution will

be found.

N. M. Stiffler and J. M. O’Kane are with the Department of Computer
Science and Engineering, University of South Carolina, 301 Main St.,
Columbia, SC 29208, USA. {stifflen,jokane}@cec.sc.edu

Fig. 1. A pursuer searching an environment. This is the shortest plan from
the pursuer’s starting position that can guarantee that the pursuer will locate
an evader in this environment.

The contribution of this work is a complete algorithm to

generate a solution strategy that minimizes the distance trav-

eled by the pursuer. We present simulations that demonstrate

that this algorithm succeeds in providing optimal solution

strategies.

The remainder of this paper is structured as follows.

We begin with a review of related work (Section II), fol-

lowed by a formal problem statement (Section III), and

an overview of the complete algorithm for visibility-based

pursuit-evasion (Section IV). This paper then makes several

new contributions: We describe an algorithm for computing

the shortest path that visits a given sequence of segments

in order (Section V), and describe an algorithm that either

returns the optimal solution strategy or is able to recognize

that no strategy exists (Section VI). Section VII presents our

simulations of this algorithm and a quantitative illustration

of its effectiveness.

II. RELATED WORK

The pursuit-evasion problem has been studied in a number

of contexts. A graph-based pursuit-evasion problem was

presented by Parsons [7] in which multiple pursuers and an

evader move from vertex to vertex within the graph until a

pursuer “captures” an evader by occupying the same vertex

as the evader. The visibility-based pursuit-evasion problem

introduced by Suzuki and Yamashita [9] is an extension of

the watchman route problem [1]. The objective is to compute

the shortest path that a guard should take to patrol an entire

area populated with obstacles, given only a map of the area.



The capture condition for the general visibility-based

pursuit-evasion problem is defined as having an evader lie

within the pursuer’s capture region. There has been substan-

tial research focused how the visibility-based pursuit-evasion

problem changes when a robot has different capture regions.

The k-searcher is a pursuer with k visibility beams [6], [9],

the ∞-searcher is a pursuer with omni-directional field of

view [3], and the φ-searcher is a pursuer whose field-of-

view is limited to an angle φ ∈ (0, 2π]. Note that all of

these approaches consider evaders with unbounded speed.

The case of a velocity-bounded evader was discussed

in [10]. An algorithm for visibility-based pursuit-evasion

in which the pursuer has a probabilistic model for evader

motion was presented in [8]. An algorithm that uses a

randomized strategy to solve the visibility-based pursuit-

evasion problem appears in [4].

III. PROBLEM STATEMENT

A. Representing the Environment, Pursuer, and Evader

The environment is a simply connected, closed and

bounded set P ⊂ R
2, with polygonal boundary ∂P . For

any point r ∈ P , let V R(r) denote the visibility region at

point r, which consists of the set of all points in P that are

visible from point r. That is, V R(r) contains every point

that can be connected to r by a line segment in P . A single

pursuer and evader are modeled as points that translate in

the polygonal free-space.

Note that a plan that is guaranteed to locate a single evader

can also locate multiple evaders, or verify that no evaders

exist. Let π(t) ∈ P represent the position of the evader

at time t ≥ 0. The trajectory π is a continuous function

π : [0,∞) → P , in which the evader is capable of moving

arbitrarily fast (i.e. a finite, unbounded speed) within P .

Similarly, let γ(t) ∈ P denote the position of the pursuer

at time t ≥ 0. Without loss of generality, we say that the

pursuer moves along γ with maximum speed 1. Figure 2

shows this notation.

The time of capture for an individual evader following

trajectory π and a pursuer following trajectory γ is denoted

as

tc(γ,π) = min{t ≥ 0 | π(t) ∈ V R
(

γ(t)
)

}.

The pursuer’s goal is to capture the evader regardless of

the evader’s trajectory. A pursuer trajectory γ is a solution

strategy if there exists a finite time of capture, denoted tc(γ)
and defined as

tc(γ) = max
π

tc(γ,π).

The time tc(γ) is the least upper bound for the time of

capture over all valid evader trajectories when a pursuer

follows trajectory γ . Let γ∗ denote a solution strategy that

minimizes this capture time:

γ∗ = argmin
γ

(

tc(γ)
)

.

Our goal is to compute this optimal pursuer strategy γ∗.

V R(γ(t))

gap
labels

11

0

γ(t) π(t)

Fig. 2. An illustration of our notation. A single pursuer (triangle) moves
through an environment in search of an evader (circle).

IV. COMPLETE SOLUTION FOR VBPE

Before we present our optimal algorithm it is necessary

to summarize the work of Guibas et al. [3]. Our algorithm

uses similar ideas to find optimal solution strategies for the

same problem.

The general idea is that as a pursuer navigates through

the environment, it tries to catch the evader in its visibility

region, V R(γ(t)). The edges of the visibility region are

either segments along ∂P or edges that cross the interior

of P . The edges that cross into the interior of P are referred

to as gap edges. The pursuer assigns a binary label to each

gap. A gap label of 1 means that the region is contaminated,

which means that it must be searched to ensure that an evader

is not hiding beyond the gap. A gap label of 0 means that

the region is cleared, which means that it is impossible for

an evader to be hiding beyond the gap.

Their algorithm begins by decomposing the environment

into a collection of convex conservative regions, with the

property that the gap labels will change only when the

pursuer traverses between regions. The decomposition of the

environment into conservative regions works by extending

rays from inflection points in the environment, and extending

rays outwards from pairs of mutually visible environment

vertices.The inflection and bitangent ray extensions represent

where the pursuer’s gap labels change.

There are five events that can cause a change in the

pursuer’s gap labels.

• An appear event signals a gap edge that does not

exist in the previous conservative region, is present in

the current conservative region. The gap is assigned a

cleared (0) label in the current conservative region.

• A disappear event signals when a single gap edge that

exists in the previous conservative region is no longer

present in the current conservative region. The label for

this gap is dropped in the current conservative region.

• A split event signals when a gap that exists in the

previous conservative region is split into multiple gaps

in the current conservative region. The new gaps are

assigned the value the original gap had in the previous

conservative region.

• A merge event signals when multiple gaps in the

previous conservative region are merged into a single

gap in the current conservative region. The new gap

is assigned the logical conjunction of the gaps in the



00

0
1

0

1
01

10

11

1

0
1

0

00
01

10
11

00
01

10
11

Fig. 3. An example of the Pursuit Evasion Graph for this environment.

previous conservative region.

• A push event signals when a gap gets pushed from one

environment vertex to another. The gap retains the same

label, but is attached to a different environment vertex.

The procedure used in creating the ray extensions provides

the following information about what type of event takes

place along the boundary of the extension:

(a) Ray extensions caused by an inflection at a single

endpoint of an environment edge cause appear and

disappear events.

(b) Ray extensions caused by mutually visible environ-

ment vertices (where the vertices are not part of the

same environment edge) cause split and merge events.

(c) Ray extensions caused by inflections at both endpoints

of an environment edge cause push events.

With this information the complete Pursuit-Evasion Graph

(PEG) can be constructed as shown in Figure 3. The PEG

is a directed graph composed of nodes that contain a gap

labeling and a reference to a conservative region, where a

node exists for each possible gap label combination for every

conservative region. Its edges are the set of critical events that

occur from crossing an event boundary from one conservative

region to another. The algorithm starts at the PEG-node that

contains γ(0) with a gap label of 1 · · · 1. Using this node as

the root of a graph search, the algorithm uses breadth-first

search to find a path to a node with a gap label of 0 · · · 0. This

path through the PEG provides a sequence of conservative

regions to visit. The algorithm then constructs a path through

P that moves to the centroid of each of those conservative

regions in sequence.

V. OPTIMAL TOURS OF SEGMENTS

An important subroutine for our main algorithm will be

to compute, given a point p and an ordered collection of

segments (s1, . . . , sn), the shortest path that starts at p and

visits the segments (s1, . . . , sn) in order. The resulting path

is called a tour of segments (ToS). Dror, Efrat, Lubiw, and

Mitchell showed how to compute such paths in a more

general case in which the intermediate steps are polygons

rather than segments [2]. We adapt this approach for the

specific case of a sequence of segments.

The algorithm proceeds in two basic steps. First, we

construct a series of data structures called Shortest Path Maps

(SPMs) that allow us to classify the combinatorial structure

of shortest paths that visit each segment in the tour. Second,

we use a series of point location queries on these SPMs to

extract the optimal tour.

A. Step 1: Constructing Shortest Path Maps

The first step of the algorithm is to build an SPM for

each segment in the tour. For segment s1, the resulting

SPM is a subdivision of the plane into four regions such

that the shortest paths from p to all points in one cell of

the subdivision have a combinatorially equivalent shortest

path. Figure 4 shows an example. This SPM subdivides the

plane at the segment s1, and at four rays B, C, D, and E,

constructed from s1 and p. The ray B is a ray extension from

the left endpoint of s1 in the direction left(s1)−p. Likewise,

the ray D is a ray extension from the right endpoint of s1
in the direction right(s1)− p. Rays C and E are reflections

of the rays B and D over the segment s1.

p

C

B
D

E

s1

Fig. 4. A single Shortest Path Map. These four rays and one segment
subdivide the plane into regions with combinatorially equivalent shortest
paths.

Using this structure, and given a query point q, we can

compute the shortest path from p to q via s1, as shown in

Figure 5. There are four general cases.

(a) If q is between rays B and C, then the shortest path

from p to q via s1 is a “left turn” at the left endpoint

of s1.

(b) If q is between rays D and E, then the shortest path

from p to q via s1 is a “right turn” at the right endpoint

of s1.

(c) If q is on or above s1 and between rays B and D, then

the shortest path from p to q via s1 is to go “through”

s1 directly to q.

(d) If q is beneath s1 and between rays C and E, then the

shortest path from p to q via s1 is to “bounce” off of

s1.

EC

B D

p

s1

q

EC

B D

p

s1
q

(a) (b)

EC

B D

p

s1

q

EC

B D

p

s1

q

(c) (d)

Fig. 5. The SPM for the first segment s1 divides the plane according to
the combinatorial structure of the shortest path from p to s1 to a query
point q.



To compute the SPM for segment si with i > 1, we

need a more general structure with two start points pL and

pR which are determined by point location queries in the

previous SPMs, as shown in Figure 6a. The construction is

similar to the construction at s1 as described above, except

that rays B and C are constructed using pL, whereas rays

D and E are constructed using pR.

Algorithm 1 shows the process for selecting these two

start points. Throughout we use a point-location subroutine

called LOCATE that takes as input the index of a specific

SPM and a query point q, and returns the region containing

q in that SPM. The idea is to recurse backward through the

previously constructed SPMs until we reach a left or right

turn. The intuition is that these left and right turns are points

that are known with certainty to lie on the ToS; in contrast,

for through or bounce steps, additional segments may change

that portion of the ToS. Figure 6b illustrates this process.

Algorithm 1 SELECTSTARTPOINT
(

Index i, Point q
)

if i = 0 then

return p

end if

r ←LOCATE(i− 1, q)

if r = LEFT then

return left(si−1)
else if r = RIGHT then

return right(si−1)
else if r = THROUGH then

return SELECTSTARTPOINT(i− 1, q)
else if r = BOUNCE then

return SELECTSTARTPOINT
(

i−1, REFLECT(q, si−1)
)

end if

p
L

p
R

si

B

C E

D

pC

B

D

Esi
si−1

(a) (b)

Fig. 6. Computing the SPM for segment si depends on the SPM for
segment si−1.

B. Step 2: Extracting the Optimal Tour of Segments

The final step of our ToS algorithm is to extract the

complete optimal tour using the SPMs described above. The

algorithm begins by computing the set of intersection points

between sn and all of the SPMs. This produces a subdivision

of sn into a collection of O(n) subsegments. Note that, due

to our construction of the subsegments, each subsegment is

fully contained in a single region of each SPM. For each

subsegment we locate the largest i for which the subsegment

is in either the left or right region of the SPM for si. Then we

construct the complete path by executing EXTRACTPATH(i−
1, left(si)) or EXTRACTPATH(i− 1, right(si)) respectively,

appended with the shortest direct path from that point to the

subsegment, with appropriate reflections for bounce regions

along the way from si to the subsegment of sn. If there is

no such i, the technique is similar, but uses the start point

p instead, treating it as a degenerate segment. Pseudocode

for the path extraction for each candidate can be found in

Algorithm 2; the intuition is to traverse backward through the

SPMs to p, adding a new edge to the path at each left, right,

and bounce event. In this way, each subsegment generates

a candidate path, and the ToS algorithm simply selects the

shortest from among these candidate paths.

Algorithm 2 EXTRACTPATH
(

Index i, Point q
)

if i = 0 then

return p

end if

r ← LOCATE
(

i, q
)

if r = LEFT then

return
(

EXTRACTPATH(i− 1, left(si)), left(si)
)

else if r = RIGHT then

return
(

EXTRACTPATH(i− 1, right(si)), right(si)
)

else if r = THROUGH then

return EXTRACTPATH(i− 1, q)
else if r = BOUNCE then

r ←REFLECT(q, si) reflect point across segment

P ← EXTRACTPATH
(

i− 1, r
)

return
(

P ,LINEINTERSECTION(si, (r, P.back())
)

end if

VI. ALGORITHM DESCRIPTION

This section introduces our algorithm for optimal VBPE.

We begin with a cell decomposition of the environment into

conservative regions to compute the entire PEG (Section VI-

A). Starting from the initial PEG-node, we maintain a priority

queue of PEG-nodes waiting to be expanded. At each such

node N , we maintain a collection of segment sequences

that the pursuer can cross to reach node N from the root

node. As the search discovers new segment sequences, it

performs a pruning operation based on a provable criterion

for dominance of one sequence over another. Section VI-

B describes this pruning process. The priority queue orders

the nodes according the length of the shortest ToS across

all of the segment sequences stored at each node. Using this

priority queue, the algorithm performs a forward search to

construct a complete solution strategy. Section VI-C presents

the details of this forward search.

A. Cell Decomposition and Pursuit-Evasion Graph

We use the technique of Guibas, et al. [3], described

in Section IV, to perform a cell decomposition of P into

conservative regions. Atop this decomposition, we compute

the PEG, which has one node for each unique sequence of

gap labels at each conservative region.



B. Path Dominance and Pruning

In this section, we characterize solution strategies in terms

of the sequences of conservative region boundary edges they

cross, provide a dominance relation that allows our algorithm

to discard many suboptimal partial boundary edge sequences,

and present an algorithm that performs this pruning.

First, we can make a connection between the concept

of a solution strategy for the pursuer and the sequence

of conservative region edges crossed by the pursuer while

executing that strategy.

Theorem 1: Let γ denote a solution strategy, and let

(s1, . . . , sn) denote the sequence of conservative region

boundary edges crossed by γ. Then any other pursuer

trajectory γ′ that crosses (s1, . . . , sn) in the same order is

also a solution strategy.

Proof: Notice that γ and γ′ must traverse same se-

quence of conservative regions. But because those regions

are conservative, the gap labels achieved by γ and γ′

remain identical at each conservative region in the sequence.

Therefore γ′ reaches, as does γ, a PEG-node whose gap

labels are all 0, and γ′ is a solution strategy.

Because of the connection between solution strategies and

segment sequences established by Theorem 1, our algorithm

maintains, for each PEG-node N , a collection of segment

sequences known to reach N .

Note the pursuer can only follow such a segment se-

quence if each successive pair of segments lies on a single

conservative region. Specifically, we require that for any

sequence (s1, . . . , sn) stored at a PEG-node N , we have

that si and si+1 lie on the same conservative region, for

each i = 1, . . . , n− 1, and sn lies in the conservative region

corresponding to the node N . We call such a sequence a valid

sequence for N . If there exists a solution strategy that passes

through a valid sequence, we call this sequence a solution

sequence.

Notice, however, that there are potentially infinitely many

valid segment sequences for any PEG-node. To counteract

this problem, we introduce a notion of dominance between

segment sequences, which enables our search algorithm to

prune many suboptimal sequences.

Definition 1: A segment sequence ŝ = (s1, . . . , sn) is

dominated by a segment sequence r̂ = (r1, . . . , rm) if:

(a) The tours of segments from the start point p through

ŝ, and from the start point p through r̂ both terminate

in the same conservative region.

(b) For any segment sequence â = a1, . . . , ak for which

(ŝ, â) and (r̂, â) are valid sequences, we have

ℓ(ToS(ŝ, â)) ≥ ℓ(ToS(r̂, â)) ,

in which ℓ denotes the length of a path.

(c) Every gap labeled 0 in the PEG-node reached by ŝ is

also labeled 0 in the PEG-node reached by r̂.

A sufficient condition for stating that parts (a) and (b) of

Definition 1 are satisfied for segment sequences r1, . . . , rm
and s1, . . . , sn is to show that

ℓ(ToS(r̂, sn, â)) ≤ ℓ(ToS(ŝ, â)).

Note however, that the addition of future segments â can

change the combinatorial structure of the prefix portion of

either of these ToSes. These changes can occur when the

complete ToS passes through one of the endpoints of sn, one

of the intersection points of sn and the SPM for sn−1, or one

of the intersection points of sn and the SPM for rm. Because

the structure for both ToS prefixes is stable between these

test points, it is sufficient to compare the ToS lengths only

at these points. For this process we make a general position

assumption that the segments sn and rm are distinct. If this

is not the case, we instead consider the intersection points

between sn and the SPM for rm−1.

The following observation establishes a connection be-

tween this dominance relation and optimal solution se-

quences.

Observation 1: Let ŝ = (s1, . . . , sn), â = (a1, . . . , ak),
r̂ = (r1, . . . , rm), such that (ŝ, â) and (r̂, â) are valid

solution sequences. If r̂ dominates ŝ, then (ŝ, â) is not the

optimal solution strategy.

As a result of this observation, our algorithm prunes any

dominated sequence that is generated in the course of this

search. The pruning operation is called when a new sequence

is generated during node expansion. For a sequence to be

added, it must not be dominated by any sequence belonging

to a PEG-node that satisfies part (c) of Definition 1.

C. The Forward Search

Our planner to compute an optimal solution strategy uses a

forward search approach [5]. We maintain a priority queue of

PEG-nodes to expand, ordered by the length of the shortest

ToS stored at each node. At each iteration, we expand one

node N by extending each of the segment sequences asso-

ciated with it, by appending each edge of the conservative

region containing N . If those segment sequences are not

dominated, they are inserted into the appropriate nodes.

The termination conditions for our algorithm are twofold.

First, if the priority queue becomes empty, the search termi-

nates. Second, if the length of the shortest ToS for the head

node in our priority-queue is greater than the length of best

solution strategy seen so far, no additional node expansions

will generate a shorter solution strategy, so the search termi-

nates successfully. If a solution strategy has not been found

by the conclusion of the search, the algorithm reports that no

solution strategy exists. Otherwise, the algorithm returns the

optimal solution strategy found during the forward search.

We know that the returned solution is an optimal solution

strategy because the termination condition for the search

guarantees that no solution sequence with a ToS shorter

than our solution exists, and the ToS algorithm guarantees

that we have found the shortest path that visits that segment

sequence.

VII. RESULTS

In this section, we provide simulated results for our

algorithm compared to the complete algorithm presented by

Guibas et al., shown in Figure 7. We ran our simulations on

three separate environments:



I II III IV

A

B

C

Fig. 7. Column I shows the cell decomposition for three environments. Column II shows the raw solution strategy generated by the Guibas et al. algorithm.
Column III shows the shortest solution strategy that visits the same sequence of conservative regions as the Guibas et al. algorithm. Column IV shows the
optimal solution strategy generated by our algorithm.

1) The environment in Figure 7A have 57 conservative re-

gions, with a total of 21, 806 PEG-nodes. The number

of gaps per conservative region is at most 11.

2) The environment in Figure 7B have 213 conservative

regions, with a total of 26, 620 PEG-nodes. The num-

ber of gaps per conservative region is at most 11.

3) The environment in Figure 7C have 125 conservative

regions, with a total of 35, 530 PEG-nodes. The num-

ber of gaps per conservative region is at most 10.

The below table shows the results of these simulations.

Note that while the algorithm presented by Guibas et al.

minimizes the number of PEG-nodes visited in a solution

strategy, this is not a sufficient condition for generating

optimal solution strategies. For comparison we applied a

post processing step to the Guibas paths to find the shortest

pursuer trajectory that visits the same sequence of conserva-

tive regions. These results clearly illustrate that the optimal

solution strategy is not necessarily a solution strategy that

visits the fewest PEG-nodes.

Environment
Guibas et al.

path length

(raw)

Guibas et al.

path length

(ToS)

Stiffler-

O’Kane

path length

1. Fig 7A 34.3705 22.3838 15.7671

2. Fig 7B 47.9996 34.1259 31.3484

3. Fig 7C 26.8714 24.066 17.8706

ACKNOWLEDGMENT

We acknowledge support for this work from NSF (IIS-0953503).

REFERENCES

[1] W. Chin and S. Ntafos. Shortest watchman routes in simple polygons.
Discrete Computational Geometry, 6(1):9–31, 1991.

[2] M. Dror, A. Efrat, A. Lubiw, and J. Mitchell. Touring a sequence of
polygons. In Proc. ACM Symposium on Theory of Computing, pages
473–482. ACM Press, 2003.

[3] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Mot-
wani. Visibility-based pursuit-evasion in a polygonal environment.
International Journal of Computational Geometry and Applications,
9(5):471–494, 1999.

[4] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in a
polygonal environment. IEEE Transactions on Robotics, 5(21):864–
875, 2005.

[5] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Also available at http://planning.cs.uiuc.edu/.

[6] S. M. LaValle, B. Simov, and G. Slutzki. An algorithm for searching
a polygonal region with a flashlight. International Journal of Compu-

tational Geometry and Applications, 12(1-2):87–113, 2002.
[7] T.D. Parsons. Pursuit-evasion in a graph. In Y. Alani and D. R. Lick,

editors, Theory and Application of Graphs, pages 426–41, Springer-
Verlag, Berlin, 1976.

[8] N. M. Stiffler and J. M. O’Kane. Visibility-based pursuit-evasion with
probabilistic evader models. In Proc. IEEE International Conference

on Robotics and Automation, 2011.
[9] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a

polygonal region. SIAM Journal on Computing, 21(5):863–888, 1992.
[10] B. Tovar and S. M. LaValle. Visibility-based pursuit-evasion with

bounded speed. In Proc. Workshop on the Algorithmic Foundations of

Robotics (WAFR), 2006.


