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Abstract— This paper describes and analyzes a new technique
for reasoning about uncertainty called constrained geometric
approximation (CGA). We build upon recent work that has
developed methods to explicitly represent a robot’s knowledge
as an element, called an information state, in an appropriately
defined information space. The intuition of our new approach
is to constrain the |-state to remain in a structured subset of the
I-space, and to enforce that constraint using appropriate over
approximation methods. The result is a collection of algorithms
that enable mobile robots with extreme limitations in both
sensing and computation to maintain simple but provably mean-
ingful representations of the incomplete information available to
them. We present a simulated implementation of this technique
for a sensor-based navigation task, along with experimental ) o ) ) )
results for this task showing that CGA, compared to a high- Fi9- 1. A mobile robot navigating through its environment bysetving
fidelity representation of the un-approximated I-state, achieve landmarks. The robot represents its knowledge about its msitipn using

o . . a double rectangle approximated information state.
a similar success rate at a small fraction of the computational
cost.

|. INTRODUCTION degrade as the dimension of the underlying space increases,

Mobile robots struggle constantly against uncertaintywe believe that two-dimensional contexts are sufficiently
Whether this uncertainty arises from noisy and incompletgrevalent in mobile robotics applications to motivate sglec
sensing or from motions that are not fully predictable, a@ttention to this case.
robot’s success in reasoning about and managing its incom-A crucial building block for this kind of filter is the se-
plete information plays a major role in determining its aler lection of arange spaceontaining the geometric primitives
effectiveness. At the same time, for applications in whiclhat the robot can use to represent its I-state. We describe
the robot's size, mass, or energy resources are strictly lima set of operations that the robot must be able to perform
ited (including, for example, micro robots, airborne rahot on the elements of its range space. In principle, any set of
and mobile sensor networks), computation power remainganar figures for which these operations can be computed
a scarce resource. The goal of this paper is to descriie a suitable range space. However, intuition suggests a
and evaluate a new technigue calleghstrained geometric tradeoff between the expressivity of the range space and the
approximation (CGA)that enables robots to trade precisecomputational cost of executing those operations to miainta
representation of uncertainty for computational efficiencinformation states under that range space. As a result, this
when dealing with two-dimensional state information. paper considers several different range spaces with \@ryin

This approach builds upon the large body of robotics worlevels of expressivity, including a new range space we bell t
that uses set-based representations of uncertainty [R], [@louble rectangle spac&Ve also compare our results against
[13]. The intuition of these methods is to maintain a seta high-fidelity polygonal representation to assess the amou
called here ainformation state (I-state)of “possible states” of inaccuracy incurred by the overapproximation process.
that are consistent with the robot's history of actions and To evaluate its effectiveness, we simulated this technique
observations. The robot can then use this set directly fan a landmark-based navigation task, in which a robot
decision making. Maintaining such sets requires apprtgriamoves through a series of waypoints with the assistance of
geometric algorithms to perform updates when the robat sensor that detects the presence of (but not the direction
moves, and when it receives sensor data. The intuition of oor distance to) a collection of fixed landmarks along the
approach is to accelerate these potentially time-consymimbstacle boundaries. In our experiments, we found that our
operations by maintaining only asverapproximatiorof the approximated I-states achieve task completion rates compa
true information state, and constraining this approxiorati rable to high-fidelity I-state representations at a fractid
to have a simple, well-behaved geometric form. Note thahe computational cost.
although the quality of such approximations is well-known t  Prior work by the authors [12], [14]-[16] has used prelim-
, ) inary versions of the constrained geometric approximation
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operations that the range space must support, (2) a coltecti «
of geometric algorithms for carrying out those operatiams f

a new range space in which each element is the union of two
axis-aligned rectangles, and (3) a series of experimeats th
measure computation time, approximation quality, and task e
completion rates for several different range spaces.

The remainder of the paper has the following structure. «
After reviewing some related research in Section Il, we in-
troduce our problem formulation in Section Ill. A definition
and some examples for the Constrained Geometric Approxi-
mation approach appear in Section 1V, followed in Section V
by descriptions of update algorithms for rectangle and toub
rectangle range spaces. Finally, we present simulatiartses
in Section VI and a preview of future work appears along
with some concluding remarks in Section VII.

Il. RELATIONSHIP TO PRIOR WORK

The basic goal of our efforts is to understand how mobile
robots can represent and reason about uncertainty in their
own states. A common thread of much of the research on this
front in the robotics community has been the use of proba-
bilistic methods [7], [17]-[20], [22]. However, such metto
are often computationally expensive. For example, the-stan
dard Monte Carlo particle filter approach for localizati@i]
is often implemented with hundreds or thousands of pastjcle
which can be prohibitively time- and memory-consuming
on robot platforms with strong limitations on computation
power. Moreover, in cases for which the number of particles
is kept relatively small, it can sometimes be difficult foeth
robot to discern whether sufficiently many particles aresa u
to ensure convergence to the correct localization solution
contrast to particle filtering, our approach is well-suited
platforms with severely limited computational resourdes.
particular, because the approximated I-state we maingin i
guaranteed to be an overapproximation of the true I-state,
the robot can directly determine when the information it
represents is not sufficiently detailed to be useful.

Another branch of robotics, which has described itself °
as a “minimalist” approach, considers algorithms that solv
robotic tasks in spite of limitations in the robot's sensin

A planar state spac& = R2, in which the location

of the robot at stagé is denotedr,. The state space

is partitioned intofree spaceXse andobstacle space
Xobst

A non-emptyaction spacel/. The robot chooses one
actionuy, € U to execute in each stage.

A set-valuedstate transition function” : X x U —
pow(X), in which pow(X) denotes the power set
of X, that describes how the state changes. Because
the output of this function is a set of states (rather
than a single, fully predictable state), we can model
unpredictable state changes resulting from noise or from
unknown actions of other agents. Specifically, we define
Zp41 € F(xzk, ur). In this paper, we consider a specific
form for the transition function in which the actions are
additive, uncertainty arises from additive noise, and the
robot cannot pass through the obstacles:

F(xg,up) = {zr +up + 0k | 0 € O(up)} N Xfree

Here ©(u) denotes a bounded set of possible noise
values, which may depend on the action the robot
selects.

« A non-empty observation space&’, so thaty, € Y

models the sensor information collected by the robot
at stagek.

« A set-valuedobservation functiorh : X — pow(Y)

that describes how the observatigp is determined

by the current stater;,. As with the state transition
function, the set-valued nature of this function allows
us to model sensing that is not fully predictable given
the state. From the observation function, we also define
the notion of anobservation preimagewhich denotes
the set of states from which a given observation might
be obtained:

H(yr) ={zr € X |yp € h(zp), e €Y}. (1)

An initial conditionn, C X, indicating a set of possible
starting states. This allows us to model the information
available to the robot at the start of its execution.

capability [1]-[4], [6], [8], [10], [11], [23]. However, tase

gThe key limitation to the robot in this kind of scenario is

methods are generally concerned with limitations in sepsinthat the current state cannot be observed directly. Instead
but not in computation. In fact, the I-state computatioreyth the robot must rely on other cues to draw conclusions about
propose are often quite complex [24], [26], [27]. The newthe sta.te_. .SpeC|f|c.§IIy, the robpt must ba;e its decisiohs on
contribution of this work is to show that such precise 1-0N the initial conditiony, the history of actionsi,, ... ux 1
states are not always necessary for the robot to compldtd1as executed, and the history of observatigns .., yj. it

its task, and that reasonable constrained approximatians 2 received.

be computed much more efficiently. B. Information states

I1l. PROBLEM STATEMENT Based on history described above, at each stage, the robot
This section describes the basic model and notation v&n compute the set of “possible states”. The following two
use throughout the remainder of the paper. definitions clarify this idea.
Definition 1: A statex, € X is consistent witha sensor-
action history (y1,u1,...,Yk—1,uk—1,yx) if there exists
We consider robot models with the following elements: some state sequenas,...,z;+1 € X such thatz, € no,
« A division of time into discrete stages, numbered= and
1,2,....

A. Basic ingredients

Tit1 € F(,u)

)



foreachi=1,...,k—1, and O

vi € hiz:) ©) In particular, notice that, given a range space with its
for eachi =1,... k. [0 update functions, if we start with, = o and in subsequent
stages computel;; from Ay, uy, andy, according to

Definition 2: Theinformat.ion statg(l—state)nk at stagek is Apy1 = O(T(Ap, ur), yi), (8)

the set of all states consistent with the robot’s sensdomct

history. Theinformation space(l-space)Z is the powerset then by induction we have, C A, at each stagé.

of X, which contains all possible I-states. | B. Examples
The intuition is thaty, contains every state that the robot First, we consider two “typical” options for the range

might possibly be in, given the information available toAt. SPace.

detailed description of the computations required to campuExample 1:Let R yjskx denote the set of all disks iR?, each

N1 given ng, ug, andy, appears in LaValle’s book [9]. parameterized by its center and radius. For any compact set

The basic approach involves an “expansion” to account faf C R?, let SEp(S) denote the smallest disk enclosisg

any possible changes in the state resulting from actipn Then we can define

followed by an intersection with the observation pre-image

H(yp): Tisk(Ar,ur) = Ar @ {ur} ® SED(O(ug)), (9)
in which @ denotes the Minkowski sum operation. Notice
M= | | Flarw) | 0H(ys)- (4)  that, because botd; and SD(O(u;)) are disks, the result
1o €M is a member ofRgigk. Similarly, we define

The robot can then execute plans that use feedback on the
I-space, of the formr : T — U, so thatu, = 7(n). Odisk(Ark, yr) = SED(H (y) N Apg). (10)
It is straightforward to see thaRgigx iS a range space
under those operations. Computing Minkowski sums of disks
This section introduces our CGA approach for maintainingonsists of the addition of their centers and radii, so it is
approximated |-states. This method is motivated by the famvial to CompUteriSk' A|gor|thms are known to eva'uate

that the changes to the robot’s I-states in each stage, @3isk in time O(1) when the observation preimages are
described in Equation 4, can be prohibitively expensive tguarterplanes [12] or circles [15]. 0

compute directly.

IV. CONSTRAINED GEOMETRIC APPROXIMATION

A. Definition Example 2:Let Rrect denote the set of all axis-aligned

rectangles irR?, each parameterized by its lower-left corner

a and its upper right corneb. For any compact sef C

R?, let AABB(S) denote the smallest axis-aligned rectangle

e C Ag. (5) enclosings, that is, its “axis-aligned bounding box.” Then
we can define

The intuition of our approach is to maintain, insteadpf
itself, only an overapproximatiord,, of 7, so that

Note in particular that, becausg < 7, we also haver;, €
Ag. Trect(Ag, ur) = AABB (X

The specific approximation scheme we employ is to select rect Av, u) A( freel) o 11
a range spac® C 7 within the I-space, and constrain our Ak @ {ui} ©AnBB(O(wr))])  (11)

approximated I-space to remain always a member of thig which ¢ denotes the Minkowski sum operation. For the
range space, so that; € R. The advantage of this schemeapproximate observation update function, we use

is thatl-state updates are often more efficient on range space

elements than on general I-statdhe specific requirements Orect( Ak, yr) = AABB (H (yi) N Ag). (12)

on the range space are detailed in the definition below. Directly from the definitions, we can show th®rect is
Definition 3: A range spaceR C 7 is a set of I-states, a range space undefrect and Orect Details about the
equipped with two functions: algorithms needed to computBect and Orect appear in
i) An approximate action update functidh: R x U —  Section V-A. O
R, such that ifn, C Ay, then

The next two examples illustrate two extremes allowed by
U Flap, uk) © T(Ap, uk)- ()  Dpefinition 3.

e Example 3:Let Rigent = Z denote the I-space itself. Using

ii) An approximate observation update function: R x  phe update functions
Y — R, such that ifn, C Ag, then

PV HL () € O, ). Q Taend40) = U Flowm) 09
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and

Oident(Ak, yr) = Ax N H(yx), (14)

clearly Rigent is a range space. Note however, that comput-
ing Ar4+1 using these functions is just as computationally
expensive as computing, itself, so nothing is gained from
the (vacuous) approximation in this case. |

Example 4:Let Ry = {X} denote a singleton set whose
only element is the entire state space. Define

Tiriv (Ak, uk) = Oriy (Ak, i) = X

for all u;, andy;. There functions are trivial to compute, and

clearly they makeRy;, is a range space. However, because
this range space essentially discards all of the informatio
available to the robot, its approximated I-states are nefulis

(15)

,,,,,

L A1 (),
Ay
Ap, ® {ur} ® AABB(O(ur))
O(ug)
T Kobsty

for selecting actions. O

Ak © {ur} © AaBB(O(ur))

Examples 3 and 4 illustrate an apparent tradeoff between
faithfulness to the underlying true I-statg (seen in Exam-
ple 3) and efficient computation (seen in Example 4). In this
paper, we consider several different range spaces between
these two extremes, includif@gisk: Rrect and a new range
space called the double-rectangle sp&Ggrect

To evaluate the quality of the approximation throughout jjj)
the robot's execution, we can compare the area of the
approximated I-state to the area of the I-state itself:

kZ

Note that higher values fof) demonstrate better approxi-
mation quality, up to a maximum value of We present, in

area 77,
16
area(A (16)

Fig. 2.

Four steps to computBgct [top] Steps 1 and 2. [bottom left]

Step 3. [bottom right] Step 4.

corners, the results can be computed by adding the
coordinates of the respective corners together.

Third, we intersect the result of Step 3 WitR¢ee,
using standard geometric algorithms for boolean op-
erations on polygons [25]. The resulting set is a
polygonal region that containg,, but is not necessarily

a rectangle.

iv) Finally, to enforce the constraint that;, € Rrect, we

compute the axis-aligned bounding box of the result
of Step 3. This uses the same algorithm as in Step 1.

Section VI, experiments that measure these approximatidio compute the approximate observation update function
ratios, along with the robot's success rate in completisg itOrect for general observation preimage shapes we follow
task using each of these range spaces. a similar process, but based on Equation 12 instead of
Equation 11. Note, however, that if the observation preiesag

have a specific known shape, the use of a specialized
algorithm can accelerate the process. For example, in our
This section presents algorithms for computing the Upda@(periments everyH (y;) is a planar disk. In that case

functionsTrectandOrect for the rectangle range spaBect we can comput®rect(Ax, yx) in constant time using three
(in Section V-A) and introduces the double rectangle ranggeps:

spaceR gprectand its update functiortyprectand Ogprect
(in Section V-B).

V. RECTANGLE AND DOUBLE RECTANGLE
RANGE SPACE UPDATES

i) First, we compute the set of points at which the
boundary of the diskH (y;) intersects the boundary
of the rectangled,. There are at most such points.
Second, we consider each of the four extremal points
of the disk H (yy): its topmost, bottommost, leftmost,
and rightmost points. For each, we test whether it is
contained inAy.
iii)y Finally, we find the smallest axis aligned rectanglettha
contains the 8 or fewer points found in Steps 1 and 2.

A. Updating rectangle approximated I-states

In the rectangle range space, to compute the approximatel)
transition functionTyect, as defined in Equation 11, we
proceed in four steps. Figure 2 illustrates these steps.

i) First, we computeaaBB (©(ug)). In the general case,
in which ©(uy) is represented by a list of vertices
on its boundary, this requires simply selecting the
extremal coordinates in each direction from this vertex>€€ Figure 3.
list.

i) Second, we compute the Minkowski sus), & {ux } &
AABB(O(uy)), using the result of Step 1. Because Both of the “typical” range spaces introduced abdRgigi
each of the three operands is either a single point orand Ryect, have the property that all of the approximated
rectangle represented by its lower left and upper rightstates they allow are convex. In cases where the true I-

B. Double rectangle approximated I-states



Ay, Algorithm 1 DOUBLERECTANGLEAROUNDPOLYGON(P)

V' <+ set containing the vertices d@® and its centroid
for each pair of verticep,q € V,p # ¢ do
Ry <+ {p}; R2 + {q}
AABB(H (1) N Ag) for each edge of P do
R} + AABB(R; Ue)
R, < AABB(R2Ue)
H(yr) if area(R] U R2) < area(R; U Rj) then
Ry + Rll
else
Rg — R/Q
Fig. 3. ComputingOrec(Ak, yx) to find the rectangle approximated end if
|-state, given an observatiay), . end for
insert R; U Ry into C
end for
return argmin g, | g,)ec(area(f2y U Rz))

staten;, is nonconvex, this presents a severe limitation to the
ability of A;, to closely approximatey,.
To overcome this limitation, we propose a more expressive
range space that contains non-convex approximated Isstate
Specifically, we consider a range spacalotible rectangles

Rblrect= {11 U Rz | R1, Ry € Rrect} (17)

The intution is that eacd, € Ryprect iS the union of
two rectangles, which allows the approximated I-state to P
correctly represent many typical nonconvexities that oatu
Nk, including the case in whichy “grows” around a reflex
vertex of an environment obstacle.

The central problem in using this range space is that theF@. 4. Algorithm 1 returns a double rectangiear(P) around the given
is no obvious analog to thee® function we used to keeg;, ~ inPut polygonr.
in Rgisk: Nor to theAABB function we used tod;, in Rrect

Instead, we propose a method, calleeéapr for “double . . imil hose f
rectangle around polygon”, which accepts a polygonal regic®Prations 0fRgpjrectn @ manner similar to those f@rect

of the plane as input, and produces a small double rectan@i2r a double rectangle approximated |-staie= R, U R,

containing that polygon as output. This algorithm attempt e have

to keep the size of the resulting double rectangle as small

as possible, but for efficiency reasons does not guarantee tonb"eC‘(Ak’uk) = DRAP(Xiree/)

find the smallest polygon that covers the given polygon. [Ar & {ur} © DRAP(O(u))]), (18)
Algorithm 1 shows pseudocode for this process, angnd

Figure 4 shows an example of the output. The idea is to

build the double rectangle from the bottom up, startin®qpirect Ak, yx) = AABB (H (yr)NR1)UAABB (H (yx)NR2).

with two degenerate rectangles, each of which is a single (29)

point at either a vertex of the polygon or at its centroid, adlgorithms to evaluate these functions have the same form

“seeds”. Then an iterative process considers each edge asf the analogous functions f@yect.

the polygon in turn, and expands one of the two rectangles

to contain that edge. At each step, we choose between the

two possible expansions by greedily preferring the redeang This section describes an implementation in simulation

to expand that results in the smallest total area. Finallpf the CGA approach for a landmark-based mobile robot

to ensure that the result does not contain any unnecessagyigation task.

overapproximation, we repeat this process over all pairs of o

potential seed points, and retain only the smallest overdh Task description

double rectangle, as measured by its area. Notice thag sinc A point robot moves through a known environmehf

the resulting double rectangle contains every boundarg edg/hich is populated with both obstacles and free space. The

of P, it is indeed an overapproximation &f. For a polygon robot’s action space & = B((0,0); vmax), a closed ball of

with n vertices, the outer loop runs(n + 1) times and the radiusvmax centered at the origin. The robot’s actions can

inner loop runsn times, thus, this algorithm take®(n®) be interpreted as commanded displacement vectors.

time. We assume that noise influences both the direction and
Based on Algorithm 1, we can define the range spaamagnitude of the robot’s motion. The angular noise is

DRAP(P)

V1. CGA FOR LANDMARK-BASED NAVIGATION
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Fig. 5. The noise modéb(uy ) used in our experiments. It considers angu-
lar error bounded byangand translational error bounded Bygnd|u||-

bounded by a given angléang and the translation noise

is bour"ded bWtranéWH- Therefore, the trapsitipn noise set Fig. 6. An office-like environment. The waypoints are numbered
O(uy) is a slice of an annulus, as shown in Figure 5.

To guide its motions, the robot has a sensor that can 5 W
detect the presence of any of a collection of known land- r *8 1
marksliq,...,l, along the obstacle boundaries, but not the ] . .
direction or distance to those landmarks. Each landmark °6

has an detection rangg, and the robot can detect any of 7 L
the landmarks for whiche, € B(l;;7;). The observation ‘ | .
preimagesH (y) are therefore disks. 4
The robot is given a sequence of waypoints ..., w, € [ |
Xiree such that each waypoint is visible Kige from both
its predecessor and its successor. The goal is to visit eaﬁB. 7. An environment cluttered with obstacles, along withwaypoints.
of the waypoints in their given sequence. An execution is
considered successful if it achieves this goal within a fixed
time limit; an execution is declared a failure if the robdtda « the robustness of the approximation scheme to the
too long to reach the final waypoint, or if it collides with an rotations of the environment.
obstacle. For all of the experiments we have some consistent
For every range space, the robot aims to follow th@ssumptions. The positions of the landmarks are pseudo-
waypoints in order guided by the centroid point of therandomly generated insid&fee We set the noise model
approximated I-state. In other words, we define a plan thangular error bound tdang = 0.4 and the transition bound
uses a feedback oR as foomn7 : R — U so that to fyans= 0.2.
uy, = 7(Ax). We denote the next waypoint by and select  In each of these three environments, we performed a series

an action that moves toward from the centroid ofA: of three experiments, described below.
w — centroid(Ay) i) First, we \_/aried the number of landmarRé between
T(Ag) = . Umax- (20) 5 and250 in increments ob and calculated the robot’s
|lw — centroid (Ay)| ;
success rate. For eacN, we repeated the experi-
B. Experimental Results ment 15 times with different landmark distributions by

) ) " ) assigning distinct random seeds. The success rate is
To verify the effectiveness and efficiency of CGA for this the number of times that task completes successfully

navigation task, we have conducted experiments using three divided by the total number of attempts. Figures 9, 10
distinct environments, and three distinct range spags:, and 11 plot the results. T

Rrect, and Rapirect. The experiments are implemented in
C++. All the simulations run on a GNU/Linux PC with Intel |-states, especially usin@rect and Rypjrect achieve

Cor.e I7 CPU, 2.8GHz and_ 8GB memory. ) ) similar performance to the true I-state. We attribute the
Figures 6, 7, and 8 depict the three environments used in frequent failures fofR iy to the fact thatlyig, does

From these results, we conclude that the approximated

our tests. For each environment, we are interested in: not take the obstacles into account. We omitted this
« the relationship between task completion and number  step fromTy;gx because computinge® for complex
of landmarks, obstacle shapes is computationally expensive. The re-
« the time required to compute approximated I-state com- sults in Figure 9 show weaker performance for CGA
pared to the real I-state, than the other environments, which we attribute to the

« the approximation ratio (Equation 16), and narrow winding corridors in this environment. How-
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VIl. CONCLUSION

ever, the results for that environment do demonstrate This paper presented a method for representing a robot’s
the advantage of the double rectangle approximated |mcertain information about the current state using con-
states over the other range spaces. strained geometric approximation and demonstrated the ef-
i) Our second experiment compares the computation tim@ctiveness of that approach.
for our approximated I-states to the coo responding However, it remains as future work to consider additional
computation for the exact I-states. We us€d= 300  range spaces. In particular, one of the innovations in this
landmarks and executed 10 trials for each combingsaper was to approximate the robot's I-state as the union
tion of range space and environment. The results ag two rectangles. Notice, however, that this approach can
collected in Figures 12 13, and 14 for the resultspe generalized td-fold unions of rectangles, without any
which show a substantial reduction in computationsypstantial changes to the algorithm. In future work, we wil
time resulting from the range space approximations. Ihyestigate the tradeoffs between accuracy and efficieaty t
these same trials, we also computed the approximatiqte exposed by using larger numbers of rectangles in the
ratio @ as defined in Equation 16. The results show, agpproximated I-state. We are also considering range spaces
expected, the the double rectangle range space provid@gt allow more general polygonal shapes, but maintain effi-
the highest approximation quality. ciency by limiting their number of vertices, and by applying
iii) Finally, we performed experiments to evaluate theyppropriate expansion operations to enforce this limit.
impact of the selection of axes. This consideration is Finally, we note that there may also be some advantage to
important because botRrect and Rypjrect US€ 0nly  gigorithms that also generate provahiederapproximates
axis-aligned rectangles. We applied rotations betweesy the |-state. The discrepancy between the over- and under-
0 and 27 radians each environment, in increments oppproximations could then be used by the robot to estimate
/12, and conductedl0 trials with 250 landmarks ihe quality of its representation.
for each case. Across these trials, we computed the
success rates, which appear in Figures 15 and 16. We ACKNOWLEDGMENTS
not plot the results for the obstacle-free environment We gratefully acknowledge support for this work from the UNational
because the robot succeeded in every trial. Thes&'ence Foundation (1IS-0953503).
results illustrate that there is no substantial degradatio REFERENCES
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Fig. 13. Average computation time and approximation approxanattio
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