
Visibility-Based Pursuit-Evasion with Probabilistic Evader Models

Nicholas M. Stiffler Jason M. O’Kane

Abstract— We propose an algorithm for a visibility-based
pursuit-evasion problem in a simply-connected two-dimensional
environment, in which a single pursuer has access to a prob-
abilistic model describing how the evaders are likely to move
in the environment. The application of our algorithm can be
best viewed in the context of search and rescue: Although
the victims (evaders) are not actively trying to escape from
the robot, it is necessary to consider the task of locating
the victims as a pursuit-evasion problem to obtain a firm
guarantee that all of the victims are found. We present an
algorithm that draws sample evader trajectories from the
probabilistic model to compute a plan that lowers the Expected
Time to Capture the evaders without drastically increasing
the Guaranteed Time to Capture the evaders. We introduce
a graph structure that takes advantage of the sampled evader
trajectories to compute a path that would “see” all the evaders
if they followed only those trajectories in our sampled set. We
then use a previous technique to append our path with actions
that provide a complete solution for the visibility-based pursuit-
evasion problem. The resulting plan guarantees that all evaders
are located, even if they do not obey the given probabilistic
motion model. We implemented the algorithm in a simulation
and provide a quantitative comparison to existing methods.

I. INTRODUCTION

In disaster situations such as fires, earthquakes, floods,

or mine collapses, search and rescue (SAR) efforts can be

difficult, especially when some locations are inaccessible

or dangerous for human rescuers. Autonomous search-and-

rescue robots have the potential to alleviate this difficulty

by reducing the need for human presence in such locations.

Although substantial progress has been made on the problem

of robotic SAR in recent years [1], full autonomy in such

contexts remains an unsolved problem. A key component of

this application is the need for robust search plans that enable

robots to locate victims, who may be moving themselves,

quickly and reliably.

At the heart of this task is a computational pursuit-evasion

problem, in which a pursuer must systematically search an

environment to locate one or more evaders. See Figure 1.

Although the victims are unlikely to avoid detection actively,

their movements might be erratic and unpredictable. As

a result, a strategy that treats the victims as evaders is

necessary to guarantee that they are found.

Algorithms are known to solve a wide variety of pursuit-

evasion problems [6], [11], [18]. Our research builds upon

those existing methods by incorporating a predictive model

for the evaders’ motions. Such a model might, for example,

be derived from a priori simulations of victims’ responses

N. M. Stiffler and J. M. O’Kane are with the Department of Computer
Science and Engineering, University of South Carolina, 301 Main St.,
Columbia, SC 29208, USA. {stifflen,jokane}@cse.sc.edu

Fig. 1. A pursuer robot (triangle) navigating through an environment.
The pursuer detects all of the evaders caught in its field of view (visibility
polygon). The evaders that are visible to the pursuer appear as open circles,
while those that are outside appear as closed circles.

to various disasters [9], [15], or from other domain specific

knowledge. The intuition is that, in a disaster scenario, there

are likely to be some predictable patterns to the victims’

movements, and that these patterns can be exploited to

decrease the expected time needed to locate them. A final

phase of the pursuer’s strategy can then use more traditional

pursuit-evasion methods to guarantee that all evaders, regard-

less of whether or not they obey the predictive motion model,

are eventually found by the robot.

The specific problem we consider is a variation on the

visibility-based pursuit-evasion problem in which a robot

moving through a simply-connected polygonal environment

seeks to locate an unknown number of evaders, each of which

may move arbitrarily fast. Guibas, et al. presented a complete

algorithm for this problem [7]. However, that research also

demonstrates that a solution for this problem may require the

robot to revisit some parts of the environment repeatedly, to

ensure that evaders have not “recontaminated” those regions.

Our work can be viewed as a “rescheduling” of this strategy

to visit first those regions most likely to actually contain

evaders, before completing the worst-case search.

To ensure that our approach is useful in a broad variety

of contexts, we do not assume any specific form for the

evader model. Instead, we treat this model as “black box,”

from which the pursuer can generate a collection of sample

evader trajectories, drawn from some probability density over

all possible such trajectories. We use this sample set as an

implicit representation for the underlying distribution.

The contribution of this work is an algorithm that uses

a predictive model of evader motions to generate plans

that reduce the expected time to locate all evaders in the

environment, without sacrificing the worst-case guarantees

provided by known algorithms. We present simulations that

demonstrate that this algorithm succeeds in this goal.

The remainder of this paper is structured as follows.

Section II describes related work, including the guaranteed

visibility-based pursuit-evasion algorithm that our work ex-

tends. A formal problem statement appears in Section III,

followed by a description of our algorithm in Section IV.

Section V presents our simulations of this algorithm and a

quantitative evaluation of its effectiveness. Discussion and a

preview of future work conclude the paper in Section VI.

II. RELATED WORK

A. Pursuit-Evasion

Pursuit-evasion was introduced as graph problem in which

multiple pursuers and an evader move from vertex to vertex

within the graph until one of the pursuers lies on the same

vertex as the evader [12]. The visibility-based pursuit-evasion

problem proposed by Suzuki and Yamashita [17] is an

extension of the watchmen route problem [3], in which the

objective is to compute the shortest path that a guard should

take to patrol an entire area populated with obstacles, given

only a map of the area.

The visibility-based pursuit-evasion problem has been

studied under various constraints. A complete algorithm was

presented by LaValle et al. [11] for the case when pursuers

move along the boundary of an environment and have only a

single ray of visibility. A strategy for searching an environ-

ment in which one or more pursuers have a limited field-of-

view was presented by Gerkey, et al. [6]. Pursuit-evasion

has also been studied in the context of velocity-bounded

evaders [18]. While there has been substantial research in

visibility-based pursuit-evasion, to the authors’ knowledge,

a strategy for solving the pursuit-evasion problem that takes

into account information regarding the evaders’ probable

trajectories has not been considered.

Others have considered the problem of rapidly searching a

polygonal environment for a target [16]. That work presents

a hardness result for a search problem related to ours, and

a heuristic greedy search technique that performs well in

practice. Our work differs because we directly consider

motion models for evader movements.

The most closely related research to our problem is the

complete algorithm for the visibility-based pursuit-evasion

problem in which a single pursuer with an omni-directional

field of view attempts to locate all of the evaders in a

polygonal environment [7]. This algorithm uses “gaps”,

segments of the pursuer’s visibility polygon that are not part

of the environment, to identify regions of the environment

in which evaders may be located. If it is possible for an

evader to be in an area beyond the gap, it is considered to

be “contaminated” and is labeled with a 1. If it is not possible
for an evader to be beyond a gap, that gap is “cleared” and

is labeled with a 0.

The algorithm begins by computing a cell decomposition

of the environment. The cell decomposition is based on

critical visibility events that occur because of inflections and

bitangents of the environment boundary. This subdivides the

environment into conservative regions in which the gap rep-

resentation remains the same as the pursuer moves through

the region. Simple rules describe how the gap labels change

when the pursuer crosses into a new conservative region.

These rules define a graph in which each conservative region

is associated with one node for each possible assignment of

the gap labels. Details appear in [7]. The pursuer maintains

the value of the gap labels, which change when the pursuer

moves from one conservative region to another, until all of

the gap labels are “cleared” or the algorithm determines that

a solution does not exist. We use and extend this strategy

in our algorithm to guarantee completeness, in the sense of

locating every evader in an environment.

B. Informed Evacuation Models

The novelty of our approach to the pursuit-evasion prob-

lem is the use of probabilistic evader models to compute the

most probable trajectories that the evaders will take. In the

context of SAR it is useful to think of evacuation behavior

during emergencies. These behaviors, commonly referred to

as emergency egress, tend to have three distinct analytical

dimensions [15]:

1) the environment and its configuration at the time of

the evacuation,

2) the existing policies and procedures that are in place

prior to the evacuation occurring,

3) the social psychological and social organizational char-

acteristics effecting those participating in the evacua-

tion.

Every scenario is comprised of these three dimensions,

and there are many factors that contribute to a particular

evacuation behavior. For instance, it has been shown that by

varying evacuation instructions and changing the number of

posted exit signs, people react differently when they hear a

fire alarm [8]. A behavioral-based evacuation framework that

focuses on the interaction between agents as they attempt to

navigate through an environment in the presence of hazards,

was presented by Rodrı́guez and Amato [13].

Our implicit representation of the distribution of evader

trajectories using a collection of samples is similar in spirit

to the particle filter methods that have been used for mobile

robot localization [4], [5].

III. PROBLEM STATEMENT

This section formalizes the visibility-based pursuit-evasion

problem where a single pursuer, equipped with a model for

the motion of the evaders, attempts to visually locate one or

more evaders in a polygonal environment.

A. Representing the Environment, Pursuer, and Evaders

The environment is a simply connected closed set P ⊂ R
2,

with polygonal boundary ∂P . We define R as the set of reflex

vertices in P . For any point r ∈ P , let V R(r) denote the

Fig. 2. An illustration of our notation. A single pursuer (triangle) moves
through an environment in search of a unknown number of evaders (circles).

visibility region at point r, which consists of the set of all

points in P that are visible from point r. That is, any line

segment formed by connecting point r and a point from the

set V R(r) lies in the polygonal free-space.

A single pursuer and an unknown number of evaders are

modeled as single points that translate in the polygonal free-

space. Let πi(t) ∈ P represent the position of the ith evader

at time t ≥ 0. The trajectory πi is a continuous function

πi : [0,∞) → P , in which the evader is capable of moving

arbitrarily fast (i.e. a finite, unbounded speed) within P . Let

Π denote the function space of all such trajectories. Similarly,

let γ(t) ∈ P denote the position of the pursuer at time t ≥ 0.
Without loss of generality, we say that the pursuer moves

along γ with maximum speed 1. Figure 2 shows this notation.

The pursuer’s goal is to see every evader. A pursuer

trajectory γ is a solution strategy if, for all evader mappings

π ∈ Π, there exists a finite time of capture, denoted tc(γ,π)
and defined as

tc(γ,π) = min{t ≥ 0 | π(tc) ∈ V R
(

γ(tc)
)

}.

The time tc(γ,π) is the time of capture for an evader

following trajectory πi when the pursuer follows solution

strategy γ. Thus, the pursuer’s task is to find a solution

strategy with a finite time of capture for every possible evader

trajectory.

B. Probabilistic Evader Models

Although the exact positions of the evaders are unknown

to the pursuer at time t0, the pursuer has at its disposal a

predictive model for the motions of the evaders. The motion

model reflects a behavior that the evaders are likely to exhibit

throughout the run.

Specifically, we assume that there exists a probability

density function p : Π → [0, 1) , that models the likelihood

of each possible trajectory in Π being selected by each

evader. A critical assumption is that evaders’ motions are

independent of the motions of the pursuer.1 Because p may

1This assumption is, of course, unreasonable for traditional pursuit-
evasion problems. We believe that it is appropriate for this problem because
the evaders are merely somewhat unpredictable, rather than being truly
antagonistic. Pursuit-evasion concepts are still relevant in this context
because we are interested in a guarantee that all evaders are located,
regardless of the trajectories they select.

be difficult to express explicitly, we assume only that the

pursuer is able to sample evader trajectories, drawn from

this density. For example, p might model evader behavior

in which there are nonzero probabilities for trajectories that

(1) seek a known “exit” in the environment, (2) move

erratically, and (3) remain largely motionless. Equipped with

this information, the pursuer can compute a solution strategy

that minimizes the expected time to locate the evaders.

C. Success Metrics

We consider two different outcomes when evaluating the

solution strategies generated by our algorithm.

1) First, we are interested in minimizing the expected

time to locate each evader, defined as the Expected

Time to Capture (ETC):

E(γ) =

∫

π∈Π

p(π)tc(γ, π) . (1)

The intuition of E(γ) is to compute the average time to

capture each evader as the pursuer follows its solution

strategy. However, because the ETC is difficult to

evaluate exactly, in practice we instead approximate

the ETC as

E(γ) ≈
n
∑

i=1

tc(γ, πi)

n
, (2)

in which n trajectories are sampled from Π as de-

scribed above.

2) Second, we consider how long it would take for the

pursuer to execute its solution strategy to completion,

defined as the Guaranteed Time to Capture (GTC):

G(γ) = max
π∈ Π

(tc(γ, π)) . (3)

For a given solution strategy γ, G(γ) can be computed

using the technique introduced by Guibas, et al. [7].

We use both of these criteria when computing the effective-

ness of the algorithm. We seek to decrease the ETC without

drastically increasing the GTC.

IV. ALGORITHM DESCRIPTION

This section describes our algorithm to solve the visibility-

based pursuit-evasion problem introduced in Section III. The

algorithm goes through several stages. In the first stage, a

set T of potential evader trajectories is created by sampling

from Π. In the next stage, a forward search is conducted to

generate a path that allows the pursuer to see each evader

in T . That is, when the trajectory set T is used as the input

in our search, the forward search returns a path that would

qualify as a solution strategy if the evaders followed only

those trajectories in T . The last stage appends motions to

the path returned from the forward search so that the path is

a solution strategy for Π.

A. Pursuer Trajectory Graph

The graph that we search to find a path that can view all

trajectories in T is constructed from the reduced visibility

graph (RVG) [10] of P . Our motivation for using the RVG

is twofold. First, the RVG contains shortest paths in P ,

so pursuer paths along the RVG represent locally optimal

plans for traversing the environment. Second, note that for

every non-convex2 polygonal environment P , the union of

the visibility regions of the reflex vertices of P is equal to P
itself. This means that every element in P is visible from at

least one reflex vertex of P ; the intuition is that the RVG is

“big enough” to allow the pursuer to see evaders wherever

they travel in the environment.

Based on the RVG, we define the purser trajectory graph

with vertex set [0,∞) × R × {0, 1}n. For a specific vertex

v = (t, r, b1 · · · bn), the interpretation is that after time t
has elapsed, the pursuer is at reflex vertex r, and evader

trajectory i has been seen if and only if bi = 1. Each vertex

(t, r, b1 · · · bn) has one outgoing edge for each reflex vertex

adjacent to r in the reduced visibility graph [14] of P . The

“child” node’s value of t is equal to that of the “parent” node

plus the time it takes the pursuer to travel from the child’s

r to the parent’s r. As the pursuer travels between reflex

vertices, the pursuer updates the bi values. That is, for all bi
in the parent that are equal to 0, the pursuer checks if there

is any t ∈ [tparent, tchild] such that Ti(t) ∈ V R
(

γ(t)
)

, and

if so sets bi equal to 1 in the child node. Any bi equal to 1

in the parent node is carried over as a 1 in the child node.

B. Forward Search

The pursuer performs a graph search on the pursuer

trajectory graph for a path from the root vertex, Vr =
(

0,γ(0), b1 . . . bn
)

in which bi = 1 if and only if πi(0) ∈
V R(γ(0)), to a vertex in which all values of bi are equal

to one. The forward search that we implemented was a

variation of Dijkstra’s Algorithm using t as the cost metric.

See Algorithms 1 and 2.

The primary difference between our search and the stan-

dard Dijkstra’s algorithm is a pruning of redundant nodes.

For a vertex v = (t, r, b1 · · · bn) to be considered redundant

there must already be a vertex v′ = (t′, r′, b′
1
· · · b′n), in the

closed list, such that

1) both nodes share the same physical location, so that

r′ = r, and
2) the vertex v′ has already seen every evader trajectory

that v has seen, so that b′i ≥ bi for all 1 ≤ i ≤ n.

We perform the redundancy check immediately before the

vertex is expanded, instead of when the vertex is added to

the open list, to account for the fact that it may become

redundant in the interim. For example, this situation may

occur when a vertex h = (th, rh, bh) is at the top of

the expansion queue and creates a child, k = (tk, r, b).
As a result, k is added to the open list. Later, a vertex

j = (tj , rj , bj) is at the top of the expansion queue and

2Note that if P is convex, every evader is immediately visible, trivially
solving the problem.

Algorithm 1 FORWARDSEARCH
(

γ(0), T)

1: open ← empty priority queue of vertices ordered by t
2: closed ← empty set of vertices

3: for all π ∈ T do

4: bπ ← π(0) ∈VR(γ(0))
5: end for

6: add vertex (0,γ(0), b) to open

7: while open is not empty do

8: v ← open.top()
9: (t, r, b1 · · · bn)← v
10: if b1 · · · bn = 1 · · · 1 then

11: return success

12: end if

13: if not REDUNDANT(v) then

14: add v to closed

15: EXPANDNODE(v, T)
16: end if

17: end while

Algorithm 2 EXPANDNODE
(

v, T
)

1: (t, r, b1 · · · bn)← v
2: for each element r′ in RVGNEIGHBORS(r) do

3: t′ ← t+ (time for pursuer to travel from x to x′)
4: path← SEGMENTBETWEEN(r, r′)
5: for all π ∈ T do

6: b′π ← bπ
7: for time ∈ [t, t′] in increments of ∆t do

8: b′π← b′π or π(time) ∈ VR
(

path(time)
)

9: end for

10: end for

11: v′ ← (t′, r′, b′
1
· · · b′n)

12: add v′ to the open list

13: end for

creates a child, l = (tl, r, b), so l is added to the open list.

Although vertex k has the same r and b values as vertex l
and was added to the open list earlier, l will appear at the
top of the expansion queue before k if tl < tk. Assuming

that when l reaches the top of the expansion queue it is

determined that l is not redundant, then l will be added to

the closed list. This would mean that when k reaches the top

of the expansion queue, k would fail the redundancy check

because l is already in the closed list.

All vertices that fail the redundancy check are discarded.

Figure 3 shows a simple example of the search, in which the

redundant node pruning takes effect.

C. Appended Forward Search

Although our initial forward search is guaranteed to find

a path that “sees” every evader that follows a trajectory in

T , the forward search does not account for evaders that do

not follow a trajectory that is part of the sampled set T . As
a result, it is possible that the path returned by the forward

search does not see all of the evaders.

To account for this possibility, we append the path returned

r: (5, 5) r: (8, 5)

r: (15, 5)

0

3

7

Fig. 3. A basic example demonstrating how the forward search is
conducted. Starting at the middle vertex the pursuer searches for a path
that can see all 5 evaders(open circles) in the environment. The dotted lines
represent the possible transitions from one vertex of the RVG to another.

by the forward search with actions that eliminate all of

the remaining possible contaminations in the environment

after the pursuer reaches the end of the path generated in

Section IV-B.

We use the technique described by Guibas, et al. [7] (for

which some details appear in Section II-A) to do a cell

decomposition of P , partitioning P into conservative regions.

We then find the sequence of conservative regions traversed

by the path returned by our forward search, maintaining the

gap labels through this sequence of conservative regions.

We then run the the algorithm of Guibas et al., modified

to start its search in the last conservative region of the

sequence instead of the pursuer’s original location, and with

the updated gap labels instead of initially labeling all gaps

as contaminated. In the best case, it is possible that the path

generated by the forward search travels through a sequence

of conservative regions that eliminate all contaminations

in P , which means that our path does not require any

additional actions to become a solution strategy. If there are

contaminations, the prior algorithm supplies the necessary

actions to make our path a solution strategy.

V. RESULTS

We used C++ and CGAL [2] to implement this algorithm.

We tested our algorithm in several different environments and

under various evader motion models. The following section

describes some of the scenarios in which our algorithm

was run, followed by the results comparing the ETC and

GTC from our plan to the ETC and GTC of the prior,

uninformed algorithm. Throughout our results, the pursuer

moves through the environment at speed 1, and each evader

moves at a constant velocity in the range of 1/2 to 3/2.
Figure 4a depicts a very simple environment that has nine

vertices in the RVG. For our simulation in this environment

we used n = 1, 000 sample trajectories with uniformly

random starting points. Of these, 250 do not move, another

250 wander aimlessly in the environment, while the other

500 have a uniform probability of heading along shortest

paths to ends of each of the four hallways.

The solution generated by our forward search explores

the hallways in the following order: top left, bottom left,

bottom right, and then top right. At this time, the entire left

section of the environment and the middle hallway remain as

possible hiding places for the evaders. The additional actions

appended to catch theses evaders require the pursuer to re-

visit the top left and bottom left portions of the environment.

Figure 4b depicts an environment resembling an office

building floor plan. For this scenario, we used n = 200
sample evader trajectories. Of these, 25% move randomly

through the environment (modeling victims with no knowl-

edge of the location of exits), 25% move toward the primary

exit located at the far left wall in the middle room, 25%

move toward secondary exits located at the far right wall

in the bottom right corner of the middle room, the far right

wall in the bottom right corner of the south room, and along

the north facing wall in the middle room. The remaining

25% of the trajectories model victims that remain motionless

due to injury or indecision. The evaders’ starting positions

are evenly distributed across five designated meeting spaces

located in all three middle rooms, the middle room along

the south wall, and the room in the top left corner. However,

the group of evaders without knowledge of the exit locations

start scattered randomly through the environment.

Figure 4c depicts an environment originally used by

Suzuki and Yamashita [17] in their explanation of the

visibility-based pursuit-evasion problem. In this example,

the sampled evader trajectories all start within the the six

rightmost legs of the environment. A small fraction (20%)

of these evaders travel across the center chamber to the

leftmost leg. The remaining evaders remain close to their

starting locations. The intuition is to model a scenario, such

as certain kinds of potential disasters in schools, in which

many of the victims may elect not to try to escape.

Figure 4d shows an environment well known to require

multiple recontaminations of the upper “peak.” A correct

solution strategy requires the pursuer to make repeated trips

through the center chamber. We tested this our algorithm

using evader models in which the evaders remain clustered

in the “feet” of the environment. The algorithm successfully

exploits this knowledge to locate all of the sampled evaders

relatively quickly, in contrast to the extremely conservative

plan generated by the algorithm of Guibas et al.

A. Quantitative Comparison

For each of these four environments, we executed both our

algorithm and the uninformed algorithm of Guibas et al. For

each generated plan, we computed both the ETC and GTC.

6 105,7

9, 114, 8

1, 3

2

12

13

14

18

15, 17

16

4

8

7

2

5

6

1

9

11 10

12

3

14

1315

1

4

2

3

6 5

20

8, 32
10

31

23

9, 33

11, 29 26

25, 27

22, 24

16, 18

19, 21

14 17

7, 13, 15

30 12, 28

1 2 3 4 5 6

1117

16
8, 10, 13, 15

7, 12

9, 14

[a] [b] [c] [d]

Fig. 4. Solution strategies generated by our algorithm for four environments. Integer labels show the sequence of pursuer movements.

TABLE I

RESULTS OF SIMULATIONS

Environment ETC Guibas
et al. ETC

GTC Guibas
et al. GTC

1 (Figure 4a) 294.44 441.79 2340.17 1514.72

2 (Figure 4b) 334.96 561.57 2564.17 1596.06

3 (Figure 4c) 394.08 754.45 4341.05 2796.63

4 (Figure 4d) 303.40 842.93 2515.15 1984.52

Table I shows the results. The difference in ETC between

the two algorithms can be interpreted as the amount of per-

formance increase obtained by our algorithm’s exploitation

of the probabilistic motion models for the evaders. In these

environments, our algorithm is successful in improving the

ETC, without sacrificing the completeness of the algorithm.

Notice that each of these environments have a specific

”solution path” that must be followed in order to guarantee

that all the evaders have been captured. For instance, in

Environment 1, the two right corridors must be cleared se-

quentially, followed by the top left corridor, before finishing

in the bottom left corridor. As result, the path generated by

our forward search may not necessarily clear any of the gaps

tracked by the Guibas et al. algorithm. This inherent limita-

tion explains the increase in GTC shown in Table I. However,

because our algorithm maintains gap labels throughout its

execution to determine the starting node for the Guibas et al

graph search, it is able to take advantage of any gaps that

actually are cleared during the forward search.

VI. CONCLUSION

We presented an algorithm for visibility-based pursuit-

evasion that uses a collection of sampled evader trajectories

to improve the expected time required to locate the evaders.

This algorithm is motivated by the need to efficient search

strategies in robotic SAR, and by the extremely conservative

paths generated by uninformed pursuit-evasion planners.

ACKNOWLEDGMENT

We gratefully acknowledge support for this work from NSF (IIS-
0953503) and DARPA (N10AP20015).

REFERENCES

[1] D. Calisi, A. Farinelli, L. Iocchi, and D. Nardi. Multi-objective ex-
ploration and search for autonomous rescue robots: Research articles.
Journal of Field Robotics, 24(8-9):763–777, 2007.

[2] CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org.

[3] W. Chin and S. Ntafos. Shortest watchman routes in simple polygons.
Discrete Computational Geometry, 6(1):9–31, 1991.

[4] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo
localization for mobile robots. In Proc. IEEE International Conference

on Robotics and Automation, 1999.
[5] A. Doucet, N. J. Gordon, and V. Krishnamurthy. Particle filters for

state estimation of jump markov linear systems. IEEE Transactions

on Signal Processing, 49(3):613–624, 2001.
[6] B. P. Gerkey, S. Thrun, and G. Gordon. Visibility-based pursuit-

evasion with limited field of view. In International Journal of Robotics

Research, pages 20–27, 2004.
[7] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Mot-

wani. Visibility-based pursuit-evasion in a polygonal environment.
International Journal of Computational Geometry and Applications,
9(5):471–494, 1999.

[8] N. R. Johnson and W. E. Feinberg. The impact of exit instructions
and number of exits in fire emergencies: A computer simulation
investigation. Journal of Environmental Psychology, 17(2):123 – 133,
1997.

[9] E. D. Kuligowski and R. D. Peacock. Review of building evacuation
models. Technical report, National Institute of Standards and Tech-
nology, July 2005. NIST TN 1471; NIST Technical Note 1471; 153
p.

[10] J.-C. Latombe. Robot Motion Planning. Kluwer Academic, 1990.
[11] S. M. LaValle, B. Simov, and G. Slutzki. An algorithm for searching

a polygonal region with a flashlight. International Journal of Compu-
tational Geometry and Applications, 12(1-2):87–113, 2002.

[12] T. D. Parsons. Pursuit-evasion in a graph. Theory and Application of

Graphs, Lecture Notes in Mathematics, pages 426–441, 1976.
[13] S. Rodrı́guez and N. M. Amato. Behavior-based evacuation planning.

In Proc. IEEE International Conference on Robotics and Automation,
pages 350–355, 2010.

[14] H. Rohnert. Shortest paths in the plane with convex polygonal
obstacles. Information Processing Letters, 23(2):71–76, 1986.

[15] G. Santos and B. E. Aguirre. A critical review of emergency
evacuation simulation models. NIST Workshop on Building Occupant

Movement during Fire Emergencies, pages 27–52, 2004.
[16] A. Sarmiento, R. Murrieta-Cid, and S. Hutchinson. A multi-robot

strategy for rapidly searching a polygonal environment. In Advances in
Artificial Intelligence IBERAMIA 2004, volume 3315 of Lecture Notes
in Computer Science, pages 484–493. Springer Berlin / Heidelberg,
2004.

[17] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a
polygonal region. SIAM Journal on Computing, 21(5):863–888, 1992.

[18] B. Tovar and S. M. LaValle. Visibility-based pursuit-evasion with
bounded speed. In Proc. Workshop on the Algorithmic Foundations of

Robotics (WAFR), 2006.

