
Comparison of Constrained Geometric Approximation Strategies
for Planar Information States

Yang Song Jason M. O’Kane

Abstract— This paper describes and analyzes a new technique
for reasoning about uncertainty called constrained geometric
approximation (CGA). We build upon recent work that has
developed methods to explicitly represent a robot’s knowledge
as an element, called an information state, in an appropriately
defined information space. The intuition of our new approach
is to constrain the I-state to remain in a structured subset of the
I-space, and to enforce that constraint using appropriate over-
approximation methods. The result is a collection of algorithms
that enable mobile robots with extreme limitations in both
sensing and computation to maintain simple but provably mean-
ingful representations of the incomplete information available to
them. We present a simulated implementation of this technique
for a sensor-based navigation task, along with experimental
results for this task showing that CGA, compared to a high-
fidelity representation of the un-approximated I-state, achieves
a similar success rate at a small fraction of the computational
cost.

I. I NTRODUCTION

Mobile robots struggle constantly against uncertainty.
Whether this uncertainty arises from noisy and incomplete
sensing or from motions that are not fully predictable, a
robot’s success in reasoning about and managing its incom-
plete information plays a major role in determining its overall
effectiveness. At the same time, for applications in which
the robot’s size, mass, or energy resources are strictly lim-
ited (including, for example, micro robots, airborne robots,
and mobile sensor networks), computation power remains
a scarce resource. The goal of this paper is to describe
and evaluate a new technique calledconstrained geometric
approximation (CGA)that enables robots to trade precise
representation of uncertainty for computational efficiency
when dealing with two-dimensional state information.

This approach builds upon the large body of robotics work
that uses set-based representations of uncertainty [5], [9],
[13]. The intuition of these methods is to maintain a set,
called here aninformation state (I-state), of “possible states”
that are consistent with the robot’s history of actions and
observations. The robot can then use this set directly for
decision making. Maintaining such sets requires appropriate
geometric algorithms to perform updates when the robot
moves, and when it receives sensor data. The intuition of our
approach is to accelerate these potentially time-consuming
operations by maintaining only anoverapproximationof the
true information state, and constraining this approximation
to have a simple, well-behaved geometric form. Note that
although the quality of such approximations is well-known to

Yang Song and Jason M. O’Kane are with the Department of Computer
Science and Engineering, University of South Carolina, 301Main St.,
Columbia, SC 29208, USA. e-mail:{song24, jokane}@cse.sc.edu.

Fig. 1. A mobile robot navigating through its environment by observing
landmarks. The robot represents its knowledge about its own position using
a double rectangle approximated information state.

degrade as the dimension of the underlying space increases,
we believe that two-dimensional contexts are sufficiently
prevalent in mobile robotics applications to motivate special
attention to this case.

A crucial building block for this kind of filter is the se-
lection of arange spacecontaining the geometric primitives
that the robot can use to represent its I-state. We describe
a set of operations that the robot must be able to perform
on the elements of its range space. In principle, any set of
planar figures for which these operations can be computed
is a suitable range space. However, intuition suggests a
tradeoff between the expressivity of the range space and the
computational cost of executing those operations to maintain
information states under that range space. As a result, this
paper considers several different range spaces with varying
levels of expressivity, including a new range space we call the
double rectangle space. We also compare our results against
a high-fidelity polygonal representation to assess the amount
of inaccuracy incurred by the overapproximation process.

To evaluate its effectiveness, we simulated this technique
on a landmark-based navigation task, in which a robot
moves through a series of waypoints with the assistance of
a sensor that detects the presence of (but not the direction
or distance to) a collection of fixed landmarks along the
obstacle boundaries. In our experiments, we found that our
approximated I-states achieve task completion rates compa-
rable to high-fidelity I-state representations at a fraction of
the computational cost.

Prior work by the authors [12], [14]–[16] has used prelim-
inary versions of the constrained geometric approximation
method using specific, fixed range spaces. The new contri-
butions of this paper are (1) a careful formulation of the

operations that the range space must support, (2) a collection
of geometric algorithms for carrying out those operations for
a new range space in which each element is the union of two
axis-aligned rectangles, and (3) a series of experiments that
measure computation time, approximation quality, and task
completion rates for several different range spaces.

The remainder of the paper has the following structure.
After reviewing some related research in Section II, we in-
troduce our problem formulation in Section III. A definition
and some examples for the Constrained Geometric Approxi-
mation approach appear in Section IV, followed in Section V
by descriptions of update algorithms for rectangle and double
rectangle range spaces. Finally, we present simulation results
in Section VI and a preview of future work appears along
with some concluding remarks in Section VII.

II. RELATIONSHIP TO PRIOR WORK

The basic goal of our efforts is to understand how mobile
robots can represent and reason about uncertainty in their
own states. A common thread of much of the research on this
front in the robotics community has been the use of proba-
bilistic methods [7], [17]–[20], [22]. However, such methods
are often computationally expensive. For example, the stan-
dard Monte Carlo particle filter approach for localization [21]
is often implemented with hundreds or thousands of particles,
which can be prohibitively time- and memory-consuming
on robot platforms with strong limitations on computation
power. Moreover, in cases for which the number of particles
is kept relatively small, it can sometimes be difficult for the
robot to discern whether sufficiently many particles are in use
to ensure convergence to the correct localization solution. In
contrast to particle filtering, our approach is well-suitedto
platforms with severely limited computational resources.In
particular, because the approximated I-state we maintain is
guaranteed to be an overapproximation of the true I-state,
the robot can directly determine when the information it
represents is not sufficiently detailed to be useful.

Another branch of robotics, which has described itself
as a “minimalist” approach, considers algorithms that solve
robotic tasks in spite of limitations in the robot’s sensing
capability [1]–[4], [6], [8], [10], [11], [23]. However, these
methods are generally concerned with limitations in sensing,
but not in computation. In fact, the I-state computations they
propose are often quite complex [24], [26], [27]. The new
contribution of this work is to show that such precise I-
states are not always necessary for the robot to complete
its task, and that reasonable constrained approximations can
be computed much more efficiently.

III. PROBLEM STATEMENT

This section describes the basic model and notation we
use throughout the remainder of the paper.

A. Basic ingredients

We consider robot models with the following elements:

• A division of time into discrete stages, numberedk =
1, 2,

• A planar state spaceX = R
2, in which the location

of the robot at stagek is denotedxk. The state space
is partitioned intofree spaceXfree andobstacle space
Xobst.

• A non-emptyaction spaceU . The robot chooses one
actionuk ∈ U to execute in each stage.

• A set-valuedstate transition functionF : X × U →
pow(X), in which pow(X) denotes the power set
of X, that describes how the state changes. Because
the output of this function is a set of states (rather
than a single, fully predictable state), we can model
unpredictable state changes resulting from noise or from
unknown actions of other agents. Specifically, we define
xk+1 ∈ F (xk, uk). In this paper, we consider a specific
form for the transition function in which the actions are
additive, uncertainty arises from additive noise, and the
robot cannot pass through the obstacles:

F (xk, uk) = {xk + uk + θk | θk ∈ Θ(uk)} ∩Xfree.

Here Θ(uk) denotes a bounded set of possible noise
values, which may depend on the action the robot
selects.

• A non-empty observation spaceY , so thatyk ∈ Y
models the sensor information collected by the robot
at stagek.

• A set-valuedobservation functionh : X → pow(Y)
that describes how the observationyk is determined
by the current statexk. As with the state transition
function, the set-valued nature of this function allows
us to model sensing that is not fully predictable given
the state. From the observation function, we also define
the notion of anobservation preimage, which denotes
the set of states from which a given observation might
be obtained:

H(yk) = {xk ∈ X | yk ∈ h(xk), yk ∈ Y } . (1)

• An initial conditionη0 ⊆ X, indicating a set of possible
starting states. This allows us to model the information
available to the robot at the start of its execution.

The key limitation to the robot in this kind of scenario is
that the current state cannot be observed directly. Instead,
the robot must rely on other cues to draw conclusions about
the state. Specifically, the robot must base its decisions only
on the initial conditionη0, the history of actionsu1, . . . uk−1

it has executed, and the history of observationsy1, . . . , yk it
has received.

B. Information states

Based on history described above, at each stage, the robot
can compute the set of “possible states”. The following two
definitions clarify this idea.

Definition 1: A statexk ∈ X is consistent witha sensor-
action history (y1, u1, . . . , yk−1, uk−1, yk) if there exists
some state sequencex1, . . . , xk+1 ∈ X such thatx1 ∈ η0,
and

xi+1 ∈ F (xi, ui) (2)

for eachi = 1, . . . , k − 1, and

yi ∈ h(xi) (3)

for eachi = 1, . . . , k. �

Definition 2: The information state(I-state)ηk at stagek is
the set of all states consistent with the robot’s sensor-action
history. Theinformation space(I-space)I is the powerset
of X, which contains all possible I-states. �

The intuition is thatηk contains every state that the robot
might possibly be in, given the information available to it.A
detailed description of the computations required to compute
ηk+1 given ηk, uk, and yk appears in LaValle’s book [9].
The basic approach involves an “expansion” to account for
any possible changes in the state resulting from actionuk,
followed by an intersection with the observation pre-image
H(yk):

ηk+1 =

[

⋃

xk∈ηk

F (xk, uk)

]

∩H(yk). (4)

The robot can then execute plans that use feedback on the
I-space, of the formπ : I → U , so thatuk = π(ηk).

IV. CONSTRAINED GEOMETRIC APPROXIMATION

This section introduces our CGA approach for maintaining
approximated I-states. This method is motivated by the fact
that the changes to the robot’s I-states in each stage, as
described in Equation 4, can be prohibitively expensive to
compute directly.

A. Definition

The intuition of our approach is to maintain, instead ofηk
itself, only an overapproximationAk of ηk, so that

ηk ⊆ Ak. (5)

Note in particular that, becausexk ∈ ηk, we also havexk ∈
Ak.

The specific approximation scheme we employ is to select
a range spaceR ⊆ I within the I-space, and constrain our
approximated I-space to remain always a member of this
range space, so thatAk ∈ R. The advantage of this scheme
is thatI-state updates are often more efficient on range space
elements than on general I-states.The specific requirements
on the range space are detailed in the definition below.

Definition 3: A range spaceR ⊆ I is a set of I-states,
equipped with two functions:

i) An approximate action update functionT : R× U →
R, such that ifηk ⊆ Ak, then

⋃

xk∈ηk

F (xk, uk) ⊆ T (Ak, uk). (6)

ii) An approximate observation update functionO : R×
Y → R, such that ifηk ⊆ Ak, then

ηk ∩H(yk) ⊆ O(Ak, uk). (7)

�

In particular, notice that, given a range space with its
update functions, if we start withA0 = η0 and in subsequent
stages computeAk+1 from Ak, uk, andyk according to

Ak+1 = O(T (Ak, uk), yk), (8)

then by induction we haveηk ⊆ Ak at each stagek.

B. Examples

First, we consider two “typical” options for the range
space.

Example 1:LetRdisk denote the set of all disks inR2, each
parameterized by its center and radius. For any compact set
S ⊂ R

2, let SED(S) denote the smallest disk enclosingS.
Then we can define

Tdisk(Ak, uk) = Ak ⊕ {uk} ⊕ SED(Θ(uk)), (9)

in which ⊕ denotes the Minkowski sum operation. Notice
that, because bothAk and SED(Θ(uk)) are disks, the result
is a member ofRdisk. Similarly, we define

Odisk(Ak, yk) = SED(H(yk) ∩Ak). (10)

It is straightforward to see thatRdisk is a range space
under those operations. Computing Minkowski sums of disks
consists of the addition of their centers and radii, so it is
trivial to computeTdisk. Algorithms are known to evaluate
Odisk in time O(1) when the observation preimages are
quarterplanes [12] or circles [15]. �

Example 2:Let Rrect denote the set of all axis-aligned
rectangles inR2, each parameterized by its lower-left corner
a and its upper right cornerb. For any compact setS ⊂
R

2, let AABB(S) denote the smallest axis-aligned rectangle
enclosingS, that is, its “axis-aligned bounding box.” Then
we can define

Trect(Ak, uk) = AABB(Xfree∩

[Ak ⊕ {uk} ⊕ AABB(Θ(uk))]) (11)

in which ⊕ denotes the Minkowski sum operation. For the
approximate observation update function, we use

Orect(Ak, yk) = AABB(H(yk) ∩Ak). (12)

Directly from the definitions, we can show thatRrect is
a range space underTrect and Orect. Details about the
algorithms needed to computeTrect and Orect appear in
Section V-A. �

The next two examples illustrate two extremes allowed by
Definition 3.

Example 3:Let Rident= I denote the I-space itself. Using
the update functions

Tident(Ak) =
⋃

xk∈Ak

F (xk, uk) (13)

and
Oident(Ak, yk) = Ak ∩H(yk), (14)

clearlyRident is a range space. Note however, that comput-
ing Ak+1 using these functions is just as computationally
expensive as computingηk itself, so nothing is gained from
the (vacuous) approximation in this case. �

Example 4:Let Rtriv = {X} denote a singleton set whose
only element is the entire state space. Define

Ttriv(Ak, uk) = Otriv(Ak, yk) = X (15)

for all uk andyk. There functions are trivial to compute, and
clearly they makeRtriv is a range space. However, because
this range space essentially discards all of the information
available to the robot, its approximated I-states are not useful
for selecting actions. �

Examples 3 and 4 illustrate an apparent tradeoff between
faithfulness to the underlying true I-stateηk (seen in Exam-
ple 3) and efficient computation (seen in Example 4). In this
paper, we consider several different range spaces between
these two extremes, includingRdisk,Rrect, and a new range
space called the double-rectangle spaceRdblrect.

To evaluate the quality of the approximation throughout
the robot’s execution, we can compare the area of the
approximated I-state to the area of the I-state itself:

Qk =
1

k

k
∑

i=1

area(ηi)

area(Ai)
(16)

Note that higher values forQ demonstrate better approxi-
mation quality, up to a maximum value of1. We present, in
Section VI, experiments that measure these approximation
ratios, along with the robot’s success rate in completing its
task using each of these range spaces.

V. RECTANGLE AND DOUBLE RECTANGLE

RANGE SPACE UPDATES

This section presents algorithms for computing the update
functionsTrect andOrect for the rectangle range spaceRrect
(in Section V-A) and introduces the double rectangle range
spaceRdblrect and its update functionsTdblrect andOdblrect
(in Section V-B).

A. Updating rectangle approximated I-states

In the rectangle range space, to compute the approximate
transition functionTrect, as defined in Equation 11, we
proceed in four steps. Figure 2 illustrates these steps.

i) First, we computeAABB(Θ(uk)). In the general case,
in which Θ(uk) is represented by a list of vertices
on its boundary, this requires simply selecting the
extremal coordinates in each direction from this vertex
list.

ii) Second, we compute the Minkowski sumAk⊕{uk}⊕
AABB(Θ(uk)), using the result of Step 1. Because
each of the three operands is either a single point or a
rectangle represented by its lower left and upper right

Θ(uk)

Ak

Ak ⊕ {uk} ⊕ aabb(Θ(uk))

Ak ⊕ {uk}

uk

Ak ⊕ {uk} ⊕ aabb(Θ(uk))

Xobst

Fig. 2. Four steps to computeTrect. [top] Steps 1 and 2. [bottom left]
Step 3. [bottom right] Step 4.

corners, the results can be computed by adding the
coordinates of the respective corners together.

iii) Third, we intersect the result of Step 3 withXfree,
using standard geometric algorithms for boolean op-
erations on polygons [25]. The resulting set is a
polygonal region that containsηk, but is not necessarily
a rectangle.

iv) Finally, to enforce the constraint thatAk ∈ Rrect, we
compute the axis-aligned bounding box of the result
of Step 3. This uses the same algorithm as in Step 1.

To compute the approximate observation update function
Orect for general observation preimage shapes we follow
a similar process, but based on Equation 12 instead of
Equation 11. Note, however, that if the observation preimages
have a specific known shape, the use of a specialized
algorithm can accelerate the process. For example, in our
experiments, everyH(yk) is a planar disk. In that case
we can computeOrect(Ak, yk) in constant time using three
steps:

i) First, we compute the set of points at which the
boundary of the diskH(yk) intersects the boundary
of the rectangleAk. There are at most8 such points.

ii) Second, we consider each of the four extremal points
of the diskH(yk): its topmost, bottommost, leftmost,
and rightmost points. For each, we test whether it is
contained inAk.

iii) Finally, we find the smallest axis aligned rectangle that
contains the 8 or fewer points found in Steps 1 and 2.

See Figure 3.

B. Double rectangle approximated I-states

Both of the “typical” range spaces introduced above,Rdisk
andRrect, have the property that all of the approximated
I-states they allow are convex. In cases where the true I-

Ak

H(yk)

aabb(H(yk) ∩ Ak)

Fig. 3. ComputingOrect(Ak, yk) to find the rectangle approximated
I-state, given an observationyk.

stateηk is nonconvex, this presents a severe limitation to the
ability of Ak to closely approximateηk.

To overcome this limitation, we propose a more expressive
range space that contains non-convex approximated I-states.
Specifically, we consider a range space ofdouble rectangles:

Rdblrect= {R1 ∪R2 | R1, R2 ∈ Rrect} (17)

The intution is that eachAk ∈ Rdblrect is the union of
two rectangles, which allows the approximated I-state to
correctly represent many typical nonconvexities that occur in
ηk, including the case in whichηk “grows” around a reflex
vertex of an environment obstacle.

The central problem in using this range space is that there
is no obvious analog to the SED function we used to keepAk

in Rdisk, nor to theAABB function we used toAk in Rrect.
Instead, we propose a method, calledDRAP for “double
rectangle around polygon”, which accepts a polygonal region
of the plane as input, and produces a small double rectangle
containing that polygon as output. This algorithm attempts
to keep the size of the resulting double rectangle as small
as possible, but for efficiency reasons does not guarantee to
find the smallest polygon that covers the given polygon.

Algorithm 1 shows pseudocode for this process, and
Figure 4 shows an example of the output. The idea is to
build the double rectangle from the bottom up, starting
with two degenerate rectangles, each of which is a single
point at either a vertex of the polygon or at its centroid, as
“seeds”. Then an iterative process considers each edge of
the polygon in turn, and expands one of the two rectangles
to contain that edge. At each step, we choose between the
two possible expansions by greedily preferring the rectangle
to expand that results in the smallest total area. Finally,
to ensure that the result does not contain any unnecessary
overapproximation, we repeat this process over all pairs of
potential seed points, and retain only the smallest overall
double rectangle, as measured by its area. Notice that, since
the resulting double rectangle contains every boundary edge
of P , it is indeed an overapproximation ofP . For a polygon
with n vertices, the outer loop runsn(n+ 1) times and the
inner loop runsn times, thus, this algorithm takesO(n3)
time.

Based on Algorithm 1, we can define the range space

Algorithm 1 DOUBLERECTANGLEAROUNDPOLYGON(P)

V ← set containing the vertices ofP and its centroid
for each pair of verticesp, q ∈ V, p 6= q do

R1 ← {p}; R2 ← {q}
for each edgee of P do
R′

1 ← AABB(R1 ∪ e)
R′

2 ← AABB(R2 ∪ e)
if area(R′

1 ∪R2) < area(R1 ∪R′

2) then
R1 ← R′

1

else
R2 ← R′

2

end if
end for
insertR1 ∪R2 into C

end for
return argmin(R1∪R2)∈C(area(R1 ∪R2))

drap(P)

P

Fig. 4. Algorithm 1 returns a double rectangleDRAP(P) around the given
input polygonP .

operations onRdblrect in a manner similar to those forRrect.
For a double rectangle approximated I-stateAk = R1 ∪R2,
we have

Tdblrect(Ak, uk) = DRAP(Xfree∩

[Ak ⊕ {uk} ⊕ DRAP(Θ(uk))]), (18)

and

Odblrect(Ak, yk) = AABB(H(yk)∩R1)∪AABB(H(yk)∩R2).
(19)

Algorithms to evaluate these functions have the same form
as the analogous functions forRrect.

VI. CGA FOR LANDMARK-BASED NAVIGATION

This section describes an implementation in simulation
of the CGA approach for a landmark-based mobile robot
navigation task.

A. Task description

A point robot moves through a known environmentE,
which is populated with both obstacles and free space. The
robot’s action space isU = B((0, 0); vmax), a closed ball of
radiusvmax, centered at the origin. The robot’s actions can
be interpreted as commanded displacement vectors.

We assume that noise influences both the direction and
magnitude of the robot’s motion. The angular noise is

Θ(uk)

uk

δa
ng

δang
2δ
tr
an
s
||
u
k
||

2δtrans
||uk||

Fig. 5. The noise modelΘ(uk) used in our experiments. It considers angu-
lar error bounded byδang and translational error bounded byδtrans||u||.

bounded by a given angleδang, and the translation noise
is bounded byδtrans||u||. Therefore, the transition noise set
Θ(uk) is a slice of an annulus, as shown in Figure 5.

To guide its motions, the robot has a sensor that can
detect the presence of any of a collection of known land-
marks l1, . . . , lm along the obstacle boundaries, but not the
direction or distance to those landmarks. Each landmarkli
has an detection rangeri, and the robot can detect any of
the landmarks for whichxk ∈ B(li; ri). The observation
preimagesH(yk) are therefore disks.

The robot is given a sequence of waypointsw1, . . . , wn ∈
Xfree, such that each waypoint is visible inXfree from both
its predecessor and its successor. The goal is to visit each
of the waypoints in their given sequence. An execution is
considered successful if it achieves this goal within a fixed
time limit; an execution is declared a failure if the robot takes
too long to reach the final waypoint, or if it collides with an
obstacle.

For every range space, the robot aims to follow the
waypoints in order guided by the centroid point of the
approximated I-state. In other words, we define a plan that
uses a feedback onR as form π : R → U so that
uk = π(Ak). We denote the next waypoint byw and select
an action that moves towardw from the centroid ofAk:

π(Ak) =
w − centroid(Ak)

‖w − centroid(Ak)‖
vmax. (20)

B. Experimental Results

To verify the effectiveness and efficiency of CGA for this
navigation task, we have conducted experiments using three
distinct environments, and three distinct range spacesRdisk,
Rrect, andRdblrect. The experiments are implemented in
C++. All the simulations run on a GNU/Linux PC with Intel
Core i7 CPU, 2.8GHz and 8GB memory.

Figures 6, 7, and 8 depict the three environments used in
our tests. For each environment, we are interested in:

• the relationship between task completion and number
of landmarks,

• the time required to compute approximated I-state com-
pared to the real I-state,

• the approximation ratio (Equation 16), and

1

2 3

4

5

6

7
8

9

10

11

12

1314

15
16

17 18

Fig. 6. An office-like environment. The waypoints are numbered.

1 2

34

5

6

7

8
9

Fig. 7. An environment cluttered with obstacles, along with its waypoints.

• the robustness of the approximation scheme to the
rotations of the environment.

For all of the experiments we have some consistent
assumptions. The positions of the landmarks are pseudo-
randomly generated insideXfree. We set the noise model
angular error bound toδang= 0.4 and the transition bound
to δtrans= 0.2.

In each of these three environments, we performed a series
of three experiments, described below.

i) First, we varied the number of landmarksN between
5 and250 in increments of5 and calculated the robot’s
success rate. For eachN , we repeated the experi-
ment 15 times with different landmark distributions by
assigning distinct random seeds. The success rate is
the number of times that task completes successfully
divided by the total number of attempts. Figures 9, 10,
and 11 plot the results.
From these results, we conclude that the approximated
I-states, especially usingRrect andRdblrect, achieve
similar performance to the true I-state. We attribute the
frequent failures forRdisk to the fact thatTdisk does
not take the obstacles into account. We omitted this
step fromTdisk because computing SED for complex
obstacle shapes is computationally expensive. The re-
sults in Figure 9 show weaker performance for CGA
than the other environments, which we attribute to the
narrow winding corridors in this environment. How-

1 2

34

5

6

7

8
9

Fig. 8. An obstacle-free environment with 9 waypoints.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

S
u
cc
es
s
ra
te

Number of landmarks

Success rate in office-like environment

disk
rectangle

double rectangle
exact I-state

Fig. 9. Success rate vs number of landmarks for the environment in Fig. 6.

ever, the results for that environment do demonstrate
the advantage of the double rectangle approximated I-
states over the other range spaces.

ii) Our second experiment compares the computation time
for our approximated I-states to the coo responding
computation for the exact I-states. We usedN = 300
landmarks and executed 10 trials for each combina-
tion of range space and environment. The results are
collected in Figures 12 13, and 14 for the results,
which show a substantial reduction in computation
time resulting from the range space approximations. In
these same trials, we also computed the approximation
ratioQ as defined in Equation 16. The results show, as
expected, the the double rectangle range space provides
the highest approximation quality.

iii) Finally, we performed experiments to evaluate the
impact of the selection of axes. This consideration is
important because bothRrect andRdblrect use only
axis-aligned rectangles. We applied rotations between
0 and 2π radians each environment, in increments of
π/12, and conducted10 trials with 250 landmarks
for each case. Across these trials, we computed the
success rates, which appear in Figures 15 and 16. We
not plot the results for the obstacle-free environment
because the robot succeeded in every trial. These
results illustrate that there is no substantial degradation
of CGA’s performance as a function of environment
rotation.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

S
u
cc
es
s
ra
te

Number of landmarks

Success rate in cluttered environment

disk
rectangle

double rectangle
exact I-state

Fig. 10. Success rate vs number of landmarks for the environmentin
Fig. 7.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250
S
u
cc
es
s
ra
te

Number of landmarks

Success rate in obstacle-free environment

disk
rectangle

double rectangle
exact I-state

Fig. 11. Success rate vs number of landmarks for the environmentin
Fig. 8.

VII. C ONCLUSION

This paper presented a method for representing a robot’s
uncertain information about the current state using con-
strained geometric approximation and demonstrated the ef-
fectiveness of that approach.

However, it remains as future work to consider additional
range spaces. In particular, one of the innovations in this
paper was to approximate the robot’s I-state as the union
of two rectangles. Notice, however, that this approach can
be generalized tok-fold unions of rectangles, without any
substantial changes to the algorithm. In future work, we will
investigate the tradeoffs between accuracy and efficiency that
are exposed by using larger numbers of rectangles in the
approximated I-state. We are also considering range spaces
that allow more general polygonal shapes, but maintain effi-
ciency by limiting their number of vertices, and by applying
appropriate expansion operations to enforce this limit.

Finally, we note that there may also be some advantage to
algorithms that also generate provableunder-approximates
of the I-state. The discrepancy between the over- and under-
approximations could then be used by the robot to estimate
the quality of its representation.

ACKNOWLEDGMENTS

We gratefully acknowledge support for this work from the U. S. National
Science Foundation (IIS-0953503).

REFERENCES

[1] E. U. Acar and H. Choset, “Complete sensor-based coveragewith
extended-range detectors: A hierarchical decomposition interms of

Range Space Time (s) Approximation Ratio

Rdisk 0.292 0.220
Rrect 0.415 0.661
Rdblrect 1.491 0.720
I 26.895 1.000

Fig. 12. Average computation time and approximation approximation ratio
for the environment in Figure 6.

Range Space Time (s) Approximation Ratio

Rdisk 0.162 0.155
Rrect 0.441 0.632
Rdblrect 1.122 0.691
I 10.218 1.000

Fig. 13. Average computation time and approximation approximation ratio
for the environment in Figure 7.

critical points and voronoi diagrams,” inProc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001.

[2] S. Akella and M. Mason, “Posing polygonal objects in the plane by
pushing,” International Journal of Robotics Research, vol. 17, no. 1,
pp. 70–88, Jan. 1998.

[3] A. Blum, P. Raghavan, and B. Schieber, “Navigating in unfamiliar
geometric terrain,”SIAM Journal on Computing, vol. 26, no. 1, pp.
110–137, 1997.

[4] H. Choset and J. Burdick, “Sensor based motion planning: Incremental
construction of the hierarchical generalized Voronoi graph,” Interna-
tional Journal of Robotics Research, vol. 19, no. 2, pp. 126–148, 2000.

[5] M. Erdmann and M. T. Mason, “An exploration of sensorless manipu-
lation,” IEEE Transactions on Robotics and Automation, vol. 4, no. 4,
pp. 369–379, Aug. 1988.

[6] M. A. Erdmann, “Using backprojections for fine motion planning with
uncertainty,”International Journal of Robotics Research, vol. 5, no. 1,
pp. 19–45, 1986.

[7] P. Jensfelt and S. Kristensen, “Active global localisation for a mobile
robot using multiple hypothesis tracking,”IEEE Transactions on
Robotics and Automation, vol. 17, no. 5, pp. 748–760, Oct. 2001.

[8] I. Kamon and E. Rivlin, “Sensory-based motion planning with global
proofs,” IEEE Transactions on Robotics and Automation, vol. 13,
no. 6, pp. 814–822, Dec. 1997.

[9] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[10] A. Lazanas and J. C. Latombe, “Landmark-based robot navigation,”
in Proc. National Conference on Artificial Intelligence (AAAI), 1992.

[11] V. J. Lumelsky and S. Tiwari, “An algorithm for maze searching with
azimuth input,” inProc. IEEE International Conference on Robotics
and Automation, 1994, pp. 111–116.

[12] J. M. O’Kane, “On the value of ignorance: Balancing tracking and
privacy using a two-bit sensor,” inProc. Workshop on the Algorithmic
Foundations of Robotics, 2008.

[13] J. M. O’Kane and S. M. LaValle, “On comparing the power of robots,”
International Journal of Robotics Research, vol. 27, no. 1, pp. 5–23,
Jan. 2008.

[14] J. M. O’Kane and W. Xu, “Energy-efficient target tracking with
a sensorless robot and a network of unreliable one-bit proximity
sensors,” inProc. IEEE International Conference on Robotics and
Automation, 2009.

[15] ——, “Network-assisted target tracking via smart local routing,” in
Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2010.

[16] J. M. O’Kane, “Decentralized tracking of indistinguishable targets
using low-resolution sensors,” inProc. IEEE International Conference
on Robotics and Automation, 2011.

[17] R. Simmons and S. Koenig, “Probabilistic robot navigation in partially
observable environments,” inProc. International Joint Conferences on
Artificial Intelligence, 1995, pp. 1080–1087.

[18] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. B. Cremers,
F. Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte,
and D. Schulz, “Probabilistic algorithms and the interactive
museum tour-guide robot Minerva,”International Journal of Robotics
Research, vol. 19, no. 11, pp. 972–999, 2000. [Online]. Available:
http://ijr.sagepub.com/cgi/content/abstract/19/11/972

Range Space Time (s) Approximation Ratio

Rdisk 0.163 0.155
Rrect 0.396 0.642
Rdblrect 1.021 0.684
I 10.074 1.000

Fig. 14. Average computation time and approximation approximation ratio
for the environment in Figure 8.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6

S
u
cc
es
s
ra
te

Rotation angle (radians)

Success rate in rotated office-like environment

circle
rectangle

double rectangle
exact I-state

Fig. 15. Success rate vs rotation of the environment for the environment
in Figure 6.

[19] S. Thrun, W. Burgard, and D. Fox, “A probabilistic approach to
concurrent mapping and localization for mobile robots,”Machine
Learning, pp. 1–25, Apr. 1998.

[20] ——, Probabilistic Robotics. Cambridge, MA: MIT Press, 2005.
[21] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo

localization for mobile robots,”Artificial Intelligence, vol. 128, no.
1-2, pp. 99–141, 2000.

[22] M. Tomono and S. Yuta, “Mobile robot localization based on an
inaccurate map,” inProc. IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2001, pp. 399–404.

[23] B. Tovar, L. Guilamo, and S. M. LaValle, “Gap Navigation Trees:
Minimal representation for visibility-based tasks,” inProc. Workshop
on the Algorithmic Foundations of Robotics, 2004.

[24] B. Tovar and S. M. LaValle, “Visibility-based pursuit-evasion with
bounded speed,”International Journal of Robotics Research, vol. 27,
pp. 1350–1360, Nov. 2008.

[25] B. R. Vatti, “A generic solution to polygon clipping,”Communications
of the ACM, vol. 35, no. 7, pp. 56–63, July 1992.

[26] J. Yu and S. M. LaValle, “Tracking hidden agents throughshadow
information spaces,” inProc. IEEE International Conference on
Robotics and Automation, 2008.

[27] ——, “Probabilistic shadow information spaces,” inProc. IEEE Inter-
national Conference on Robotics and Automation, 2010.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

S
u
cc
es
s
ra
te

Rotation angle (radians)

Success rate in cluttered environment

circle
rectangle

double rectangle
exact I-state

Fig. 16. Success rate vs rotation of the environment for the environment
in Figure 7.

