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Abstract— Practical robot designs must strike a compromise
between fabrication/manufacture cost and anticipated execution
performance. Compared to parsimonious designs, more capable
(and hence more expensive) robots generally achieve their ends
with greater efficiency. This paper examines how the roboticist
might explore the space of designs to gain an understanding
of such trade-offs. We focus, specifically, on design choices that
alter the set of actions available to the robot, and model those
actions as involving uncertainty. We consider planning problems
under the Markov Decision Process (MDP) model, which leads
us to examine how to relate the cost of some design to the
expected cost of an execution for the optimal policies feasible
with that design. The complexity of this problem —expressed
via hardness in the fixed parameter tractability sense— depends
on the number of actions to choose from. When that number is
not negligible, we give a novel representation and an algorithm
utilizing that structure that allows useful savings over naı̈ve
enumeration.

I. INTRODUCTION

Each passing year brings with it a fresh harvest of
technologies and innovations: novel sensors, new actuators,
original mechanisms, and more capable computing devices,
each offering some operational or economic advantage over
the already available offerings. On the face of it, this seems to
be unqualified good news for roboticists: more options afford
the ability to make better choices. But alas and/or alack, the
proliferation of choice can be an impediment. Because robots
integrate mechanism with information processing, designing
a robot for some task involves weighing a very wide range
of considerations (e.g., from energetics: size, mass, and
wear, to computational aspects: hardware, algorithms, data
representations, etc.). Most of these considerations impinge
on one another, so design necessarily entails the balancing of
a variety of compromises. To a designer attempting to make
informed choices for her robot, ever more options make the
design endeavor increasingly arduous. One potential solution
is offered by tools that might help to ‘navigate’ the space of
feasible options, so our designer might better understand the
implications of various available choices.

To bring such tools closer to fruition, the present paper of-
fers algorithms that can help illuminate the trade-off between
design complexity and anticipated robot performance. These
algorithms are intended for use during the early phases that
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Fig. 1. Even simple settings can lead to complex trade-offs:
Selecting the design for a robot to transport an item from the
‘Start’ to the ‘Goal’ by choosing the appropriate actuation. [inset
right] These devices each have different purchase and integration
costs, and different motion properties during execution, including
power expended, range of availability (illustrated in summary form
via colors), and reliability (treated as stochastic transitions). [inset
left] An example of a highly-capable chimera-like tracked robot
equipped with flippers and a jetpack, which happens to be a
candidate in the design space.

span the initial conception, exploration, and consideration
of alternate options. We adopt an abstract model which
considers designs that differ in terms of the actions they
are capable of executing. Actions themselves are regarded
as having uncertain outcomes, treated as probabilistic transi-
tions. Most directly, designs may differ in terms of physical
actuators placed on the robot. Or, the actions available might
represent sub-systems (perhaps utilizing low-level feedback)
that enable execution of some action. Some combination can
also be handled as well. The approach we describe allows
comparison between robot designs capable of performing
some action (say, to turn left) versus ones which cannot.
More interestingly, since the transition dynamics are proba-
bilistic, it also allows one to explore the effect of increasing
precision, to determine whether paying additional cost to
increase reliability of an action will actually manifest as a
sufficiently large improvement in efficiency. Naturally, the
effectiveness of such a change depends on the role of the
action within the context of the other actions needed to reach
the desired ends, that is, the relevant considerations are not
entirely local.

As a basic example, consider the problem of designing a
robot to deliver emergency supplies after flooding. Figure 1
shows a section of the map of Florida with Knight’s Key (top
left) and Boot Key (a larger landmass, at bottom). The robot
starts at the position indicated with the yellow locator and



must arrive at the point marked with the red pin. As the right
inset box shows, a variety of options for actuators exist, each
with a different procurement price and resulting in different
actions being available to the robot. The up-front cost to
install an actuator may grant the ability to traverse whole
sets of edges. Some of the actuators have broad applicability
(like the various wheels), others (such as the ‘jetpack’)
provide powerful capabilities but for a narrow niche. Certain
choices might involve a difference in price for a difference
in performance: ‘flippers’ may allow slow reliable progress,
while an ‘aquatic thruster’ unlocks the ability to move
at greater speeds for comparable joules, albeit with more
limited precision and hence poor fine manœuvrability. In
our model, this reduced precision shows up as transition
dynamics with greater entropy; energy expended in joules
shows up as a cost. One might also replace a combination
of specialized actuators with a single one that is applicable
in the same circumstances, paying then only a single cost
up-front. Still, a compromise between conditions likely loses
some attractive properties: e.g., the more expensive combina-
tion of ‘road wheels’ and ‘tracks’ is more reliable off-road
and faster on-road than the parsimonious design with just
‘off-road wheels’.

These considerations are complex and raw intuition can
be misleading. Algorithmic tools would be most useful to
help provide insight and guide the design process. The
contribution of this paper is to introduce such algorithmic
tools (Sections V and VI) grounded in theoretical analysis of
the problem’s complexity (Section IV). We then investigate
the effectiveness of those new tools (Section VII).

II. RELATED WORK

Recently, several robotics research groups have been
exploring how algorithmic automation and computational
methods can help improve the quality of the robot designs,
can ease the design process, or shed light on specific el-
ements that make the problem especially complex [23]. A
core line of research is concerned with the notion of co-
design: Censi [7], [8] developed the mathematical theory of
co-design problems, which considers the relation between re-
source consumption and the functionality of robots. Carlone
and Pinciroli [6] consider co-design when selecting robot
system modules with a given cost to maximize performance.
They solve the problem using binary linear programming.
The term ‘co-design’ has also been used more broadly
(see [3], [22]) when different aspects that play a role are
considered jointly.

Aspects of design automation have additionally been
focused on considerations of fabrication [20], rapid-
prototyping [2], [14], interactive design [5], [10], [11]. Also,
there have been approaches to structured knowledge repre-
sentation that can help with design problems [13], [17], [18].

Most closely related is the authors’ prior work [26],
which examines a notion of designs similar to this paper,
but the planning problems in that paper are under worst-
case assumptions. The present paper makes two separate
modifications, both of which change the setting rather more

significantly than the authors originally anticipated. The
first is to introduce a notion of execution cost. The key
consideration in [26] is a decision problem, viz. whether a set
of actuators suffices, or whether dropping some actuator (or
gadget) will incapacitate the robot. Instead, the present study
examines a Pareto front with differing costs. Secondly, we
now consider probabilistic transitions. These confer a mean-
ingful notion of expected performance, permitting the impact
of some action’s precision to be considered quantitatively.

Because part of the problem we tackle involves estimating
value functions for Markov Decision Problems using an
interval approach (and terminating early), we point out
that this is similar in form to Haddad and Monmege [12],
though their setting has only a single objective. There is
substantial prior work on multi-objective MDPs (see [9],
[25]), though that work considers costs which are not design
costs. Also relevant, albeit more loosely, is literature dealing
with hardness results for MDPs (see, for instance, [4]),
and asynchronous approaches to value iteration [1], and
reinforcement learning [27].

III. PROBLEM STATEMENT

A. Markov decision processes and action restrictions

We are interested in sequential decision-making problems
that can be modeled as Markov decision processes (MDPs).
We begin with three standard definitions [19], [27].

Definition 1. An MDP is a tuple (X,x0, U, p, c, γ) with

1) a finite nonempty state space X ,
2) an initial state x0 ∈ X ,
3) a finite nonempty action space U ,
4) a transition probability function p : X × U × X →

[0, 1], in which p(x, u, x′) denotes the probability of
transitioning to state x′ upon selecting action u at state
x,

5) a cost function c : X × U → R, in which c(x, u)
denotes single-step execution cost of executing action
u at state x, and

6) a discount factor γ ∈ [0, 1).

An MDP models a discrete time sequential decision-
making scenario. Each execution begins at the initial state x0.
At each stage k, the robot is at state xk and executes action
uk, whereupon the system transitions to a new state xk+1

drawn according to the probability distribution p(xk, uk, · ).
During this transition, the robot incurs a single stage cost
c(xk, uk). The actions selected by the robot are governed by
a policy.

Definition 2. For an MDP (X,x0, U, p, c, γ), a policy is a
function π : X → U .

Intuitively, the policy describes the action selected by the
robot from each state in the state space, so that uk = π(xk).

The robot’s objective is to minimize the costs incurred as
it executes the policy, subject to discounting, which ensures
convergence across executions that are, in principle, infinite.



Definition 3. For an MDP (X,x0, U, p, c, γ) and a policy
π, the execution cost of that policy is

e(π) := E

[ ∞∑
k=0

γkc(xk, uk)

]
.

A policy is an optimal policy if its execution cost is minimal
among all policies.

In this paper we will have occasion to consider families
of MDPs formed by eliminating certain actions. The next
definition makes this idea more precise.

Definition 4. For an MDP M = (X,x0, U, p, c, γ) and
an action set U ′ ⊆ U , the restriction of M to U ′, de-
noted M(U ′), is an MDP identical to M except that its
action space is U ′ rather than U . That is, M(U ′) =
(X,x0, U

′, p′, c′, γ), in which the transition probability and
single-stage cost function are p′ : X ×U ′ ×X → [0, 1] and
c′ : X ×U ′ → R respectively, with p′(x, u, x′) = p(x, u, x′)
and c′(x, u) = c(x, u) for all x and x′ in X , and all u in
U ′.

Definition 5. For an MDP M = (X,x0, U, p, c, γ) a value
function is a scalar function VM : X → R, and an optimal
value function satisfies

V ?M (x) = min
u∈U

∑
x′∈X

p(x, u, x′) [c(x, u) + γV ?M (x′)] . (1)

Value functions V −M , V +
M with V −M (x) ≤ V ?M (x) ≤ V +

M (x)
for all x ∈ X are termed, respectively, lower- and upper-
bounding value functions.

B. Design cost

Next, we adapt the notion of design cost introduced in
our prior work [26] from its original formulation based on
worst-case reasoning to the present stochastic setting.

Definition 6. A design cost function d : 2U → R ∪ {+∞}
assigns an extended real number to each subset of the action
space U .

The key distinction, which contrasts with traditional plan
costs, is that design cost depends on which actions may be
executed by a given policy, rather than on how often those
actions may be executed on any particular run of the system.

Definition 7. For a given policy π, the operative actions
A(π) are the actions associated with at least one state. That
is, A(π) := ∪x∈X{π(x)}. The design cost of a policy π is
the design cost of its operative actions, d(π) := d(A(π)).

A property which holds often in practice is that adding
additional capabilities to a robot will not decrease its cost,
and these are called monotone design costs.

Definition 8. A design cost function is monotone if, for any
sets U1 ⊆ U and U2 ⊆ U , we have

U1 ⊆ U2 =⇒ d(U1) ≤ d(U2).

We restrict our attention to monotone design cost functions
in this paper.

Note that Definition 8 admits a variety of cost functions
of varying complexity. For example, one useful family of
design cost functions characterizes the design choice as one
of selecting from a set of gadgets with which to equip the
robot. Each gadget is defined by the design cost of choosing
it —from which the overall design cost may be derived
additively— along with a set of actions it enables. This is
appropriate for the example in Figure 1.

C. Optimizing Execution cost and design cost

We now have the requisite elements in place to state the
central algorithmic problem. The exposition above introduces
two distinct measures by which a policy may be evaluated:
its execution cost (Definition 3) and its design cost (Defini-
tion 7). Notice, however, that these measures can be expected
to be in tradeoff with one another: In general, modifications
to a policy that decrease its design cost by making some
actions inoperative can, by virtue of restricting the set of
available actions, increase the execution cost.

Thus, the root problem here is one of multi-objective
optimization, and we are interested in policies that are Pareto
optimal [29], in the sense that no other policy improves both
the design cost and the execution cost.

Problem: Optimal Design-/Execution-Cost Policies (ODECP)
Input: An MDP M and a design cost function d.

Output: The set of Pareto-optimal policies for M and d.

For purpose of complexity analysis in Section IV we can
also cast the problem as a decision problem.

Decision Problem: Feasible Design-/Execution-Cost Decision
(FDECP)

Input: An MDP M , a design cost function d, a design cost
bound d̄, and an execution cost bound ē.

Output: YES if there exists a policy π for M with design cost
at most d̄ and execution cost at most ē; NO otherwise.

IV. HARDNESS AND FIXED-PARAMETER TRACTABILITY

Before attending to data structures and algorithms for these
problems, a detour into their computational complexity will
be instructive.

Two proofs will use reduction from the following standard
problem, known to be NP-complete [16].

Decision Problem: SETCOVER
Input: A universe set R with n elements, a set T comprised

of m sets T1, . . . , Tm such that
⋃m

i=1 Ti = R, and
integer k.

Output: YES if there is some set I ⊆ T such that I covers all
elements of R and the size of I is at most k.
NO otherwise.

Theorem 1. FDECP is NP-hard.

Proof. The construction used in Theorem 1 of [26] uses a
reduction from SETCOVER; the same construction can be
re-tooled for use here. (Only the required modifications are
given here.) Pick γ = 1

2 . For a SETCOVER instance with the
set size |R|, a state space of size |R| + 2 works: we have
a ‘goal’ state, x|R|+1, and a ‘crash’ state x0. Actions are



constructed analogously with that in [26]: If action a should
connect state xi to xi+1, then p sets only that probability to
one, and zero for all other xj , j ∈ {0, . . . , |R|+1}\{i+1}.
If action a doesn’t depart from state xi, have it transition
with probability one to the ‘crash’ state x0. All actions loop
at state x0. Assign cost c(xi, u) = 0 for all u and every state
xi except x0. Put c(x0, u) = 1 for all u. Then, an optimal
policy that reaches the goal will have expected cost 0; any
other policy reaches x0 after the first step but no later than
the |R|th-step, thus has expected cost in ( 1

2 , 1]. Hence, we
choose d̄ to be the cardinality of the desired cover (k in [26]),
and ē to be 1

2 .

Lemma 1. Given MDP (X,x0, U, p, c, γ), an optimal policy
can be found in polynomial time.

Proof. The policy can be found using linear program-
ming [21], which has a solution in polynomial time (e.g.,
[15]). In fact, Papadimitriou & Tsitsiklis [24] proved the
stronger result that solving for the optimal policy is P-
complete.

Theorem 2. FDECP, parameterized by the size of the action
space, is fixed-parameter tractable (FPT).

Proof. Given MDP M = (X,x0, U, p, c, γ), choose as pa-
rameter the size of the action space, i.e., let λ = |U |. The
obvious algorithm works: enumerate the set of MDPs via
the restriction {M(V ) | V ∈ 2U \ {∅}}. For each, evaluate
the design cost d(M(V )). If it is less than or equal to d̄,
then construct an optimal policy, and evaluate its expected
cost to see if it is no more than the execution cost bound
ē, if so, answer YES. If all have been enumerated and none
found, answer NO. Since construction of the optimal policy
takes polynomial time via Lemma 1, this algorithm is FPT
because its running time is 2λnO(1).

Informally, the upshot of Theorems 1 and 2 is that, though
the problem in general is computationally challenging (unless
P = NP), that challenge is primarily concentrated in the
number of actions in our MDPs.

Another, alternative take on the hardness is that even if we
have the optimal MDP value function (say, via an oracle)
then we will still have a difficult problem. Consider the
following.

Problem: Optimal Design Cost Policy (ODCP)
Input: An MDP M = (X,x0, U, p, c, γ), an optimal value

function V ?
M , and a design cost function d.

Output: A policy π with e(π) = V ?
M (x0) such that d(π) is

minimal.

The decision problem is as follows.

Decision Problem: Feasible Design Cost Policy (FDCP)
Input: An MDP M = (X,x0, U, p, c, γ), an optimal value

function V ?
M , and a design cost function d, and a design

cost bound d̄.
Output: YES if there exists a π for M with e(π) = V ?

M (x0)
such that d(π) ≤ d̄; NO otherwise.

Theorem 3. ODCP is NP-hard.

Proof. To prove NP-hardness of ODCP, it is sufficient to
prove that its decision problem (FDCP) is NP-complete. So,
we need to prove FDCP ∈ NP and all NP problems are
reducible to FDCP. For the first part, if given a putative π
claimed to correspond to a YES instance, we can check that
the given action at each state is indeed a u which minimizes
(1). This verification takes O(|X|) time.

For the second part, we present a polynomial reduc-
tion, again, from SETCOVER: given an instance (R, T, k),
construct an instance of FDCP, (M,V ?M , d, d̄), as fol-
lows: We form an MDP M = (X,x0, U, p, c, γ) with
state space X = {x0, x1, . . . , x|R|, xg}, initial state x0,
and U = {u1, u2, . . . , u|T |}. For each u ∈ U , we
define ∀k ∈ {0, g}, p(x0, u, xk) = 0, and ∀k′ ∈
{1, . . . , |R|}, p(x0, u, xk′) = 1

|R| . To define p, for each ui in
U : k ∈ {1, . . . |R|}, p(x0, ui, xk) = 1

|R| ; j ∈ {1, . . . , |R|},
x ∈ X \ {xj , xg}, p(xj , ui, x) = 0, p(xj , ui, xg) = 1Ti(j),
p(xj , ui, xj) = 1− 1Ti

(j); x ∈ X, p(xg, ui, x) = 1{xg}(x).
Then, define to c, for each ui in U : c(x0, ui) = c(xg, ui) = 0
and k ∈ {1, . . . |R|}, c(xk, ui) = 1 − 1Ti

(k). Take γ = 1
2 .

Compute V ?M from M . Take as design cost d(A) = |A|.
Set the design cost bound d̄ = k. (Above, 1Y (·) is the
indicator function for set Y .) In light of Lemma 1, all steps
in this construction take polynomial time. For any instance
(R, T, k), consider the FDCP (M,V ?M , d, d̄). Observe that
V ?M (x0) = 0 because SETCOVER stipulates that every
element in R is covered by at least one element Tj , so each
state {x1, . . . , x|R|} can take some action with cost zero.

If I ⊆ T with |I| ≤ k covers R, then for each i ∈
{1, . . . |R|}, the policy π selects any action uj where Tj ∈ I
covers the element in R corresponding to i. For x0 and
xg , reuse one of the actions already used elsewhere. Such
a policy π takes an action of cost 0 at each state (when
at state x` ∈ {x1, . . . , xR} it performs an action uj with
` ∈ Tj , so c(x`, uj) = 1 − 1Tj

(`) = 0). This is an optimal
expected execution cost, since all costs are non-negative. But
then d(π) ≤ k = d̄;

Conversely, if we have a policy π with c(π) =
V ?M (x0) = 0, and d(π) ≤ d̄, then collect all the ac-
tions {uj1 , uj2 , . . . ujn} = ∪i∈{1,...|R|}{π(xi)}, where know
jn ≤ k because these are the operative actions. A zero cost
action must be prescribed at every state because, if it did
not, then c(π) > 1

2 ·
1
|R| · 1 > 0. Thus, sets Tj1 , Tj2 , . . . Tjn

cover R.

V. THE LATTICE OF BOUNDS DATA STRUCTURE

In spite of the discouraging news of the previous section,
we turn now to the practical question of solving ODECP.
This section describes a data structure called a lattice of
bounds, which represents partial information about the de-
sign and execution costs achievable with various sets of
actions. We describe its structure, its operation, and several
important invariants it maintains. This data structure forms
that basis of the algorithm in the next section.

Definition 9. A lattice of bounds for an MDP M =
(X,x0, U, p, c, γ) is a directed graph, in which each of the



finitely-many vertices v is labeled with a set of actions Uv ⊆
U and value functions V −v : X → R and V +

v : X → R.

The following two invariants form a connection between
the lattice of bounds and Pareto optimal solutions we seek.

Invariant 1. In a lattice of bounds, for each edge v →
w, Uv ⊃ Uw. That is, each edge represents a parent-child
relationship under which the parent has access to a strict
superset of the actions available to the child.

Invariant 2. In a lattice of bounds for MDP M =
(X,x0, U, p, c, γ), at each vertex v, V − and V + are lower
and upper bound value functions, respectively, for the re-
stricted MDP M(Uv).

These invariants are important because they establish a
connection to our objective of finding the Pareto front.

Lemma 2. For any lattice of bounds L in which Invariants 1
and 2 hold, and any policy π with execution cost e(π) and
design cost d(π), if there exists some vertex v in L for which
V +
v (x0) ≤ e(π) and d(Uv) ≤ d(π), then π is not a Pareto

optimal policy.

Proof. Vertex v provides a direct counterexample to the
possibility of Pareto optimality of v.

To create a lattice of bounds, it suffices to construct
a collection of one or more vertices and to initialize the
V − and V + functions for each to (even very optimistic
or pessimistic) lower- and upper-bounds for the true value.
One safe way to do this, for each vuk

, is to initialize V −uk

and V +
uk

values to
(

minx∈X,u∈Uuk
c(x, u)

)
/(1 − γ), and(

maxx∈X,u∈Uuk
c(x, u)

)
/(1− γ), respectively.

Lemma 3. This initial lattice of bounds satisfies Invariants
1 and 2.

Other operations may mutate an existing lattice of bounds,
generally toward tighter bounds on the optimal value func-
tions.

Operation 1. For a vertex and a state, perform one Bellman
update (the atomic step of value iteration) on V − or V + at
one state x. That is:

V −v (x)← min
u∈Uv

∑
x′∈X

p(x, u, x′)
[
c(x, u) + γV −v (x′)

]
, or

V +
v (x)← min

u∈Uv

∑
x′∈X

p(x, u, x′)
[
c(x, u) + γV +

v (x′)
]
, resp.

The rationale for the previous operation follows from this
lemma.

Lemma 4. Steps of value iteration monotonically decrease
(resp. increase) the value function when initialized from an
upper-bounding (resp. lower-bounding) value function.

Proof. The standard and, indeed, some modified methods —
possessing superior performance— converge monotonically.
A self-contained and explicit proof appears in [28]; for the

argument showing that the property holds for a subset of
states (or single state) see [1, Chapt. 7].

Operation 2. For an edge v → w and a state x, assign

V +
v (x)← min

(
V +
v (x), V +

w (x)
)
.

Rationale: As v has more actions, the costs at v never exceed
those at w. Thus, if the value at w is at most V +

w (x), then
the value at v can be at most V +

w (x) as well.

Operation 3. For an edge v → w and a state x, assign

V −w (x)← max
(
V −w (x), V −v (x)

)
.

Rationale: As w has fewer actions, the costs at w can never
be less than those at v. If the value at v is at least V −v (x),
then the value at w can be no less than V −v (x) as well.

Definition 10. For a lattice of bounds for MDP M =
(X,x0, U, p, c, γ) with vertices V , a set of actions U ′ ⊆ U is
unrepresented if there is no vertex v ∈ V such that Uv = U ′.
For an unrepresented set, a bracketing pair consists of two
vertices u,w ∈ V such that Uu ) U ′ ) Uw.

Operation 4. For an unrepresented set U ′ with bracketing
pair u and w: add the vertex v with actions Uv = U ′, and
add all edges p → v with Up ) U ′, and add all edges
v → q with U ′ ) Uq , and remove any edges r → s with
Us ) U ′ ) Ur. Set V −v = V −u and V +

v = V +
w .

Lemma 5. Operations 1–4 maintain Invariants 1 and 2.

VI. AN ALGORITHM FOR COMPUTING THE PARETO
FRONT

The concept of a lattice of bounds forms the core data-
structure underlying our algorithm. Actually, the preceding
definition invariants offer plenty of scope for a variety of
different approaches and, in what follows, we describe one
effective means for combining these elements. (The next
section will provide evidence for the claim of effectiveness
by revisiting the motivating scenario, as a case study).

The algorithm is composed of several elements, each of
which periodically mutates the lattice bounds.
0. Initialization: For MDP M = (X,x0, U, p, c, γ), we
construct an initial lattice of bounds comprising at most |U |
vertices. The action sets for these vertices are seeded with
each distinct action u and then greedily expanded to contain
a maximal set of actions that have the same design cost as
u individually. The V − and V + bounds for each vertex are
initialized as described above.
1. Improving Execution Cost Estimates at the Widest
Gaps: We maintain a priority queue of states, ordered
by δVv(x) = V +

v (x) − V −v (x), for all the states across all
the vertices. This allows the state with the largest discrepancy
between lower and upper bounds on the value to be selected
and improved using Operation 1 (one iteration for V −

and another for V +). After this, δVv(x) is re-computed (it
may have decreased) and the element in the priority queue
updated. Operations 2 & 3 are then applied recursively to
propagate the available information up and down the lattice.



2. Improving Execution Cost Estimates Globally: Simi-
larly, we also maintain a cyclic queue of all of the states at
all of the vertices, using it to apply Operation 1 to them in
a round-robin fashion. This ensures that progress continues
to be made even when the widest gaps occur at states where
value iteration cannot yet improve the bounds because the
bounds at potential next states are as yet too weak.
3. Removing vertices from consideration: If at some
point we have two vertices v and w with the property that

d(v) ≥ d(w) and ∀x ∈ X, V −v (x) ≥ V +
w (x)

with at least one of the inequalities strict, then v is dominated
and there is enough information to declare that it will remain
so even with further improvement of the cost estimates.
(Recall Lemma 2.) We can thus remove those elements of v
from the priority queue and cyclic queue used for execution
cost updates. (It remains in the lattice of bounds because it
may be useful for the vertex creation step.)
4. Creating vertices: New vertices are created by se-
lecting an existing vertex, adding a new action, and then
expanding that action set greedily to reach a plateau of the
design cost function, just as in step 0.

The preceding text described a collection of mostly in-
dependent strategies for investing computational effort to
make a lattice of bounds more accurately reflect the true
Pareto front. How are these elements combined into a
working algorithm? The initialization is done once at the
start, obviously. Steps 1–3 can be executed under a variety
of policies. We currently employ a simple approach where
each of Steps 1–3 operate at each iteration of a main loop.
Step 4, which expands the lattice into unexplored portions
of the design space, is triggered by the δVu(x0) bound in
Step 1 falling below a chosen threshold ε; when the bounds
for the currently-represented vertices begin to converge, the
time is right to explore further.

The algorithm terminates either when no maximal (in the
sense of being able to add actions without increasing design
cost, as in Steps 0 and 4) action sets remain to be represented,
or when a timeout expires.

VII. CASE STUDIES

In order to demonstrate and evaluate our Python imple-
mentation of the algorithm, we encoded the problem shown
in Figure 1 as an ODECP. Space constraints require that omit
specific quantitative details and parameters of the model, but
we emphasize a few aspects. Firstly, each arc in the graph
shows up as an action. The design cost was constructed so
that for a set of actions, the addition of any extra action
which is already possible using the gadgets employed in
the set does not increase the design cost. This satisfies the
requirements for monotonicity. The specific procurement and
per-action costs model the approximate ordering one would
expect (e.g., the jetpack is two orders of magnitude more
dear than the wheels, and one order more than the thruster).
We modeled some actions as unreliable (like the thruster and
flippers) by having some probability for failure, which the

Fig. 2. [top] The Pareto front visualized for the scenario in Figure 1.
Four choices dominate the other options. The inset figures show
the actions selected for four designs: the bottom right, with lowest
design cost has only ‘road wheels’; the bottom center one has ‘road
wheels’ and ‘off-road wheels’; bottom left has ’flippers’ and ‘off-
road Wheels’; the design at top has ‘flippers’, ‘off-road wheels’,
the ‘jetpack’. [bottom] The total number of vertices and the number
of dominated vertices in the lattice of bounds, demonstrating the
efficacy of Steps 3 and 4 as the algorithm progresses.

transition dynamics cause to incur cost with no change in
state.

Figure 2 [top] gives a visual summary of the final Pareto
front as charted by the algorithm. Notice, in particular,
the horizontal lines: these are vertices where V − and V +

have not needed to be iterated until convergence—they are
detected as dominated and computation is saved by stopping
early. The plot in Figure 2 [bottom] gives a progression of
the implementation functioning across time, using calls to
Operation 1, the most frequent operation, as the independent
variable. The shrinking δVu(·) will fall below ε, triggering
Operation 4 periodically (visible in the diagram as vertical
steps where additional vertices are introduced). The plot also
shows the increase in number and proportion of dominated
vertices.

VIII. CONCLUSION

This paper tackled the problem of designing robots and
forming plans for those robots, in contexts where both
execution cost (i.e. time, energy, etc.) and design costs (i.e.
fixed costs to equip the robot with certain capabilities) are
germane, and the tradeoffs between these costs must be
explored. The particular setting involved uncertainty about
the outcomes of actions. We established several computa-
tional complexity results and introduced a data structure and
accompanying algorithm the solve that problem.
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