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Abstract—We consider problems in which robots conspire
to present a view of the world that differs from reality. The
inquiry is motivated by the problem of validating robot behavior
physically despite there being a discrepancy between the robots
we have at hand and those we wish to study, or the environment
for testing that is available versus that which is desired, or
other potential mismatches in this vein. After formulating the
concept of a convincing illusion, essentially a notion of system
simulation that takes place in the real world, we examine the
implications of this type of simulability in terms of infrastructure
requirements. Time is one important resource: some robots may
be able to simulate some others but, perhaps, only at a rate that is
slower than real-time. This difference gives a way of relating the
simulating and the simulated systems in a form that is relative.
We establish some theorems, including one with the flavor of an
impossibility result, and providing several examples throughout.
Finally, we present data from a simple multi-robot experiment
based on this theory, with a robot navigating amid an unbounded
field of obstacles.

“Truth is beautiful, without doubt; but so are lies.”— Ralph Waldo Emerson

I. MOTIVATION AND OVERVIEW

Robotics papers usually include evidence of algorithms or
controllers that have been executed or evaluated on some
kind of system, typically comprising either physical robots
or a substitute. But what constitutes a robot demonstration,
exactly? One division is generally drawn between software
simulation and real robots. This is, at best, a rather rough
distinction for there is a spectrum of simulators spanning
a wide range of fidelities. What is certain is that there
are more choices, between full software simulation and full
physical implementation, than are generally recognized or
garner attention. Inasmuch as this is critical for robotics as
a scientific enterprise, it is perhaps curious that there has been
little formal treatment of representativeness or verisimilitude
beyond the complete hardware and software extremes, and
their consideration. This paper’s raison d’être is to initiate
a close, systematic examination of these other options. Fig. 1
gives a simple example of robots engaging in fakery of the
kind we are interested in.

We want to understand how one physical system may be
used to mimic the behavior of another. By system, we are con-
sidering a setting where observations are made (via sensors)
and used to choose actions that are effected (via actuators) and
this unfolds over time. We begin with a simplified discrete-
time setting (Definition 1) where we can contemplate exact
emulation (Definition 2), rather than considering approximate
or imprecise imitation. The central features which distinguish
the approach from other formalisms of emulation between
robot systems (see Section II) are the possibility of variable

Fig. 1. A collection of 10 robots conspiring to give the illusion of a
single robot moving through a field of obstacles. Robot 1 (center) remains
motionless. Eight other robots play the roles of eight nearby obstacles. A
tenth robot (far right) remains out of view. This allows Robot 1 to receive
sensor readings consistent with motion along a path traversing a very, very
large field of obstacles. (This illusion is examined, later, as Example 5.)

time expansion (somewhat akin to Milner’s weak bisimula-
tion [19]) and a narrow focus on mimickry only up to the
perceptual capabilities of the system under emulation.

We then formulate some particular questions, such as:
“What are the resources involved, how do we quantify resource
requirements, and relate them?” (Definition 3, Theorem 4),
“How do we compose or nest such systems?” (Theorem 2),
“What happens to these things when systems are modified
(Theorem 3)”, etc.

In terms of immediate utility for the practitioner, the present
paper shows how to conduct a novel sort of emulation with real
hardware where sensors, rather than being faked out of whole
cloth—as is usually done with computational or mathematical
models that are highly idealized coarse approximations—
provide real signals. As the instances we study herein show,
there may be considerable freedom in choosing different ways
to emulate one system with another, with implications for
future robotic laboratory infrastructure.

II. RELATED WORK
A. Animal studies: The inspiration for the present work

For decades, biologists have sought to chart the perceptual
limits of organisms and to understand how informational
mismatches affect behavior [8, 38]. Recent years have seen
virtual and augmented reality technologies being used in
this quest [39]. The animals studied range from small mam-
mals [11] down to insects [35], being studied both while walk-
ing [34] and flying [9, 10, 16]. As a concrete example, Takalo
et al. constructed a laboratory apparatus comprising a spherical
projection surface and a track ball that enables the detailed
study of the walking behavior of the cockroach (periplaneta
americana) by giving it synthetic visual stimuli [34].
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B. Practical simulation in software

Software simulations are an inescapable part of the current
robotics research landscape, with the community devoting
much time and attention to related questions, including through
the biennial SIMPAR conference. The software traces out some
element of a robot’s execution in a virtual (rather than physi-
cal) world, generating artificial sensor readings (or sometimes
state information), and evolving the robot system forward in
time.

Center to most discussions about software simulation are
considerations of fidelity: How closely does the simulator
mimic the real world? High-fidelity simulation software like
Gazebo [13] has been developed to account for many of
the complications experienced by the complex robots native
to many research labs. But fidelity may be traded for other
features as some efforts strike a “useful balance between
fidelity and abstraction” [37]. Other simulators, designed for
specific robot types [5, 6, 12, 25, 28, 31], optimization/control
schemes [36], and application domains [2, 21, 29], exist.

This work is partly a generalization of the traditional notion
of robot simulation, but with elements of the simulation con-
ducted physically rather than virtually. Closely related work
includes endeavors that alter aspects of the physical world
using mixed or augmented reality techniques [1, 3, 4, 32].
The distinguishing feature here is that modifications of the
world are made by robots and for robots.

C. Simulation as theoretical concept

Relating systems by the fact that they can simulate each
other, for some definition of simulation, is a recurring theoret-
ical theme. The symmetric notion, where two systems are each
able to match the other, yields the concept of bisimulation,
which is an equivalence relation. Bisimilarity was identified in-
dependently in modeling concurrent systems [18] and in modal
logic [24]; it also has a game theoretic interpretation [33].

Closer to home in robotics, invariants among sensori-
computation circuits of Donald [7], and the dominance relation
between robot systems introduced by O’Kane and LaValle
[23], bear parallels to the notion of illusion we introduce here,
particularly in the use of one system, or re-arrangements of the
resources contained therein, to emulate certain properties of
another. In this paper, the emphasis on perceptual equivalence
for the robots participating in the illusion is fresh.

III. PRELIMINARY DEFINITIONS

A. Systems

We wish to talk about relationships between pairs of systems
of robots. First, then, we need to define the notion of a system.
Because henceforward we shall consider systems consisting
of possibly many robots, we jump directly into definitions
that consider (potentially) multiple robots. Superscripts in
parentheses denote robot indices; subscripts are time indices.

Definition 1. A deterministic multi-robot transition system is
a 7-tuple (n,X,U, f, Y, h, x0), in which

1) n is a positive integer identifying the number of robots,
2) X = X(1)×· · ·×X(n) denotes a state space, composed

of individual state spaces for each robot,
3) U = U (1) × · · · × U (n) denotes an action space,

composed of individual action spaces for each robot,
4) f : X × U → X is a state transition function, defined

in terms of transition functions f (1), . . . , f (n) for each
robot, so that

f
(
(x(1), . . . , x(n)), (u(1), . . . , u(n))

)
=
(
f (1)(x, u(1)), . . . , f (n)(x, u(n))

)
.

5) Y = Y (1) × · · · × Y (n) denotes an observation space,
composed of individual observation spaces,

6) h : X → Y is an observation function, defined in terms
of observation functions h(1), . . . , h(n) for each robot,
so that h (x) =

(
h(1)(x), . . . , h(n)(x)

)
,

7) x0 ∈ X is the system’s initial state.

Such a system evolves in discrete time steps subject to:
xk+1 = f(xk, uk), and yk = h(xk).

A few simple examples, to be revisited later, illustrate the idea.

Example 1. Consider a caravan of n autonomous vehicles
moving down a long single-lane roadway. Suppose each robot
can control its own velocity, subject to some upper and lower
bounds, and can also measure the distance to the other robots
immediately in front of and behind itself. See Fig. 2. We
describe this as a deterministic multi-robot transition system

Sn,vmin,vmax
= (n,Rn, [vmin, vmax]n, f,R+×R+, h, x0), (1)

for which we’ll give the state transition function f and
observation h shortly. Here elements of the state space X =
Rn encode the position, along the one-dimensional roadway,
of each of the n robots. At each time step k, the action
u
(i)
k ∈ [vmin, vmax] of robot i denotes the velocity of that

robot at that time. Thus, we may define f(x, u) = x+ u. We
assume that vmin < vmax. Each observation y(i)k ∈ R+ × R+

is a pair of integers indicating the distance to the closest other
robot, if any, in each direction:

y
(i)
k =h(i)(xk)=

(
min

({
|x(j)k − x

(i)
k |
∣∣∣x(j)k < x

(i)
k

}
∪ {∞}

)
,

min
({
|x(j)k − x

(i)
k |
∣∣∣x(j)k > x

(i)
k

}
∪ {∞}

))
.

To refer to the individual measurements in a single observa-
tion, we use the symbols b and a for the distances behind and
ahead, so that y(i)k = (b

(i)
k , a

(i)
k ). Finally, the initial state x0 is

some known but arbitrary state.
Notice that (1) is, in fact, defining an infinite family of

systems, parameterized by the number of vehicles in the
system and the ranges of allowable velocities.

x
(3)
kx

(1)
kx

(4)
k x

(2)
k

Fig. 2. An example of the sort of system in Example 1, with n = 4. At
each time step k, each robot is at some point x(i)k along the roadway moving
with velocity u(i)k , and measures the distances y(i)k to the adjacent robots.



Fig. 3. [left] A team of simple robots in a bounded environment, as in
Example 2. [right] A single robot moving in a unbounded field of obstacles,
as in Example 3.

This is, of course, a heavily idealized model of caravaning
autonomous vehicles, crafted as an elementary illustration of
Definition 1. Richer models might, for example, expand X
to model multi-lane roadways or the robots’ lateral positions
within the lanes, enrich U and f to model the dynamics of
some physical system more faithfully, or modify Y and h to
model, say, a LIDAR sensor with greater fidelity.

Example 2. Consider a system in which many small disk-
shaped differential drive robots move in a shared, bounded,
planar workspace, with each robot aware of the relative posi-
tions of the other robots within some small sensor range. Refer
to Fig. 3[left]. One might realize this kind of system using, for
example, Khepera [20], r-one [17], or GRITSbot [26] robots.
We can model such a system by choosing the number of robots
n, the rectangular workspace W ⊆ R2, the maximum wheel
velocity vmax, and the sensor range r. We then define

Sdisks = (n,Xdisks, Udisks, fdisks, Ydisks, hdisks, x0) , (2)

in which the states in Xdisks = (W × S1)n, the actions in
Udisks = [−vmax, vmax]2 denote the left and right wheel veloc-
ities for each robots, the state transition function fdisks encodes
the well-known kinematics for differential drive robots, the
observations in Ydisks = ∪n−1i=0 (R2)n are lists of between 0 and
n−1 planar positions, the observation function h(i)disks for each
robot i returns a list of the relative positions of any other robots
within distance r of robot i, and the initial state x0 ∈ Xdisks
is a known but arbitrary state.

Example 3. Definition 1 is also suitable for describing single-
robot systems as a particular case with n = 1. For example,
a velocity-controlled robot moving in a very large field of
nearly-identical static obstacles, with a sensor to detect those
obstacles when they are nearby, might be modelled as

Ssingle = (1, Xsingle, Usingle, fsingle, Ysingle, hsingle, x0) , (3)

with Xsingle = R2, Usingle = [−vmax, vmax], and fsingle(x, u) =
x+u. The observation space Ysingle and hsingle may be defined
to return the locations of the center points of each obstacle.
See Fig. 3[right].

B. Policies

In the model, a robot operates by choosing actions to
execute, a concept detailed via a policy. The essential question
in formalizing policies is to determine what information is
used by the robot in considering its action. Now, to define the
policy concept, we adopt the style of LaValle’s book [15].

We begin, first, with something simple that will turn out
to be inadequate for our needs. If robot i, at time step k, has
sufficient information that it can determine its state, i.e., it is a
fully observable problem, then its policy π(i) might be defined
as a function of that state:

x
(i)
k

π(i)

7−−→ u
(i)
k . (4)

More likely, the robot will only have access to its history of
actions and observations to select its action

u
(i)
0 , . . . , u

(i)
k , y

(i)
0 , . . . , y

(i)
k

π(i)

7−−→ u
(i)
k . (5)

In what follows, one robot system will seek to present some
view of the world to match a description as will be seen by
some other, secondary system. This primary system must know
some aspects of that other system to fool it effectively. That
is, the primary system must be aware of the ‘fourth wall’
and know some of the expectations and qualities on the other
side of it. Throughout, we use a notational convention: we
distinguish the primary system (initially best thought of as
the physical system) by placing a hat over its variables; all
variables for the secondary are bare. Now, returning to our
formalization of the policy concept, we must generalize the
notation so far in order for it to present information about the
primary system and a secondary one, partitioned like such

û
(i)
0 , . . . , û

(i)
k , ŷ

(i)
0 , . . . , ŷ

(i)
k , x0, . . . , x`

π̂(i)

7−−→ û
(i)
k . (6)︸ ︷︷ ︸

i’s action
history

︸ ︷︷ ︸
i’s observation

history

︸ ︷︷ ︸
Whole other

system’s state
history

Note that the hatted variables in the domain are labelled from
0 to k, while the naked variables extend to `. This models
the fact that the primary and second systems may operate at
different time scales. Immediately, one sees other variations
that are possible, such as instances when π̂(i) uses only the
last element (x`) of the secondary system’s state. Or, when the
primary robots may communicate, the (i) superscripts may be
dropped when we consider the multi-robot system globally.
For simplicity, we restrict our attention in this paper only to
the basic case. In what follows, the term robot policy refers
to a function of the form in (6).

C. Illusions

Definition 2. For deterministic multi-robot transition systems
S = (n,X,U, f, Y, h, x0), and Ŝ = (n̂, X̂, Û , f̂ , Ŷ , ĥ, x̂0),
and integer 0 < m ≤ n, we say that Ŝ is an m-illusion of S
if there exist

(i) robot policies π̂(1), . . . , π̂(n̂) in Ŝ,
(ii) a strictly increasing function z : Z+ → Z+, and

(iii) an infinite series of functions ρk : Zm → Zn̂,
for any robot policies π(1), . . . , π(n) in S, such that for all
k ≥ 0 and all 1 ≤ i ≤ m, we have

h(i)(xk) = ĥ(ρk(i))
(
x̂z(k)

)
. (?)

Further, if Ŝ is an m-illusion of S, then a tuple of robot
policies, mapping functions, and a time scaling function



(π̂, (ρ1, ρ2, . . .), z) that ratifies the definition of illusion is
called a witness to that illusion.

The preceding definition warrants some dissection.
1) We understand the system S to be the secondary one, i.e.,

the one that we intend to emulate. The system Ŝ is the
physical system whose execution will be orchestrated to
appear, in the perception of some of its robots, to operate
in the same manner as S.1

2) The positive integer parameter m is the number of robots
in S that are recipients of the illusion, whom we dub the
participant robots. To simplify the notation, we will assume
without loss of generality that the first m robots in S,
according to their indices, are the participants. (One might
also expect for m ≤ n̄ always, as it seems that the number
of participant robots cannot exceed the number of robots
in the system; in fact, this need not be so.)

3) The Ŝ robot policies π̂(i) described in condition (i) govern
the movements of the robots in that system.

4) The function z from condition (ii) establishes the relation-
ship between the time scales of the two systems, so that
z(k) defines the physical time step in Ŝ corresponding to
time step k in S.

5) The functions ρk from condition (iii) indicate, for each
time step k of the execution in S, which robots of Ŝ play
the roles of each of the participant robots in S.

Pulling these elements together, the constraint marked (?)
requires, at each time step in S, that every participant robot
is mapped, via the ρ function for that time step, to a robot in
Ŝ that experiences the same observation in that system as the
mapped robot should experience in S. A few examples follow.

Example 4. Recall the autonomous caravan systems intro-
duced in Example 1. For any such system S = Sn,vmin,vmin ,
we can form a 1-illusion from any system of the form
Ŝ = S3,v̂min,v̂max

. This holds regardless of the number n of
robots in S and of the range of actions [v̂min, v̂max] available
to each robot in Ŝ.

One way to construct such an illusion is to select a policy π̂
in which robot 1 moves at a constant speed (v̂min + v̂max)/2.
The other two robots, knowing the desired observation y(1)k =

(a
(1)
k , b

(1)
k ) from S, position themselves on opposite sides of

robot 1, moving as fast as possible at each stage in Ŝ toward
positions where x̂(1)

k̂
− x̂(2)

k̂
= b

(1)
k and x̂

(3)

k̂
= x̂

(1)

k̂
= a

(1)
k .

To satisfy the remaining conditions of Definition 2, define z
to return the time when robots 2 and 3 in Ŝ have reached
their target positions, and the sequence of mapping functions
ρk : {1} → {1, 2, 3} as a constant series of functions, under
which 1

ρk7−→ 1 for all k. See Fig. 4.

Example 5. Recall the system Ssingle introduced in Example 3.
Suppose there exists an upper bound m on the number

1Occasionally human illusionists opt for for a certain type of stereotypical
headwear ( ). Likewise, our convention uses notation with hats (̂ ) to
refer to systems whose robots are performing an illusion. The parallel is
unintentional but perhaps nonetheless a useful aid to understanding.

Ŝ

S

x
(3)
kx

(1)
k x

(2)
kx

(4)
k

x̂
(1)

k̂
x̂
(3)

k̂
x̂
(2)

k̂

ρk(1) = 1

Fig. 4. An illustration of Example 4. A system of three vehicles reproduces
the observations expected in a system with potentially many more robots.

of obstacles visible from —that is, within distance r of—
any position that the robot might reach. Then Sdisks, from
Example 2, is a 1-illusion for Ssingle, provided that it has at
least m+1 robots, its workspace W is large enough to contain
a circle of radius r, and the sensing range in Sdisks is no smaller
than the sensing range in Ssingle.

One way to achieve this illusion is to select robot 1 in
Sdisks to act as the recipient of the observations as required
by (?). This robot remains motionless at the center of the
physical workspace W . At each stage k in Ssingle, the desired
observation y(1)k is a list of positions at which robot 1 should
perceive obstacles. We choose a policy π̂ that directs the some
of the remaining n̂ − 1 robots to those positions relative to
robot 1, and directs the remaining robots to positions beyond
its sensing range. See Fig. 5. Many different policies, with
varying degrees of time efficiency, can achieve this.

Next, we consider the execution time in the primary system
as a resource cost in which we are interested.

Definition 3. If Ŝ is an m-illusion of S with witness
(π̂, (ρ1, ρ2, . . .), z), then the illusion is an (m, τ)-illusion if
the sequence

z(2)− z(1), z(3)− z(2), z(4)− z(3), . . .

is bounded above by τ . The constant τ , which we can take
to be an integer owing to the definition of z, is called the
slowdown of the illusion.

In broad terms, we may then consider 1
τ , the inverse

slowdown, to be time efficiency of an illusion.

Example 6. Recall Example 4. That illusion has slowdown
d2(vmax − vmin)/(v̂max − v̂min)e.

visible robots for

each visible obstacle

robot 1 at origin other robots out of view

Fig. 5. A 1-illusion of Ssingle using Sdisks.



IV. BASIC PROPERTIES OF ILLUSIONS

Definition 2 provides a foundation for understanding the
notion of one system presenting an illusion of another. Next,
we present some results that follow from that definition. As
an initial sanity check, we show that a system does indeed
present a faithful and efficient illusion of itself.

Theorem 1 (identity). A deterministic multi-robot transition
system S = (n,X,U, f, Y, h, x0) is an (n,1)-illusion of S.

Proof: We observe that, if z and ρk are taken as identity
functions, then (?) holds when π̂(i) = π(i).

Considering the preceding theorem, one might wonder
whether a stronger statement ought to be made, to the effect
that every S can provide an m-illusion of itself for any
m < n. That statement is absent because it is false. Supposing
m+ p = n with p > 0, then there are p robots that may show
up under h. Additional properties of h are needed to ensure
that the p robots can be made invisible.

With additional assumptions on the dynamics of S, i.e., if
the system can be made to either loiter or affect state changes
more slowly, then an (n,j)-illusion with j > 1 is also possible.

Rather more interesting is the nesting of systems:

Theorem 2 (composition). If ̂̂S = (̂̂n, ̂̂X, ̂̂U, ̂̂f, ̂̂Y , ̂̂h, ̂̂x0), is
an (n̂, τ̂)-illusion of Ŝ = (n̂, X̂, Û , f̂ , Ŷ , ĥ, x̂0), and Ŝ is an
(m, τ)-illusion of S = (n,X,U, f, Y, h, x0), then ̂̂S is an
(m, (τ · τ̂))-illusion of S.

Proof: Omitted due to space limitations. See [30].
Note that, in (iii), function composition requires that ̂̂S

be an n̂-illusion of Ŝ in order for the types to agree. If ̂̂S
were only an m̂-illusion of Ŝ with m̂ < n̂, then the n̂ − m̂
extra robots are needed to create an illusion for S. This arises
because we do not talk of some subset of robots in one system
sufficing to provide an illusion of another system, since all
the primary robots need to participate to ensure the illusion
succeeds, even if participating constitutes moving to ensure
they’re unobserved, ruining the illusion otherwise.

Illusions hold up to the set of observations made in the
secondary system. One might expect that Y ⊆ Ŷ but, in fact,
Y may be larger or smaller, though the pair cannot be disjoint.
It is not the range but the image which matters:

Definition 4. The perceptual occurrence of deterministic sys-
tem S = (n,X,U, f, Y, h, x0), is the subset of Y , denoted
Y occ, that is produced under h via states reachable by some
robot policies π(1), . . . , π(n).

In Definition 2, requirement (?) implies that if
(n̂, X̂, Û , f̂ , Ŷ , ĥ, x̂0) is an illusion of (n,X,U, f, Y, h, x0),
then Y occ ⊆ Ŷ occ.

Now we might inquire as to the implications for illusions
under alteration of the robots’ sensors. We model potential
degradation, or preimage coarsening, of sensors via a function
in the observation space, where non-injective transformations
will conflate things that were distinguishable formerly.

Theorem 3 (coarser observations). If (n̂, X̂, Û , f̂ , Ŷ , ĥ, x̂0)
is an illusion of (n,X,U, f, Y, h, x0), then, for any function
κ : Y ∪ Ŷ → Z, we have that (n̂, X̂, Û , f̂ , Z, κ ◦ ĥ, x̂0) is an
illusion of (n,X,U, f, Z, κ ◦ h, x0).2

Proof: The original witness ratifies the new illusion, since

h(i)(xk) = ĥ(ρk(i))
(
x̂z(k)

)
=⇒ κ◦h(i)(xk) = κ◦ĥ(ρk(i))

(
x̂z(k)

)
,

in which the left equality needs to hold over Y occ only.
It may seem, intuitively, that if S’s sensors are weakened,

then that should only make illusionability more feasible. But
for an illusion to be passable, the definition requires that it
appear identical to S, which thus prohibits the robot’s sensors
from operating with implausibly high fidelity. We note that,
though beyond the scope of this work, if one may alter the
secondary robot system, then the story changes. One could
apply κ(·) computationally, degrading after the sensor’s signals
ex post facto, by introducing a small software shim.

V. THE LIMITS OF ILLUSION

Why have two definitions (Definition 2 and 3) to separate
m-illusions from (m, τ )-illusions? The next result establishes
that pairs of systems exist where the primary system is
sufficiently powerful to conjure an illusion of the second, but
the gap in relative speeds has no limit. Put another way, for any
execution in the one, the other can create a faithful illusion,
but no bound exists on the illusion’s slowdown (i.e., there is
no finite τ such that it is an (m, τ)-illusion). The result is that
it is impossible for the primary system to present any illusion
of the secondary system satisfying Definition 3.

Theorem 4 (Illusions with no bounded τ ). There exist de-
terministic multi-robot transition systems S and Ŝ where the
latter is an m-illusion of the former, but for which no τ exists
such that it is an (m, τ)-illusion.

Proof roadmap: We give constructions for both S and Ŝ,
then show that Ŝ is indeed a 1-illusion of S (Lemma 1); and
also, that any desired bound placed on the slowdown will be
surpassed (Lemma 2).

Construction 1 (Sthirds). We define the following deterministic
multi-robot transition system

Sthirds =
(
1,R+,

{
− 1

3 , 0,
1
3

}
, fadd, {⊥} ∪ Z+, hsqz, x0 = 0

)
,

where fadd(x, u) = f
(1)
add (x, u) = x+u, and, dubbed squeeze,

hsqz(x) =

{
q if ∃q ∈ Z+ s.t. − 1

4·2q ≤ x−
q
3 ≤

1
4·2q ,

⊥ otherwise.

This describes a robot that lives on the positive x-axis and
which moves along in discrete steps, each with size 1

3 units.
This is shown as the green robot in the top diagram in
Fig. 6. The robot is equipped with a stylized range sensor
that measures a quantized distance to an obstacle at the

2This theorem holds for a slightly broader, albeit more obscure, class of
functions. One may take the disjoint union as the domain, κ : Y t Ŷ → Z,
so long as there is agreement on the function restrictions up to perceptual
occurrence in the secondary system, i.e., ∀y ∈ Y occ, κ|

Y occ(y) = κ|
Ŷ occ (ŷ).



origin (the blue information in the diagram). The sensor’s
precision increases (geometrically) with increasing x, with
readings outside stripes of increasing precision return a generic
reading, ⊥. (The sensor’s behavior here is essentially arbitrary
for the construction, the symbol emphasizes its insignificance.)

Construction 2 (Ŝbinary). Next, consider deterministic multi-
robot transition system

Ŝbinary =
(
1,R+,

{
1
2p | p ∈ Z

}
, fadd, {⊥} ∪ Z+, hsqz, x̂0 = 0

)
,

where fadd and hsqz are as in the preceding construction.
This robot also lives on the positive x-axis and moves in

steps. It has rather more options for its movement, it moves
in either direction with steps that are negative powers of two.
This is shown as the red robot in the bottom part of Fig. 6,
where the arrows show ‘hops’ of length − 1

4 ,−
1
8 ,

1
2 ,

1
4 ,

1
8 ,

1
16 ,

these being a sample of some actions available to the robot.

Lemma 1. Ŝbinary is a 1-illusion of Sthirds.

Lemma 2. For any 1-illusion of Sthirds by Ŝbinary, and any
finite T , the constant policy uk = 1

3 for the robot in Sthirds

implies that some 0 < NT exists where

T < max
k∈{1,...,NT }

{z(k + 1)− z(k)} .

Proof: The two Lemmas prove Theorem 4. See [30].

VI. PHYSICAL DEMONSTRATION IN THE ROBOTARIUM

As a proof-of-concept, we implemented the illusion de-
scribed in Example 5 both in simulation and on a physical
robot testbed. Simulations were conducted using an imple-
mentation in Python; physical experiments were conducted in
the Robotarium [27]. Fig. 1 shows a snapshot of the execution.
Refer also to the supplemental video.

Note that Example 5 calls for the complicit robots to assume
certain positions, but does not prescribe which robots should
take which roles. We implemented three distinct strategies:

(i) A naı̈ve matching strategy, in which robots are assigned
to roles from left to right, in order of their indices.

(ii) The Hungarian algorithm [14, 22] for optimal task
assignment, wherein some robots are assigned to obsta-
cle roles and the remaining robots travel to the nearest

Fig. 6. A visual representation of the two systems in Constructions 1 and 2.
The green robot at the top of the figure is Sthirds, the red robot below is Ŝbinary.
Both measure the environment with hsqz, yielding a sensor whose preimage
information is diagrammed in blue.
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Fig. 7. Simulation results showing the impact of the number of robots and
the policy on time efficiency.

location outside of the sensor range. The matching is
selected to minimize the total travel time.

(iii) An enhancement of the Hungarian strategy with a
heuristic that directs the offstage robots to the locations
of the nearest obstacles that are not yet visible.

One might expect, in this context, that the time efficiency of
the illusion might be impacted both by the number of robots
employed in the physical system and by the policy used in
that system to carry out the illusion. To test this hypothesis,
we performed a series of simulations of the policies described
above. We conducted 10 trials, each using a distinct randomly-
generated path for the robot in S. For each, we executed
each of the three illusions described above and measured the
amount of real time in Ŝ needed to execute the policy in S.

Several notable trends appear in the results, which are shown
in Fig. 7. Most plainly, the relative efficiency between the three
algorithms matches what one might expect: Better use of more
information leads to a more time-efficient illusion. For the
two methods based on Hungarian matching, opposite trends
appear as the number of robots increases: the basic Hungarian
approach loses efficiency as robots are added, presumably due
to interference from avoiding collisions between the robots.
In contrast, the heursitic that positions robots near locations
where new obstacles are likely to appear in the future is better
able to take advantage of additional robots waiting ‘in the
wings’ to take on roles when needed, leading to improvements
in efficiency as the number of robots increases.

VII. CONCLUSION

There can be an immense variety of very different means
to realize the same illusion. The single lesson that emerges
most clearly from our demonstration implementation —both
the more thorough simulation trials and the physical instance
on the robotarium, where a time cut-off is imposed— is that
distinct approaches may have time efficiencies that differ
considerably. Even the more efficient curve in Fig. 7 has a
slowdown factor of about 9, which is likely an impediment
when producing an illusion of robots that one has direct access
to. But consider an illusion for the system in Example 3 where
the field of obstacles is unbounded: it simply can’t be achieved
physically. Moreover, if the 1-illusion has both the participant
and the obstacles moving, it is possible to present an illusion
for a robot that is faster than any we own. Judging the value
of the idea by an early implementation is probably unwise.
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