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Abstract— In this paper we present an integrated system
for observation of transient freshwater phenomena, mainly
Harmful Cyanobacteria Blooms, using a fleet of Autonomous
Surface Vehicles (ASVs) fitted with onboard in-situ water
quality sensors. Automated water quality sampling is often
done following a predetermined trajectory, aiming to achieve
the most cost effective representative coverage. We build on
our previous work — the skeleton-of-skeleton technique, which
selects sampling points representative of the body of water.
Given a shared depot, the goal of the proposed algorithm is
to produce trajectories for each ASV such that each sampling
point is visited only once, thereby minimizing the traversal
time for each robot and optimizing the operational timeline
of the entire fleet. We formulate this NP-hard problem within
the framework of the Multiple Traveling Salesperson Problem
(mTSP), and use heuristics to address it. Water quality data was
collected through multiple field deployments. Our experiments
highlight the scalability of the automated system and are
foundational in developing water quality sampling strategies.

I. INTRODUCTION

Environmental monitoring tasks, such as water sampling
and bathymetric mapping, are pivotal in studying hydro-
logical processes. They are also instrumental in identifying
early indicators of harmful toxins like Harmful Cyanobac-
teria Blooms (HCBs). Traditionally, these tasks have been
resource-intensive, time-consuming, and occasionally haz-
ardous as they have been primarily carried out manually
by humans. Therefore, automating such processes would en-
hance the efficiency and safety of monitoring operations [1],
[2]. As an example of such automation in practice, Fig. 1
shows an AFRL Jetyak ASV [3], collecting water quality
measurements as it traverses through a lake.

The prevalent sampling pattern used in systematic envi-
ronmental data collection is the ”lawnmower” pattern. This
method involves a vehicle moving in parallel lines, akin to
a lawnmower, to capture samples across an entire region.
However, the unstructured nature of lakes combined with
the resource constraints of ASVs call for a more practical
approach to sample collection. Multi-ASV methods present
a promising alternative [4]–[6]. Nevertheless, the typically
slow-changing nature of water quality measurements [7]
combined with a focus on near-shore (littoral) areas neces-
sitates a more innovative coverage strategy.

In previous work, we introduced the skeleton-of-skeleton
algorithm, which leverages the medial axis of the target
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Fig. 1: AFRLJetyak ASV collecting water quality data along
trajectory at Lake Wateree, SC, USA.

region to guide an ASV’s trajectory [8], [9]. This algorithm
systematically covers the target water body by traversing
points equidistant to the medial axis and the water bound-
aries. In the presence of islands, the skeleton-of-skeleton
algorithm yields a set of disconnected paths, leading to a
major route around the lake and additional paths around each
island [9].

Building on these foundations, the present study designs
a complete system aimed at enhancing water sampling effi-
ciency through the utilization of multiple ASVs. First, we use
the skeleton-of-skeleton algorithm, which generates disjoint
linear contours representing the environment along the areas
of interest. Next, we formulate the problem as an mTSP
instance, and solve it using heuristics to find the optimal
routes that visit all these sampling points in the minimum
deployment time. Finally, we deploy the resulting paths on
ASVs on the surface of large lakes, collecting water quality
data to aid in understanding and detecting HCBs.

As such, the contributions of our system are as follows:
• Extending the skeleton-of-skeleton algorithm to a multi-

agent system.
• Extensive field deployments on the surface of lakes in

South Carolina collecting water quality data using a
YSI’s EXO2 Multiparameter sonde [10] and an OTT’s
Nitrate Sensor [11].

The field experiments demonstrate that our enhanced ap-
proach adeptly addresses the issues with disconnected paths
and ensures thorough and optimized coverage of expansive
water bodies. This approach holds promise for practical water
sampling tasks, including potential HCB detection.

II. RELATED WORK

Research on coverage path planning has been ongoing for
a considerable time, with several studies delving into the



subject [12], [13]. Traditional approaches usually involve
utilizing a grid-based pattern, such as the seed-spreader
algorithm [14], the boustrophedon algorithm [15], or the
lawnmower pattern. These methods have been expanded
to suit various environments, including known [16] or un-
known [17] settings, and for single [18], [19] or multi-
ple [4], [5] ASVs that operate under Dubins constraints.
The fundamental goal of these techniques is to ensure that
the vehicle covers every open space in the area. However,
when there are resource constraints, such as a limited op-
eration period relative to the environment’s size, it becomes
impractical to achieve complete coverage. For instance, an
Unmanned Aerial Vehicle (UAV) might only have a 20-
minute operational window, while many ASVs can operate
for several hours. To overcome this limitation, a prevalent
approach is to guide the ASV to areas of interest using
information-driven coverage [20], [21]. This approach has
proven helpful in mapping coral reefs [22] and locating the
source of plumes [23].

A common theme through much of the related work is
using solutions that rely on solvers for TSP or similar NP-
hard problems. When dealing with a single robot coverage
problem, some works [16] have defined the problem in a
manner that allows it to be solved in polynomial time,
given certain assumptions. Lopez et al. [24] also focus on
monitoring water quality in large bodies of water. Their
work utilizes an adaptation of TSP, seeking to maximize
(rather than minimize) the distance traveled to obtain thor-
ough coverage. Nevertheless, when dealing with multi-agent
systems, the problem is known to be NP-Hard [25]. Multiple
approximation methods have been proposed to solve the
complete area coverage problem [4], [5], [26]. Nevertheless,
these methods are not suitable when the the boundaries of
the coverage regions are unstructured.

When tackling the issue with unstructured boundaries,
some works has been done to design patterns specifically
suitable for coverage of riverine environments [1], [27].
These methods rely on the inherent structure of the rivers and
the domain knowledge on what type of strategies are used by
scientists for bathymetric mapping. However, these methods
aim to perform a complete coverage depending on the type
of the surveying sensors being used. When the resources
are limited and the region has unstructured boundaries in
our earlier work we have proposed a method that uniformly
samples a very large environments using the concept of
points equidistant from obstacles [2], [8].

The latter is based on the paradigms of computational
geometry. The concept of curves in a geometric space, which
denote free space and can serve as simplified representations
of the space’s topology, is commonly referred to by a number
of different names, such as Medial Axis, Skeleton, General-
ized Voronoi Graph, and Center of Maximal Disks [28], [29].
Generalized Voronoi Graphs (GVG) [30] have been widely
used for various purposes, including exploring indoor spaces,
navigation without exact localization [31], and reducing
localization errors [32]–[34].

A similar boundary coverage problem with multiple

robots [35] was addressed by reducing it to the k-rural post-
man problem, but in a context where boundaries near each
other can form ‘viewing channels’ that allow the robots to
observe multiple boundaries from a single vantage point. In
contrast, our work uses the skeleton-of-skeleton algorithm [8]
to select representative paths to cover rather than requiring
viewing from within a specific range. Our work, in contrast,
is targeted toward water bodies that cannot adequately be
covered in full by a single robot because of energy and time
limitations. Hence we propose to extend the unstructured area
coverage problem by employing multiple robots to enhance
the monitoring efficiency.

III. PROBLEM STATEMENT

This section formulates the planning problem as an mTSP,
aiming to balance route coverage optimization with workload
equity across a fleet of robots. The core objective is twofold:
to reduce total travel distance,

∑m
i=1 |τi|, for enhanced

operational efficiency, and to normalize the distribution of
route lengths, thereby ensuring a minimized deployment
timeline through equitable task allocation among robots,
minVar(|τi|), where {τ1, τ2, . . . , τm} represents the set of
trajectories for each robot.

Input
• m robots, all sharing the same depot. If m = 1, the

problem is reduced to a classic Traveling Salesperson
Problem (TSP).

• Skeleton-of-skeleton generated paths, discretized to a
sequence of waypoints P delineating the routes to be
covered.

Assumptions
Several assumptions are considered:
• A static environment, no dynamic obstacles.
• Robots have uniform speed and sensor capabilities.
• Robots share a single depot (start and end point).

Output
• A set of paths {τ1, τ2, . . . , τm}, with each trajectory

τi : [0, T ] → R2 × [0, 2π) representing the movement
of the i-th robot.

IV. PROPOSED APPROACH

The proposed approach presents a complete system solu-
tion for automating the water sampling task using m number
ASVs. We define the problem on a known environment
described by an occupancy grid M : R2 → 0, 1, which is
extracted from a satellite image. This approach is applicable
to any problem where a set of disjoint paths needs to be tra-
versed by m number of robots. The particular application we
are investigating is consolidating the output of the skeleton-
of-skeleton coverage path [8] into a set of trajectories to be
traversed by m robots.

Our approach consists of two main phases:
(1) We utilize the skeleton-of-skeleton coverage algorithm

[8] to generate efficient water sampling paths representative
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Fig. 2: Analysis of the Skeleton-of-the-skeleton algorithm at Lake Keowee, SC, USA. (a) Satellite view of the area. (b) Obstacle and free
space binary map. (c) Enhanced safety by dilating obstacles in the free space map. (d) The main free-space skeleton is highlighted in red.
(e) After trimming, both primary (red) and secondary (blue) skeletons. (f) Waypoints for ASVs generated from the skeletons.

of the selected area which the robots will follow given the
layout of M . These patterns can be described as a sequence
of n curves C1, ..., Cn; where Ci : R

2 → [0, 1]. We discretize
each curve with step size t and approximate it as a sequence
of points Ci = {pi1, pi2, ..., pij}.

(2) We formulate the NP-hard problem within the frame-
work of mTSP to find m efficient paths that traverse all the
discretized curves in the least time possible. The input is D,
a distance matrix of obstacle-free shortest path distances of
the sequences of points representing the curves Ci.

Algorithm 1
Require: D: the distance matrix, m: number of robots

1: if m = 1 then
2: T ← TSP(D)
3: return T
4: end if
5: Search Params:
6: Initial: Christofides
7: Meta: GLS
8: T ← mTSP(D,m, Initial,Meta)
9: return T

A. Skeleton of Skeleton

Here, we outline the Skeleton-of-skeleton approach [8].
1) Area of Interest: We first start by selecting a

rectangular-shaped area of interest. We do so by noting the
area’s top left and bottom right GPS coordinates. We capture
a satellite imagery snapshot, as shown in Fig. 2(a) aligning
with the outlined method in [8].

2) Binary Map: For image processing purposes, it is
easier to work with a landmass layer of the map, so we also

get that which is later transformed into the black and white
image (white for free space – water, and black for obstacles);
see Fig. 2(b).

3) Safety parameters: In Fig. 2(c), the image is dilated
and eroded using a safety distance (calculated based on the
pixelArea we picked earlier) to ensure the ASV maintains a
safe distance from docks and other near shore obstacles not
present in the landmass layer. Further manual inspection and
editing of the black and white map ensure that such objects
are recorded.

4) Skeleton of free space: In Fig. 2(d), we capture the
morphology of the free space by extracting the medial axis
of the free space. We tested several variations of the skeleton
algorithm. We found that the Lee skeleton algorithm [36]
worked best in our case across different bodies of water and
required less edge trimming. The skeleton is then trimmed
eliminating edges that barely enter coves and removing small
edges.

5) Skeleton of skeleton: The medial axis between the
original Skeleton in Fig. 2(d) and the dilated environment
in Fig. 2(c) is generated, resulting in one (if there are no
islands) or more closed-curve ASV trajectories. Fig. 2(f)
shows the final trajectory/trajectories in red. The generated
trajectory visits points equidistant to the Skeleton and the
obstacle boundaries.

B. Solving m-TSP for Efficient ASV Routing

Given all the closed curve contours generated from the
previous step, Algorithm 1 provides a methodology to output
enhanced paths for all the robots T , such that both

∑m
i=1 |τi|

and Var(|τi|) are minimized.
D, the distance matrix constructed using the free shortest

path distances of the sequences of points representing the
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Fig. 3: Visualization of task assignments in Lake Murray and Lake Keowee. Different colors represent individual ASVs. Lake Murray:
(a) Single ASV, (b) Dual ASVs, (c) Tri-ASVs. Lake Keowee: (d) Single ASV, (e) Dual ASVs, (f) Tri-ASVs. Note the location of the
depot on each figure.

curves Ci, determined using the wavefront transform. m
denotes the number of vehicles; with m = 1, the problem
reduces to TSP.

After evaluating various combinations of heuristics and
metaheuristics, it was discerned that our problem formulation
yielded the most efficient results when employing work by
Christofides et al. [37] for the initial solution generation and
the Guided Local Search (GLS) by Voudouris et al. [38] as
the metaheuristic.

A vital aspect to consider is the preservation of individual
trajectories generated for circumnavigating all the islands.
The parent trajectory, with landmass outside it excluding the
islands, differs from the trajectories around islands. Unlike
the parent trajectory, where the ASV can traverse freely, the
ASV cannot navigate across the interior of the island paths
without possibly colliding with the circumnavigated island.

1 ASV 2 ASVs 3 ASVs
min(τ ) 25.9 km 13.20 km 8.10 km
max(τ ) 25.9 km 13.50 km 10.70 km
avg(τ ) 25.9 km 13.35 km 9.20 km
total(τ ) 25.9 km 26.70 km 27.6 km

TABLE I: Quantitative data of Fig. 3 (a), (b) (c)

1 ASV 2 ASVs 3 ASVs
min(τ ) 22.4 km 10.2 km 9.2 km
max(τ ) 22.4 km 13.6 km 10.0 km
avg(τ ) 22.4 km 11.9 km 9.5 km
total(τ ) 22.4 km 23.8 km 28.5 km

TABLE II: Quantitative data of Fig. 3 (d), (e) (f)

The system was extensively tested on selected areas of
different lakes with different configuration. Fig. 3 shows the
generated paths for the selected areas of Lake Murray and
Lake Keowee. Quantitative data in Table I and Table II show

a direct correlation between the increase in number of robots
deployed and the decrease in total deployment time.

V. EXPERIMENTAL RESULTS

A. Platform

An ASV developed at the University of South Carolina [3],
based on a modified Mokai Es-Kape2 motor watercraft, the
Jetyak, was used for the field experiments. The Jetyak comes
with a 7HP OHC horizontal engine that reaches speeds up
to 22.5 km/h and has a deployment time of over eight
hours. The Jetyak has a Sonar side scanner for collecting
bathymetry data, a YSI EXO2 multiparameter sonde[10],
and the OTT Nitrate ecoN UV Nitrate sensor[11] to collect
water quality samples near the surface along the path. The
ES-Kape’s factory pulse width modulated (PWM) controlled
servo system allows seamless integration with a Pixhawk
flight control system and onboard control through an Intel
UP single-board computer running ROS.

B. Experimental Procedure in the Field

The primary objective of experiments are to evaluate
the ASV trajectories produced under natural conditions
and to gather water quality data along these trajectories.
Experiments were conducted on Lake Murray, SC, USA
(see Fig. 4) in two distinct setups: (a) employing a single
ASV and (b) deploying dual ASVs. Both setups shared a
common starting point. The dual ASV deployment reduced
the maximum distance (τ ) value from 12.1 km with one ASV
to 6.5 km cutting the deployment time by half, as shown in
Table III. The increase in total τ from 12.1 km to 12.6 km
is a mere 4% increase in total traversal distance.

Water quality measurements revealed a mean temperature
of 27.8◦C. pH values were documented within a range of



1 ASV 2 ASVs
min(τ ) 12.1 km 6.1 km
max(τ ) 12.1 km 6.5 km
avg(τ ) 12.1 km 6.3 km
total(τ ) 12.1 km 12.6 km

TABLE III: Quantitative data of Lake Murray Field Deployment

(a) (b)

Fig. 4: Lake Murray Field Experiment trajectories. (a) single ASV.
(b) Dual ASV.

8.11 to 8.45. Dissolved Oxygen saturation remained close to
100%, with negligible variations. Chlorophyll RFU measure-
ments ranged from 0.68 to 0.99. Nitrate levels were observed
between 0.473 and 5.0 mg N L−1. A detailed graphical
representation of these observations is presented in Figure 5.

VI. CONCLUSION

This paper presents a complete system solution to plan
efficient trajectories for multiple ASVs. The produced paths
guide ASVs through large water expanses, including areas
with islands, for comprehensive water quality sampling to
observe transient marine phenomena. Our strategy hinges on
the skeleton-of-skeleton algorithm and extends it to multi-
agent systems. We have conducted extensive field deploy-
ments, traversing large regions of a lake and collecting water
quality measurements with the YSI EXO2 Multiparameter
sonde and the OTT Nitrate sensors.

However, the system currently relies heavily on offline
maps for trajectory planning and sampling location accuracy
in the field. To address this limitation, future work will focus
on integrating online strategies to manage uncertainties in
location and dynamic obstacles.
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