
Toward a language-theoretic foundation
for planning and filtering

Fatemeh Zahra Saberifar, Shervin Ghasemlou,
Dylan A. Shell, and Jason M. O’Kane

July 6, 2018

Abstract

We address problems underlying the algorithmic question of automating
the co-design of robot hardware in tandem with its apposite software. Specif-
ically, we consider the impact that degradations of a robot’s sensor and actu-
ation suites may have on the ability of that robot to complete its tasks. We
introduce a new formal structure that generalizes and consolidates a variety
of well-known structures including many forms of plans, planning problems,
and filters, into a single data structure called a procrustean graph, and give
these graph structures semantics in terms of ideas based in formal language
theory. We describe a collection of operations on procrustean graphs (both
semantics-preserving and semantics-mutating), and show how a family of
questions about the destructiveness of a change to the robot hardware can
be answered by applying these operations. We also highlight the connec-
tions between this new approach and existing threads of research, including
combinatorial filtering, Erdmann’s strategy complexes, and hybrid automata.
Keywords: planning; combinatorial filter; design automation

1 Introduction

The process of designing effective autonomous robots—spanning the selection
of sensors, actuators, and computational resources along with software to gov-
ern that hardware—is a messy endeavor. There appears to be little hope of fully
automating this process, at least in the short term. There would, however, be sig-
nificant value in design tools for roboticists that can manipulate partial or tentative
designs, in interaction with a human co-designer. For example, one might imagine
algorithms that answer questions about the relationship between a robot’s sensors
and actuators and that robot’s ability to complete a given task.

1

A crucial requirement for this kind of automation is a general formal model
that can describe, in a precise way, a robot’s sensing and actuation capabilities in
the context of its interaction with an environment. To that end, this paper lays
theoretical groundwork for reasoning about sensors and actuators and their associ-
ated estimation and planning processes. The underlying goal is to strengthen the
link between idealized models and practical —that is, imperfect, imprecise, and
limited— realizations of those idealized models in actual, available hardware.

To motivate these questions more concretely, consider the pair of scenarios that
follows.

Example 1.1. Your robot is stationed on a distant planet and, though fully opera-
ble initially, has recently encountered a problem. It appears that debris has become
affixed to one of the sensors. Should operations be altered by taking more conser-
vative paths around obstacles because the robot’s position estimates now involve
greater error than previously? Or has the mission been entirely compromised? As-
suming that the debris cannot be dislodged, what tasks are still feasible?

Example 1.2. You lead an R&D team who have built and tested a successful proto-
type robot, which performs cosmetic services (e.g., manicures, pedicures, facials,
hair-weaves, etc.) efficiently and safely. Then. . . disaster! You discover that the
sensor provided to your factory in bulk (say S1), differs from the device (S0) sup-
plied by the same manufacturer to the team who built and tested the prototype. A
successful redesign of the robot might require answers to these kinds of questions:
Can S1 be used directly as a plug-and-play replacement for S0? If not, can we
adjust some software parameters to make it work? Which parameters and what
should the adjustments be? If S1 necessarily incurs a loss in performance, how can
this be understood—perhaps only the hair-styling functionality is affected? Sup-
posing we can procure S0 at greater cost through another vendor, is this worth
doing?

Underlying these scenarios is the problem of how to ascertain whether or not a
particular modification to one’s model of a robot is destructive for a given task. In
this paper, we formalize this question, providing theoretical foundations as well as
algorithms to address problems of this type. This can be seen visually in Figure 1.

This paper makes several new contributions.

1. We introduce, in Section 2, the notion of an interaction language, which
models the interactions between a robot and its environment using the the-
ory of formal languages. This approach unifies several previously distinct
conceptual classes of object.

2. We contribute, in Section 3, a general representation called a procrustean
graph1 for interaction languages. This representation is constructive, in that

2

Sick LMS Hokuyo URG

Idealized

Range

Sensor

Idealized

Kinematic

Model

Figure 1: Given a specification of robot capabilities—encompassing both sensors (top) and actuators
(bottom)—and a task, which changes to those sensors or actuators make the task infeasible? This
question is fundamental because it addresses the link between idealized models and practical (im-
perfect, imprecise, and limited) realizations of those idealized models in hardware, and because its
answers can can lead to insight about weakest robots that suffice for a given task.

3

it can be used to instantiate a data-structure from which various questions
can be posed and addressed concretely.

3. We show, in Section 4, how to model degradations to sensing and action
capabilities in this framework as label maps. We address the question of
deciding whether a label map is destructive, in the sense of preventing the
achievement of a previously-attainable goal, for both filtering and planning
problems, in Sections 5 and 6 respectively. We also prove that the broader
question of finding a non-destructive label map that is, in a certain sense,
maximal, is NP-hard.

The dénouement of the paper includes a review of related work interleaved with a
discussion of the outlook for continued progress (Section 7) and some concluding
remarks (Section 8).

Preliminary versions of this work appeared in 2016 at RSS (Saberifar et al.,
2016) and WAFR (Ghasemlou et al., 2016).

2 Actions, observations, and interaction languages

We begin with some basic definitions for modeling the interaction between
an agent or robot and its environment. The robot executes actions drawn from a
non-empty action space U; the environment yields observations drawn from a non-
empty observation space Y. We assume that U∩Y = ∅. Neither need necessarily
be finite. Noting the duality between actions and observations—an observation can
be viewed merely as an ‘action by nature’—we treat actions and observations as
specific subtypes of a more general class of events.

Definition 2.1 (event). An event is an action or an observation. The event space is
E := U ∪Y.

Definition 2.2 (event sequence). An event sequence over E is a finite sequence of
events e1 · · · em drawn from E. An event sequence is called action-first if e1 ∈
U, or observation-first if e1 ∈ Y. Likewise, an event sequence is called action-
terminal if em ∈ U, or observation-terminal if em ∈ Y.

Definition 2.3 (successor). For two event sequences s1 and s2 over the same event
set E, we say that s2 is a successor of s1, if there exists some e ∈ E such that
s2 = s1e.

1Named for Procrustes (Προκρούστες), son of Poseidon, who, according to myth, took the one-
size-fits-all concept to extremes.

4

In what follows, we describe sets of event sequences using standard notation for
regular expressions: Concatenation (represented implicitly using juxtaposition),
alternation (using the binary + operator), the empty sequence (the ε symbol), and
the Kleene star (the unary ∗ operator).

Definition 2.4 (interaction language). An interaction language L over an event
space E is a set of event sequences which is either

1. a subset of (UY)∗(U + {ε}), or

2. a subset of (YU)∗(Y + {ε}),
and which is closed under prefix.

The intuition behind interaction languages is that they describe sequences of
events which alternate between action and observation. The definition admits two
distinct types of interaction languages: those whose members begin with actions
(hereafter, action-first languages) and those whose members begin with observa-
tions (observation-first languages).

Interaction languages encode an interaction between an agent or robot (which
selects actions) and its environment (which dictates the observations made by the
robot). The definition is intentionally ecumenical in regard to the nature of that
interaction, because we intend this definition to serve as a starting point for more
specific structures which, once specific context and semantics are added, lead to
special cases that represent particular (and familiar) objects involving planning,
estimation, and the like.

The prefix-closure requirement in Definition 2.4 ensures that for all event se-
quences e1e2 · · · em ∈ L, every subsequence e1 · · · ek with k < m is also in L.
If a language expresses properties of some structured interaction, then some event
sequences are excluded from that language. In such cases then the prefix condition
captures the idea that part of the way through a sequence, or even in a sequence
stopped short, anterior structure is present.

The examples that follow illustrate a few different kinds of interaction lan-
guages.

Example 2.1 (Filters). Filtering, in very broad terms, refers to any process by
which observations are processed to produce specified outputs. That is, a speci-
fication of a filter tells us, for any plausible history of observations that an agent
might have made, what the correct output from the filter should be. Filters are, of
course, objects of intense and sustained interest within the robotics community.

In light of Definition 2.4, we can describe a filter as an action-first interaction
language L, in which the filter’s outputs are modeled as actions emitx for various
outputs x.

5

Example 2.2 (Schoppers’s universal plans). For observable domains, a universal
plan (Schoppers, 1987) is a specification of an appropriate action for each circum-
stance that an agent might find itself in. This kind of model can be expressed as
an interaction language L in which each observation corresponds to a world state,
and for each observation y ∈ Y , every event sequence ending in y has exactly one
successor, and that these successors are all formed by appending a single unique
action u. The intuition is that this unique u indicates the action that should be taken
when the robot is in the state corresponding to y.

Example 2.3 (Erdmann-Mason-Goldberg-Taylor plans). Several classic papers
(Erdmann and Mason, 1988; Mason et al., 1988; Goldberg, 1993) find policies for
manipulating objects in sensorless (or nearly sensorless) conditions. The problems
are usually posed in terms of a polygonal description of a part; the solutions to such
problems are sequences of actions. Such plans can be expressed as interaction lan-
guages containing all event sequences in which the actions (e.g., a squeeze-grasp
or a tray tilt at a particular orientation) in each sequence guarantee a known fi-
nal orientation of the part regardless of its unknown initial orientation. In the event
sequences of the interaction language, these actions are interleaved with with a spe-
cial η which constitutes the sole element in Y , acting as dummy ‘no observation’
token.

Example 2.4 (Counting amidst beams). As another example, consider a system in
which an unknown number of agents moves through a known network of rooms.
Their movements are observed by discrete beam sensors that detect the passage
of an agent from one room to another, but not the identity of that agent. Actions
allow barriers between the rooms to be opened or closed. (Similar problems were
addressed by Erickson et al. (2014) and Gierl et al. (2014).) The evolution of this
kind of system can be modeled as an interaction language whose event sequences
are those that correspond to valid traces of this system.

Figure 2 shows an example, in which a observations indicate an agent moving
from r1 to r2, and b observations indicate an agent moving from r2 to r1. Some un-
known number of agents begins in r1, whereas r2 is initially empty. Interestingly,
even for this very simple case, the interaction language is not a regular language.
To see this, note that the number of a observations must be no less than the number
of b observations in any event sequence that occurs in this system—no agent can
leave r2 if that room is already empty—and no finite-state automaton can do this
kind of ‘counting’ for arbitrarily many agents.

Next, we introduce some definitions for reasoning about relationships between
pairs of interaction languages, in terms of the event sequences that are shared be-
tween them. In Section 6, we model both planning problems and plans themselves

6

Figure 2: A simple environment with two regions and beam sensors in the corridor connecting them;
a grey body is moving from region r1 to region r2 (drawn after Erickson et al. (2014), but simplified).
For an unknown number of grey agents, all of which start in r1. The interaction language for this
system is not a regular language.

via interaction languages. The next definitions will be helpful for formalizing the
relationships between those two languages.

At the simplest level, we recall the distinction between action-first and observation-
first interaction languages.

Definition 2.5 (akin). Two interaction languages LA and LB, both over the same
set of events, are akin if they are both action-first languages, or they are both
observation-first languages.

We can also consider the set of event sequences shared between a pair of akin
interaction languages.

Definition 2.6 (joint event sequence). Given two interaction languages LA and LB

that are akin, an event sequence s is a joint event sequence if s ∈ LA and s ∈ LB.

As an aside, we note that the structure required of interaction languages is
preserved when we consider only the set of joint event sequences for a pair of
languages.

Theorem 2.1 (Joint event sequences form an interaction language). For any two
interaction languages LA and LB that are akin, the set LA∩LB of their joint event
sequences is itself an interaction language.

Proof. Follows directly from Definitions 2.4 and 2.6.

Of particular interest in the context of planning will be pairs of languages for
which there is some bound on the longest joint event sequence. The next definition
makes that intuition more precise.

Definition 2.7 (finite on). Given two akin event languages LA and LB, if there
exists an integer k that bounds the length of every joint event sequence of LA and
LB, we say LA is finite on LB.

7

Note that ‘finite on’ is a symmetric relation, though the way it is written does
not immediately emphasize this fact. Some caution is likely warranted as the defi-
nitions have made a subtle departure from standard language theory. In particular,
finite on does not require that the either of the interaction languages be finite sets,
but only that there exist some finite bound on the lengths of their joint event se-
quences. In fact, the set of joint sequences may form an infinite set since U or
Y need not be finite; Definition 2.7 requires only a bound on the length of the
sequences.

Finally, we consider a notion of ‘compatibility’ between two interaction lan-
guage.

Definition 2.8 (safety). Given two event languages LA and LB, both akin to one
another, LA is safe on LB if, for every joint event sequence s, the following holds:

1. if s is observation-terminal, then for every successor s′ of s,

s′ ∈ LA =⇒ s′ ∈ LB;

2. if s is action-terminal, then for every successor s′ of s,

s′ ∈ LB =⇒ s′ ∈ LA.

To understand the intuition, imagine a joint event sequence constructed one
event at a time, with actions selected via the successors in LA of the current event
sequence and observations selected via the successors of LB . When the next event
should be an action, Definition 2.8 requires that LB must be ‘ready’ (in the sense
of containing at least one suitable event sequence) for any action that might be
selected from the successor event sequences in LA. Likewise, when the next event
should be an observation, LA must be ready for any observation that might be
selected from the successor event sequences in LB .

Though the symmetry in the definition is perhaps aesthetically pleasing, one
should not be misled: safety of LA on LB does not imply that LB is safe on
LA. Moreover, safety is not transitive. (Note that appearing on the left differs
from appearing on the right, as the quantifiers shift.) However, safety is indeed is
reflexive (LA is always safe on LA).

3 Procrustean graphs and set labels

3.1 Procrustean graphs

The languages and other definitions in the preceding section express the fact
that interactions may possess structure. Though formal, they are not a directly

8

useful construct for algorithmic manipulation nor for reasoning about causality
in the aspects involved. To automate (or help automate) design-time processes,
we introduce a new representation called a procrustean graph for a broad class of
interaction languages, based on graphs with transitions labeled by sets.

Definition 3.1 (p-graph). A procrustean graph (p-graph) over event space E is a
finite edge-labeled bipartite directed graph in which

1. the finite vertex set, of which each member is called a state, can be parti-
tioned into two disjoint parts, called the action vertices Vu and the observa-
tion vertices Vy, with V = Vu ∪Vy,

2. each edge e originating at an action vertex is labeled with a set of actions
U(e) ⊆ U ⊂ E and leads to an observation vertex,

3. each edge e originating at an observation vertex is labeled with a set of
observations Y(e) ⊆ Y ⊂ E and leads to an action vertex, and

4. a non-empty set of states V0 are designated as initial states, which may be
either exclusively action states (V0 ⊆ Vu) or exclusively observation states
(V0 ⊆ Vy).

A small example, intended to illustrate the basic intuition of the definition, follows.

Example 3.1 (wheels, walls, and wells). Figure 3 show a p-graph that models a
Roomba-like robot that uses single-bit wall and cliff sensors to navigate through
an environment. Action states are shown as unshaded squares; observation states
are shaded circles. Action labels are subsets of [0, 500] × [0, 500], of which each
element specifies velocities for the robot’s left and right drive wheels, expressed in
mm/s. Observations are bit strings of length 2, in which the first bit is the output of
the wall sensor, and the second bit is the output of the cliff sensor.

P-graphs bear a close relationship to interaction languages—they describe sets
comprised of sequences of actions and observations that alternate. The intention
is for p-graphs to serve as concrete data structures for representing interaction lan-
guages. This helps realize the paper’s objective, which is to treat p-graphs, in a
general sense, as first-class objects, suitable for manipulation by automated means.

Before formalizing the details of the connection between p-graphs and interac-
tion languages, we make a minor detour to show that p-graphs are sufficiently rich
to describe things that have been of broad interest to roboticists for a long time.

Example 3.2 (Combinatorial filters). Recall from Example 2.1 that filtering prob-
lems can be cast in terms of interaction languages in which the filter outputs are

9

{00}

{10}

{0} × [50, 100]

[50, 100]× [50, 100]

{01, 11}

[−25, 0]× [−50,−25]

Figure 3: [left] A differential drive robot with sensors for obstacles, both positive (walls) and neg-
ative (holes). [right] An example p-graph that models behavior in which the robot follows a wall
while avoiding negative obstacles. This graph, and those that follow, have solid circles to represent
elements of Vu, and empty squares for Vy . The arcs are labeled with sets; those that leave the central
vertex have two digits, the first digit is ‘1’ iff the wall is detected by the IR sensor on the left-hand
side; the second digit is ‘1’ iff the downward pointing IR sensor detects a cliff. The actions, on the
edges leaving squares, represent sets of left and right wheel velocities, respectively.

encoded as actions of the form emitx. A particular class of filters that is well
suited to representation as p-graphs are the combinatorial filters. As formalized by
LaValle (2012), combinatorial filters are discrete expressions of estimation prob-
lems. More precisely, combinatorial filters are finite-state transition systems in
which each state has a specific output associated with it. Such filters can be cast as
p-graphs by having observations and observation transitions exactly as in the filter,
but with action vertices having only a single out-edge that is labeled with a sin-
gleton set bearing the output (which, as in Example 2.1, we label emitx for output
each x). Figure 4 shows a canonical example in which the property of interest is
whether two agents, in an annulus-shaped environment with three beam sensors,
are apart or not.

Example 3.3 (P-graphs for universal plans). The interaction languages for univer-
sal plans introduced in Example 2.2 can be cast as p-graphs in a straightforward
way. The p-graph has a single observation vertex, with one uniquely-labeled out-
edge corresponding to each world state, and one action state for each of the distinct
available actions. See Figure 5.

Example 3.4 (Erdmann-Mason-Goldberg-Taylor plans). Figure 6 shows an ex-
ample of a sensorless manipulation plan, in the form described in Example 2.3,
expressed as a p-graph. Of particular note is the fact that this plan exhibits an
unexpected dimension of nondeterminism: at each step it indicates sets of allow-
able actions, rather than a single predetermined one. This degree of ‘choice’ in
the actions appears in the interaction language as a large collection of individual
event sequences, but is expressed compactly within the p-graph. Also of note is

10

{emit1}

{obsb}

{obsb}

{obsb}

{obsc}

{obsc}

{emit0}

{obsb}

{obsa}

{obsc}

{obsa}

{emit0}

{obsc}

{obsa}

{obsa} {emit0}

Figure 4: The ‘agents together’ filter devised by Tovar et al. (2014) expressed as a p-graph. The
emit0 action indicates that the agents are separated by a beam, and emit1 indicates that the agents
are together.

{u3}

{y4}

{y2, y3}{u1}

{u2}

{u4}

{y1}

Figure 5: A universal plan expressed as a p-graph.

that, generally, the graphs of knowledge states searched to produce such plans are
themselves p-graphs.

Example 3.5 (Nondeterministic graphs). Recent work by Erdmann (2010; 2012)
encodes planning problems using finite sets of states, along with nondeterminis-
tic actions represented as collections of edges ‘tied’ together into single actions.
One might convert such a graph to a p-graph by replacing each group of action
edges with an observation node, with an outgoing observation edge for each edge
constituting the original action. Figure 7 shows an example.

The intent in these examples is to illustrate that p-graphs form a general class
that unifies, in a relatively natural way, a number of different kinds of objects that
have been studied over a long period of time. The particular constraints applied
in each case impose certain kinds of structure that proved useful in the original
context.

While graph and graph-like objects appear in the prior work in various guises,
few have formalized the semantics of those objects by connecting them to the lan-

11

{η} {η} {η}

{η} {η} {η}

Figure 6: A plan for orienting an Allen wrench via tray tilting, expressed as a p-graph. Action edges
are labeled with sets of azimuth angles for the tray. There is a single dummy observation, η. This
plan is shown as Figure 2 in Erdmann and Mason (1988).

b

c

xa a

b

x

c

{u1}

{c}

{u1}

{u2}{u1}

{u2}

{b}

{x}

Figure 7: [left] A planning problem due to Erdmann (2012). [middle] The nondeterministic graph of
this problem. [right] An equivalent p-graph.

guages they induce. The definitions we present next make precise the way in which
a p-graph is an implicit definition of an interaction language.

Definition 3.2 (transitions to). For a given p-graphG and two states v, w ∈ V (G),
a sequence of events e1 · · · ek transitions inG from v to w if there exists a sequence
of states v1, . . . , vk+1, such that

1. v1 = v,

2. vk+1 = w, and

3. for each i = 1, . . . , k, there exists an edge vk
Ek−−→ vk+1 for which ek ∈ Ek.

The states v and w need not be distinct; for every v, the empty sequence transitions
in G from v to v. Longer cycles may result in non-empty sequences of states that
start at some v and return.

Definition 3.3 (valid). For a given p-graph G and a state v ∈ V (G), a sequence
of events e1 · · · ek is valid from v if there exists some w ∈ V (G) for which e1 · · · ek
transitions from v to w.

Observe that the empty sequence, ε, is valid from all states in any p-graph.

12

Definition 3.4 (execution). An execution on a p-graph G is a sequence of events
valid from some start state in V0(G).

The preceding definitions prescribe when a sequence is valid on a p-graph,
placing few restrictions on the sets involved. There are several instances of choices
recognizable as forms of non-determinism: (i) there may be multiple elements in
V0; (ii) from any v ∈ Vu some action u may be an element in sets on multiple
outgoing action edges; (iii) similarly, from any w ∈ Vy some observation y may
qualify for multiple outgoing observation edges.

We can now ‘close the loop’ between interaction languages and p-graphs.

Definition 3.5 (induced language). Given a p-graph G, its induced language is the
set of all of its executions. It is denoted L(G).
Theorem 3.1 (induced languages are interaction languages). For any p-graph G,
the induced language L(G) is an interaction language.

Proof. Because G is bipartite, with its states partitioned into action states and ob-
servation states, all of its executions alternate between actions and observations.
Moreover, if V0 ⊂ Vu, then its non-empty executions begin with actions, match-
ing the first regular expression in Definition 2.4. If V0 ⊂ Vy, then the non-empty
executions if G begin with actions, matching the second regular expression in Def-
inition 2.4.

It remains only to confirm that L(G) is prefix-closed. Consider some execution
s = e1e2 · · · em ∈ L, and some prefix of s, denoted s′ = e1 · · · ek with k < m.
We need to show that s′ ∈ L(G). We know from Definition 3.3 that s transitions
from some start state v to some final state w. Therefore, via Definition 3.2, we
know that there exists sequence of states v1, . . . , vm+1 in G, with v1 = v, reached
by followed edges labeled with events in s. But considering only v1, . . . , vk+1, we
see that s′ is valid from v1 as well. Therefore, s′ ∈ L(G).

This theorem establishes a tight relationship between interaction languages and
p-graphs. Every p-graph induces an interaction language (though some interaction
languages cannot be expressed as p-graphs with finitely many states, cf. Exam-
ple 2.4). Thus, we can meaningfully apply terms defined for interaction languages
to p-graphs as well: Given two p-graphs G1 and G2, one might refer to the set of
joint executions (that is, joint event sequences) of G1 and G2. We might say that
G1 and G2 are akin to one another, or that G1 is finite on G2, or that G1 is safe
on G2. These kinds of statements should be read as referring to the interaction
languages induced by the p-graphs.

Example 3.6 (Pentagonal world). Figure 8 presents concrete realizations of several
of the preceding definitions in a single scenario. A robot moves in a pentagonal

13

{y1}

{u1}

{u1}

{y1}
{u1}

{y2}

{y1}

{u1}

{u2}

{y2}

{y1}

{u1}

Figure 8: [left] A robot wanders around a pentagonal environment; the segment with the lightning-
bolt contains a battery charger. [right] A p-graph model of this world.

environment. Information—at least at a certain level of abstraction—describing
the structure of the environment, operation of the robot’s sensors, its actuators, and
their inter-relationships is represented in the p-graph associated with the scenario.
The induced interaction language is

L(G) = Pref((u1y1u1y1u1y1u1y2(u2y2)
∗u1y1)

∗),

in which Pref(·) denotes the prefix-closure of its language operand. Both filtering
and planning questions can be posed as problems on this interaction language, as
represented in this p-graph.

3.2 Labels

To keep the model amenable to direct algorithmic manipulation, we have re-
quired that a p-graph consist of only finitely many states. However, the labels
for each edge, either U(e) or Y(e), are sets that need not be finite. This detail
is important for modeling real systems. For example, robots typically have ob-
servation spaces which are large or infinite—including most nontrivial real sensor
systems—in which it would be, at best, computationally intractable to list observa-
tions individually. The same can be said for actions too.

We can permit labels that describe infinite sets if some simple operations on
the set algebra over U and Y are available. Any observation-originating edge e is
labeled with the set Y(e), such that Y(e) ∈ 2Y. The analogous relation holds for
action-originating edges too. In what follows, we assume that both 2U and 2Y are
equipped with the following six operations:2

2To save presenting distracting technicalities, we use 2U for the set algebra over U, though the
need for finite constructions usually means that the algebra is a proper subset of the powerset.

14

1–3. UNION, which accepts two labels and computes a new label representing
their union, along with INTERSECTION and DIFFERENCE, which operate
mutatis mutandis for the set intersection and set difference operations.

4. EMPTY, which accepts a label and returns TRUE if and only if the label
represents the empty set.

5. CONTAINS, which accepts a label and an event, and decides whether that
event is member of the set represented by that label.

6. REPRESENTATIVE, which accepts a non-empty label and returns an event
contained in the set represented by that label.

Any data structure capable of answering these queries is suitable for representing
the labels in the algorithms in this paper. Some examples follow.

Example 3.7. Suppose U = R or Y = R. Since each label should represent a set
of real numbers, one option is to let each represent a finite union of real intervals.
The intervals may be bounded or unbounded. Each interval may also be open,
closed, or half-closed. Figure 9 shows an example. To represent a label from this
label space, we use a data structure with three parts:

1. A list of n ∈ N0 real number endpoints e1, . . . , en ∈ R.

2. A list of n+1 boolean interval flags f1, . . . , fn+1. The interpretation is that,
for each 1 < j < n, the real numbers between ej and ej+1 are included in
the set if and only if fj is TRUE. At the extremes, real numbers less than e1
are in the set when f1 is TRUE, and likewise numbers greater than en are in
the set when fn is TRUE.

3. A list of n boolean endpoint flags p1, . . . , pn, with the semantics that, for
any 1 ≤ j ≤ n, the real number ej is in the label’s observation set if and
only if pj is TRUE.

Note that any finite union of real intervals (including, for example, the empty set
and the full real line, which have n = 0) can be expressed in this format.

The UNION, INTERSECTION, and DIFFERENCE operations can be implemented
by performing a left-to-right sweep, adding endpoints and flags appropriately to the
resulting label. The EMPTY method requires a simple check for any endpoint flags
or interval flags that are TRUE. The CONTAINS check can be implemented by a
binary search for the correct interval, followed by a check against the relevant flag.
REPRESENTATIVE should return an element, either an endpoint or in the interior
of an interval (in the general case, perhaps the midpoint between two endpoints)
for which the corresponding flag is TRUE.

15

−9 −3 31

Figure 9: An interval label for the set [−9,−3) ∪ {1} ∪ (3,∞). The label data structure has 4 end-
points (−9,−3, 1, 3), 5 interval flags (FALSE, TRUE, FALSE, FALSE, TRUE), and 4 endpoint flags
(TRUE, FALSE, TRUE, FALSE).

Example 3.8. Labels that represent a finite number of events—as is the case for
many simple sensors such beam detectors or bump sensors, or simple actuators
with a discrete modes of operation—can be modeled by storing the elements ex-
plicitly in almost any container data structure, such as a balanced binary tree or a
hash table.

Example 3.9. We expect that a common case will involve action or observation
sets that are composed, via Cartesian product, from simpler sets. That is, we may
generally have X = L1×· · ·×Lm, in which each Li is a set for which we have the
requisite operations, and X is U or Y. In such a case, we can define a set algebra
over X in which each label represents a union of Cartesian products of sub-labels,
in the form

⋃
i

(
`
(i)
1 × · · · × `

(i)
m

)
, `(i)k ⊆ Lk, where i ∈ {1, . . . , n}. Under this

representation, a UNION between labels becomes a mere concatenation of Carte-
sian product lists. The INTERSECTION operation requires pairwise intersections
between each of the constituent Cartesian products of each of the two labels:⋃

i

(
`
(i)
1 × · · · × `(i)m

)∩
⋃

j

(
p
(j)
1 × · · · × p(j)m

)
=
⋃
i

⋃
j

(
(`

(i)
1 ∩ p

(j)
1)× · · · × (`(i)n ∩ p(j)m)

)
.

The DIFFERENCE operation is similar, but first requires a refinement of the labels
(see Section 3.2.1 below) along each dimension.

Example 3.9 also illustrates that while it is natural to think of labels as the
descriptions of sets borne on edges, such as either U(e) or Y(e) for some e, it is
also meaningful to think of sets which are basic constituents from which to make
up such labels. For this reason, in what follows we use the general notation of `i,
which can describe either sets of actions or observations.

3.2.1 Label refinement

Several of the algorithms in subsequent sections rely on a subroutine to com-
pute of a refinement of a set of labels. Specifically, in several places we need an

16

Algorithm 1: REFINELABELS(`1, . . . , `n)
Input : A list of labels, `1, `2, . . . , `n.
Output: A list of refined labels `′1, `

′
2, . . . , `

′
m.

// Construct the union of all the input labels
r ← `1
for ` ∈ {`2, . . . , `n} do

r ← UNION(r, {`})
R← {r}
// Refine each at at time
for ` ∈ {`1, . . . , `n} do

R′ ← ∅
for r ∈ R do

R′.append(INTERSECTION(r, `)); // The part inside r. . .
R′.append(DIFFERENCE(r, `)); // . . . and then the rest

R← R′

return R

algorithm that accepts as input an unordered set of labels `1, . . . , `n, and produces
as output an unordered set of labels `′1, . . . , `

′
m, such that

⋃
i `i =

⋃
j `
′
j and, for

each `′ ∈ {`′1, . . . , `′m} and each x1, x2 ∈ `′, we have{
` ∈ {`1, . . . , `n} | x1 ∈ `

}
=
{
` ∈ {`1, . . . , `n} | x2 ∈ `

}
.

The intuition is, given a set of labels, to compute a partition of the events spanned
by those labels. This partition should be fine enough to separate the input labels
from one another, in the sense that the set of corresponding input labels is constant
across all events in each output label. Such a partition is valuable because it en-
ables us to ‘drop down’ from the level of sets to the level of individual events, by
selecting a REPRESENTATIVE from each of the output labels, without danger of
missing any structure inherent to the input label set.

Algorithm 1 shows how one can perform this operation in a general way, for
any labels that support the UNION, INTERSECTION, and DIFFERENCE operations.
The algorithm starts with a single label representing the complete set of relevant
events, and then refines that partition using each of the input labels.

We note, however, that for certain kinds of labels, such as the interval labels
introduced in Example 3.7, it may be practical and efficient to implement this op-
eration directly, utilizing the internal details of the label data structure, rather than
this generalized approach. For the interval label space introduced in Example 3.7,
the label refinement operation can be implemented directly. Figure 10 shows an
example of the computation. The approach is to form a combined, sorted list of
all of the endpoints for each of the input labels, and then form the refined output

17

1 5
ℓ1

ℓ3

ℓ2

1
ℓ′1

5
ℓ′3

ℓ′2

ℓ′4

ℓ′5

74

3 6

3

3 4

4

5

76

6

Figure 10: An example of label refinement with interval labels. The three input labels, representing
the overlapping intervals [1, 5), [4, 7], and (3, 6], are refined into six disjoint output labels [1, 3],
(3, 4], (4, 5), [5, 6], and (6, 7).

labels using a left-to-right sweep, starting a new label each time the set input labels
touched by the sweep line changes.

3.3 Basic operations on p-graphs

Next, we examine operations on p-graphs. Of particular interest is the question
of how these operations affect the induced interaction language: some will mutate
the language; others will preserve it.

We give an example of a constructive operation which produces a new p-graph
with a new interaction language, exploiting initial state nondeterminism.

Definition 3.6 (union of p-graphs). The union of two p-graphs U and W , each
akin to the other, denoted by U]W , is the p-graph constructed by including both
sets of vertices, both sets of edges, and with initial states equal to V0(U)∪V0(W).

The intuition is to form a graph that allows, via the nondeterministic selection
of the start state, executions that belong to either U or W .

Theorem 3.2. For p-graphs P and Q: L(P) ∪ L(Q) = L(P]Q)

Proof. Follows directly from Definitions 3.5 and 3.6.

In general, the sets labeling two edges departing a vertex of a p-graph need
not be disjoint, allowing multiple ‘next’ states to be indicated for the same event.
It can be useful to distinguish p-graphs where this circumstance arises from those

18

· · ·

· · ·
· · ·

· · ·

· · ·

· · ·

{yc}

{u2, u3}

{u2}

{u2}
{u1, u2}

{u3}

{u3}

{ya, yc}

{ya, yb} {u1}

{yb}

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

{u3}

{u1}

{ya, yb}

{ya, yc}

{u2}

{yb}

{yb}

{ya}

{yc}

{yc}

{u2}
{u1}

{u3}

{u3}

{u2}

{u2}

{u1}

{u1}

{u3}

{u3}

{u2}

Figure 11: A fragment of a p-graph on the left is processed into the state-determined presentation on
the right with the concomitant increase in number of states.

where it is absent. Our next definition formalizes this, while also highlighting that
multiple p-graphs can induce the same interaction language.

Definition 3.7 (state-determined). A p-graph P is in a state-determined presenta-
tion if |V0(P)| = 1 and from every action vertex u ∈ Vu, the edges e1u, e

2
u, . . . , e

n
u

originating at u bear disjoint labels: U(eiu) ∩ U(eju) = ∅, i 6= j, and from every
observation vertex y ∈ Vy, the edges e1y, e

2
y, . . . , e

m
y originating at y bear disjoint

labels: Y (eiy) ∩ Y (ejy) = ∅, i 6= j.

The intuition is that in a p-graph in a state-determined presentation it is easy
to determine whether an event sequence is an execution: one starts at the unique
initial state and always has an unambiguous edge to follow. We note, however, that
the p-graph with a state-determined presentation for some set of executions need
not be unique.

Given any p-graph it is possible to construct a new p-graph that has the same
set of executions on it, but which is in a state-determined presentation. Algorithm 2
shows how to convert an arbitrary p-graph into state-determined presentation. The
basic idea is a forward search that performs a powerset construction on the input
p-graph. We begin by constructing a single state to represent the “superposition” of
all initial states, and push that onto a empty queue. While the queue has elements,
remove a vertex and examine the edges leaving the set of vertices associated with it
in the original input p-graph. The labels on those edges are refined by constructing
a partition of the set spanned by the union of the labels in a way that the subsequent
sets of states in the input p-graph is clear. Edges are formed with the refined sets
connecting to their target vertices, constructing new ones as necessary, and placing
these in the queue. This requires the use of Algorithm 1 to ensure that the edges
in the new filter are drawn correctly. Figure 11 gives a simple example of the
process for part of a p-graph. Though this shows a moderate increase in size, in

19

Algorithm 2: TOSTATEDETERMINEDPRESENTATION(G)
Input : A p-graph G with vertex set V and starting set V0.
Output: An equivalent state-determined p-graph G′ with W and W0, respectively.

Initialize W, W0, as empty
Corresp[·] = ∅ // Construct an empty map to associate vertices between p-graphs
Add v′0 to W and W0 /* Construct an initial the vertex in G, preserving action-

originating or observation-originating type of elements in V0 */
Corresp[v′0]← V0 // Associate v′0 with all v0 ∈ V0 in G
Initialize queue Q←W0

while Q not empty do
s′ ← Q.pop

// Refine each label and determine which states each refinement maps to:
L← All outgoing edge labels of Corresp[s′]
L′ ← REFINELABELS(L) // cf. Algorithm 1
Lab[·] = ∅ // Construct an empty map to associate refined labels to states
for `′ ∈ L′ do

Determine the set of states reached by tracing event REPRESENTATIVE(`′)
from each Corresp[s′], adding them to Lab[`′]

// Produce new states as needed:
for s ∈ Lab[`] for some ` do

if t ∈W, where t corresponds with s then
Add s′ `−→ t // Add transition on ` to G′

else
Create new state t corresponding to s // Type should correspond too
Q.push(t) // Add to queue to be processed

Add s′ `−→ t // Add transition on ` to G′

return G′

20

general, following the procedure above may produce a p-graph as output that has
an exponentially larger set of states than the input.

4 Label maps

We express modification of capabilities through maps that mutate the labels
attached to the edges of a p-graph.

Definition 4.1 (action, observation, and label maps). An action map is a function
hu : U → 2U

′ \ {∅} mapping from an action space U to a non-empty set of
actions in a different action space U′. Likewise, an observation map is a function
hy : Y → 2Y

′ \ {∅} mapping from an observation space Y to a non-empty set of
observations in a different observation space Y′. A label map combines an action
map hu and a sensor map hy:

h(a) =

{
hu(a) if a ∈ U

hy(a) if a ∈ Y
.

It is useful to extend this notion, so we do this immediately.

Definition 4.2 (label maps on sets and p-graphs). Given a label map h, its exten-
sion to sets is a function that applies the map to a set of labels:

h(E) =
⋃
e∈E

h(e).

The extension to p-graphs is a function that mutates p-graphs by replacing each
edge label E with h(E). We will write h(P) for application of h to p-graph P .

Example 4.1 (label maps on intervals). Representation of the action or observation
spaces that are R via unions of intervals, as detailed in Example 3.7, lends itself
to definition of label maps. To represent a label map on such an event space, we
might, for example, take bounding polynomials p1(x) and p2(x), and define

h(x) = {x′ | p1(x) ≤ x′ ≤ p2(x)}.

Given a finite-union-of-intervals label ` ⊂ R, we can evaluate this kind of h by
decomposing h into monotone sections, selecting the minimal and maximal values
of p1 and p2 within that range, and computing the union of the results across all of
the monotone sections. Figure 12 shows an example.

Label maps allow one to express weakening of capabilities as follows. If mul-
tiple elements in the domain of h(·) map to sets that are not disjoint, this expresses
a conflation of two elements that formerly were distinct.

21

x1 x2 x3

p2(x3)

p2(x2)

p2(x1)

p1(x2)
p1(x1)

p1(x3)

Figure 12: A label map from R to 2R may be described by functions p1 and p2 as lower and upper
bounds, respectively. The marked vertical interval, spanning p1(x1) to p2(x2) illustrates the image
of h across the monotone segment from x1 to x2. Values for other monotone segments would be
computed similarly.

1. When they are observations, this directly models a sensor undergoing a re-
duction in fidelity since the sensor loses the ability to distinguish elements.

2. When they are actions, this models circumstances where uncertainty in-
creases because a single action can now potentially produce multiple out-
comes, and the precise outcome is unknown until after its execution.

Further, when the image of element E is a set with multiple constituents, this
also expresses the fact that planning becomes more challenging.

3. For observations, it means that several observations may result from the
same state and, as observations are non-deterministic, this increases the onus
for joint-executions to maintain safety (for example, plans must account for
more choices).

4. For actions, while there is a seemingly larger choice of actions, this increase
does not represent an increase in control authority because several actions
behave identically.

In both action and observation instances, the map may become detrimental
when the outputs of h(E) intersect for multiple Es and thus ‘bleed’ into each other.
Broadly, one would expect that this is more likely when the output sets from h(·)
are larger.

The next two sections address questions of how to reason about this sort of
destructiveness for filtering and planning problems, respectively.

22

5 Destructiveness in filters

The management of uncertainty via integration of sensor readings has been a
central theme in robotics research for decades. It is, thus, worth examining how
p-graphs might be specialized to express structures suitable for such operations.
Earlier, Example 2.1 (along with Example 3.2 presented thereafter) showed how
both interaction languages, generally, and p-graphs, in particular, can describe es-
timation processes in the form of filters. The word filter is most familiar as a term
used to describe practical estimation components of robots and their controller soft-
ware. The filters treated in this section subsume those, representing a larger class,
providing a broad, abstract theoretical treatment of algorithmic processes that ag-
gregate information.

A p-graph over event space E is useful as a filter if the elements of U, the
actions, are interpreted as merely publishing or emitting information. The idea
is that filters influence an agent’s representation of state, rather than altering the
underlying state of the world itself. This act of interpretation gives p-graphs for
filtering special significance to the agent that beholds them. (The idea that some
interpretation must be provided to apply a p-graph to some circumstance is an
important recurring theme in this work.) In this section, we will use the word
output, rather than action, to emphasize the interpretation of a p-graph as a filter;
occasionally we also just use the word filter to refer to such a p-graph.

When a p-graph that is being used as a filter has some edge e bearing a non-
singleton set U(e), or when such a graph has an action edge with multiple out-
edges, the resulting language includes choices for the information to be emitted.
That choice is made arbitrarily, so whoever the consumer of the outputs might be
(perhaps it is a controller or a planner), it must be able to operate with any in the
set. Of course, if the p-graph is to be a faithful estimator this will constrain the
p-graph’s U(e) sets. One expects that a p-graph acting as a filter would produce
information that is sound given the stream of inputs seen; such a filter can produce
multiple outputs so long as the information from the filter need not be ‘tight.’ In
the argot used to describe probabilistic filters, this corresponds, roughly, to fact that
many possible filters may satisfy an unbiasedness criterion, though relatively few
that satisfy only that constraint are actually good estimators.

The previous discussion notwithstanding, it is far more usual to imagine a
unique output being produced in response to a particular history of events. We
find it useful to be precise about the p-graphs which, for any action vertex, do not
have any non-determinism on the output produced:

Definition 5.1. A p-graph G is single-outputting if, for all v ∈ Vu reached by an
execution, there is at most one edge e originating at v, and it bears a set U(e) with

23

|U(e)| = 1.

Though much previous discussion has emphasized the ability to use labels that
describe infinite sets, the following establishes that this is not needed for dealing
with the outputs of filters if they are single-outputting. There is still, however,
significant value in use of infinite sets of observations in these cases.

Theorem 5.1 (finiteness of single outputting p-graphs). For any single-outputting
p-graph G, there is a single-outputting p-graph G′ that is equivalent in the sense
that L(G) = L(G′), but where G′ is defined over an event space with finite U.

Proof. When G does not have a finite U, one constructs G′ by copying G and
simply restricting the set of actions for G′ to be the union of the U(e) for edges
originating at action vertices in the executions. This U is finite for there are finitely
many edges and each U(e) contributes no more than one element.

Algorithm 3: TOSINGLEOUTPUTTINGPRESENTATION(F)
Input : A p-graph F over an event space E with finite U.
Output: An equivalent filter F ′ that is single-outputting.

Copy Vy to F ′

for every pair vo, vo′ ∈ Vy, where vo
Y (v0, va)−−−→ va

U(va, vo′)−−−−→ vo′ do
for i ∈ U(va, vo′) do

Add action vertex vi to Vu for F ′

Add edge vo
Y (v0, va)−−−→ vi to F ′

Add edge vi
{i}−→ vo′ to F ′

if F is an action-first p-graph then
for every v1 ∈ V0, where v1

U(v1, vo)−−−→ vo do
for i ∈ U(v1, vo) do

Add action vertex vi to V0 and Vu for F ′

Add edge vi
{i}−→ vo to F ′

else
Copy V0 from F to F ′.

return F ′

Moreover, there is a sort of converse that is true too. If the set U is finite, then
having at most one singleton output set at each vertex, while a seemingly significant
constraint, does not limit the expressivity of such filters. Every finite action-space
p-graph has an equivalent single-outputting presentation.

One can convert an arbitrary finite action-space p-graph to an equivalent single-
outputting p-graph by making duplicates of each action vertex, one for each output

24

{a, b, c}

{b, c, d} {emit1}

{emit1}
{emit0} {a, b, c}

{b, c, d}

{b}

{b}{emit1}

{emit1}
{emit0}

{emit1}

{emit0}

Figure 13: [left] A p-graph representation of a filter that, despite some labels not being disjoint, is
a deterministic filter. [right] A p-graph that is not deterministic. To see this, note that the event
sequence ‘emit0 b emit0 b’ has two distinct successors: ‘emit0’ and ‘emit1’.

in the original, and making the sole transitions from those new vertices carry a
single output. Algorithm 3 gives the procedure in detail.

There is a pattern worth noting here. Definition 3.7 details a particular struc-
ture that certain p-graphs possess, and Algorithm 2 then shows how any p-graph
can transformed into a p-graph with that structure. For finite output sets, Defini-
tion 5.1 gives a particular structure that certain p-graphs possess, and Algorithm 3
shows how one can be transformed into a form with that structure. Both operations
transform p-graphs whilst preserving the interaction languages they induce, which
is why we call them presentations. There is more: Definitions 3.7 and 5.1 describe
two distinct ways of presenting a p-graph, each of which places some restrictions
on the kind of nondeterminism directly expressed in the p-graph, but they are, in
a certain sense, duals of one another. Algorithm 3 may, in splitting edges with
non-singleton labeled action sets, introduce some observation labels which over-
lap or multiple initial states. Algorithm 2 may, in eliminating overlapping labels on
edges incident the same observation vertex (and also, in eliminating multiple initial
states), produce a result which has action-states that have multiple edges departing
it.

We claim that a certain class of p-graphs, however, can be represented in a way
that is simultaneously single-outputting and state-determined.3 We call these filters
deterministic.

Definition 5.2. A p-graph F is a deterministic filter if every observation-terminal
sequence has at most one successor in L(F).

In the sense we have defined here, the property of being a deterministic filter is
a property of the p-graph’s function, rather than a property of its representation; it
is thus fitting that this notion can be expressed in terms of the induced interaction
language. Note that the determinism does not mean that each observation-terminal
sequence arrives at a unique state, but only that each observation sequence, if it
yields any output, yields a single, determined output. (Figure 13 helps clarify this

3Proof of the claim that the class of p-graph defined in Definition 5.2 actually is this class appears
in Theorem 5.4 below; first we elaborate on the version of determinism we define and, in particular,
its relation to the classical notion.

25

distinction by illustrating the difference.) This second idea is closely tied to the
usual sense of the word deterministic in classic automata theory: the notion that
sequences of observations (note, solely, observations) drive the transitions of the
automata, including dictating the precise state reached. This form is also important
because the filters we described in Examples 2.1 and 3.2 are typically deterministic
in this more traditional sense—no arbitrary choices need be made during their exe-
cution, observation inputs command the behavior. We define this class as follows:

Definition 5.3. A single-outputting p-graph F is a practicable filter if the validity
of every sequence e1 · · · ek ∈ L(F) is the consequence of precisely one sequence
of state transitions in F .

They are named practicable because such filters are directly amenable to im-
plementation. This, no doubt, goes some way to explaining why the filters that
have appeared in the robotics literature are of this form.

Naturally, there is a connection between these practicable filters and the pre-
ceding notion of determinism, captured by these two lemmas:

Lemma 5.2. Every practicable filter is a deterministic filter.

Proof. Every observation-terminal sequence in the induced language traces a sin-
gle trajectory through the filter’s states and so arrives at precisely one state. It is
single-outputting so there is at most one edge from that vertex and, hence, at most
one successor.

Lemma 5.3. For every deterministic filter F there exists a practicable filter F ′

with L(F) = L(F ′).

Proof. One constructs F ′ by taking sets of vertices in F as vertices for F ′; the
start state of F ′ is V0. One adds edges in F ′ by exploring each of the (finite)
sequence prefixes that arrive at vertices in F , and labeling the transitions that are
made. Tracing a prefix string on F may result in a branch: two edges leaving an
observation vertex may have labels which overlap (though this cannot happen with
action vertices). At such choice points both choices should be taken, which is why
the states in F ′ are subsets of vertices of F . An edge in F ′ originating from action
vertex labeled, say, {vi, vj} (being associated with both action vertex vi and action
vertex vj in F), only ever bears one label because the edge originating from vi and
from vj in F must produce the same output, otherwise otherwise F would not be
a deterministic filter.

Having established that deterministic filters may be of practical importance
because they can, ultimately, be turned into practicable filters, next we establish

26

a relationship between the set of deterministic filters and the presentations (state-
determined and single-outputting) introduced earlier.

Theorem 5.4. Any state-determined p-graph is deterministic if and only if it is
single-outputting.

Proof. Forward direction: If F is a deterministic state-determined filter which
is not single-outputting, there must be some sequence arriving at a vertex in Vu

which, either has more than one departing edge, or it must possess an edge with
a label containing at least two elements. If it has more than one departing edge,
the labels cannot overlap because F is state-determined. But either multiple edges
with distinct labels or an edge bearing a label with multiple elements imply multi-
ple successors, contradicting the requirement that F be deterministic.
The other direction: Following the procedure described in Lemma 5.3 with a
single-outputting and state-determined filter never leads to any choices. Therefore,
only singleton subsets of 2V are involved. As a result, any observation terminal
sequence can yield at most one output.

In the next section we use this result.

5.1 Ascertaining destructiveness of observation maps on filters

Since p-graphs are capable of representing filters, the next question is how
they might enable a roboticist to evaluate tentative designs and to better understand
solution space trade-offs. A class of interesting design-time questions arises when
one considers how modifications to a given robot’s capabilities alter the estimation
efforts that the robot must undertake. In the specific context of filtering, consider
the following illustrative examples of how maps might come into play when we
apply them to observation sets.

Example 5.1. Your robot is equipped with a camera, and triplets of red–green–
blue values within an array comprise Y. Now imagine that rose-tinted lenses are
placed over the camera. Applied pixel-wise, hrose : 〈r, g, b〉 7→ {〈r, 0, 0〉}. Certain
scenes that produce distinct inputs, y1 6= y2, may now be indistinguishable under
the transformation, as when two scenes differ only in elements of the spectrum
filtered out by the lenses, and hrose(y1) = hrose(y2).

Example 5.2. Observation maps need not only reduce the set. Suppose your sensor
incurs cross-talk due to poor cable routing and cheap shielding. Where formerly a
given circumstance would produce an observation yi, this might be modeled with
an observation map yi 7→ {yi, y′i, y′′i }. It may be that y′ ∈ Y, or it might be some

27

heretofore unseen class of signal. What we are interested in is whether this cross-
talk is destructive or not. The answer to this depends on whether some other yj
exists where y′i ∈ h(yj). Even existence of such a yj is insufficient, as yi and yj
might occur in every pre-image together.

Next, we formalize the notion of a destructive observation map for filters.

Definition 5.4 (filter equivalence). Given two p-graphs for filtering, F over event
space E = U ∪ Y and F ′ over event space E′ = U ∪ Y′, and an observation
map hy : Y → 2Y

′ \ {∅} mapping from the observation space of F to sets of
observations of F ′, we say that F is equivalent to F ′ modulo hy, denoted

F = F ′ mod hy,

if, for every observation-terminal sequence e1e2e3 · · · em in L(F), we have that
{u | e1e2e3 · · · emu ∈ L(F)} ={

v

∣∣∣∣ f1f2f3 · · · fmv ∈ L(F ′), ∀
i
(ei ∈ Y =⇒ fi ∈ hy(ei))

}
.

Note that we eschew the traditional equivalence symbol ‘≡’ for this relation
because it is not symmetric: F = F ′ mod hy does not necessarily imply F ′ = F
mod hy.

To understand the preceding condition, observe that, on F , the sequence s =
e1e2 · · · em produces an output that is an element of {u | su ∈ L(F)}, the set on
the left-hand side. Paying attention to only the observations that comprise s, which
are every other element of the sequence, each of these ei result in a set under hy.
We consider all sequences that have observations such that every observation at
position i in the sequence, which we denote fi, is from the set hy(ei). Using all
such sequences, we ask whether F ′ produces outputs that match F on s.

(Definition 5.4 has a simpler presentation if we assume that the filters involved
have a finite action-space, in which case there exists a k, for which we are permitted
to write the set on the left as {u1, u2, . . . , uk}. In what appears above we have not
assumed that the action-space is finite, nor even denumerable.)

The intuition behind the definition is that if F ′, given observations mutated by
hy, exhibits the same behavior that F exhibits when given those same observations,
but unmutated, then any difference between F and F ′ is merely in the change in
manifestation of the observations that was induced by hy and the underlying struc-
ture is the same. In contrast, if the two filters can generate different outputs under
these conditions, then there must be some other explanation for those differences.
This suggestion motivates the idea of a nondestructive observation map.

28

Definition 5.5 (non-destructive). Given a p-graph F and an observation map hy :
Y → 2Y

′ \ {∅}, we say that hy is non-destructive if

F = hy(F) mod hy.

Informally, a nondestructive observation map is one that preserves enough
structure that the filter still works after applying it, as long as the labels are up-
dated accordingly. A destructive observation map is one that creates enough am-
biguity (initially expressed in the resulting p-graph by states with out-edges whose
labels overlap) that the correct outputs can no longer be determined solely by the
observations.

Example 5.3. Suppose hy is an injective map so that if hy(y) = hy(z), then
y = z. Because this kind of map does not introduce the possibility of conflating
any two observations, it is clear that hy is non-destructive. In the particular case
of interval labels (recall Example 3.7), this implies that any sensor map that is a
strictly-increasing or strictly-decreasing —including, for example, affine maps—
is non-destructive. Contrapositively, we can also conclude that every destructive
sensor map is non-injective.

Restricting ourselves to finite action-spaces, we can now pose the problem
posed by the examples in Section 1 precisely and address it algorithmically. Given
a p-graph F and an observation map hy : Y → 2Y

′ \ {∅}, we wish to deter-
mine if hy is non-destructive on F or not. We check explicitly whether F = hy(F)
mod hy. Algorithm 4 shows how to perform this check. After converting to state-
determined normal form, if necessary, the algorithm uses a forward search over
pairs of states, one from each p-graph, that are reachable by some event sequence.
For each such pair, if they are action vertices we verify that the outputs specified by
the p-graphs are the same. For full generality, we show the algorithm for arbitrary
pairs of p-graphs, not just for an F and its hy(F).

5.1.1 Deterministic filters

Now suppose we have a deterministic filter F and an observation map hy, and
wish to ascertain whether hy is non-destructive on F—a special case that should
be quite common, since those which are directly implementable, viz. practicable
filters, are deterministic filters. For these filters we can use Algorithm 2 along
with Theorem 5.4 to determine whether hy is destructive. The intuition is to com-
pute hy(F), then convert that mapped filter to a state-determined presentation and
check whether the result is also single-outputting. Checking whether a filter output
from Algorithm 2 is single-outputting is especially straightforward because it only

29

Algorithm 4: EQUIVALENCEMODULOMAP(F1, F2,hy)

Input : Two finite action-space p-graphs F1 and F2, and observation map
hy : Y → 2Y

′ \ {∅}.
Output: True iff F1 = F2 mod hy

if F1 and F2 are not akin then
return False

Convert F1 and F2 to state determined presentation if needed.
/* Basic idea: conduct a forward search, computing the finite-set of observations

needed to make all potential transitions along the way. */

Initialize queue Q← V
(F1)
0 ×V

(F2)
0

while Q is not empty do
(s1, s2)← Q.pop
if s1 and s2 are observation vertices then

Y1 ← REFINELABELS(labels leaving s1)
Y2 ← REFINELABELS(labels leaving s2)
Y′

2 ← { pre-image of each element of Y2 under hy}
L← REPRESENTATIVES(Y1 ∪Y′

2)
/* L has a partition of the observation space which is just fine enough to

exercise each filter. */
for ` ∈ L do

s′1 ← state that F1 transitions to on `
s′2 ← state that F2 transitions to on hy(`)
Q.push((s′1, s

′
2)) // To be processed

else
// Both are action vertices
O1 ← UNION(labels leaving s1)
O2 ← UNION(labels leaving s2)
// Equality of label sets computed using DIFFERENCE and EMPTY
if O1 6= O2 then

return False // Output sets are not equal
U1 ← REFINELABELS(labels leaving s1)
U2 ← REFINELABELS(labels leaving s2)
L← REPRESENTATIVES(U1 ∪U2)
for ` ∈ L do

s′1 ← state that F1 transitions to on `
s′2 ← state that F2 transitions to on `
Q.push((s′1, s

′
2)) // To be processed

return True

30

a b

c

d a b

c

d

Figure 14: [left] An example instance of the 3-coloring problem. [right] A coloring of that graph
using three colors.

outputs reachable vertices, thus, one simply checks that each action vertex has at
most one singleton labeled edge departing it. Algorithm 5 gives the overall test for
destructiveness, which is strikingly simple.

Algorithm 5: OBSERVATIONMAPDESTRUCTIVENESSTEST(F,hy)

Input : A deterministic filter F and an observation map hy.
Output: TRUE iff hy is non-destructive on F .

G← TOSTATEDETERMINEDPRESENTATION(hy(F))
return ISSINGLEOUTPUTTING(G)

5.2 Hardness

The preceding treatment of observation maps raises the question of why it is of
interest to consider a variety of maps. Instead, why not simply find the observation
map that is, in some sense, the ‘most aggressive’ nondestructive map for a given
filter? In this section, we present a hardness result establishing that, unless P =
NP , no efficient algorithm can find the nondestructive sensor map of minimal
image size for a given filter, even approximately. Specifically, we consider the
following decision problem:

Definition 5.6 (sensor minimization). The sensor minimization decision problem
is: Given a p-graph F and integer n, return TRUE if there exists a set K and an
observation map hy : Y → 2K \ {∅}, nondestructive for F , with |K| ≤ n, and
FALSE otherwise.

Theorem 5.5. The sensor minimization decision problem is NP-hard.

Proof. Reduction from the graph 3-coloring problem GRAPH-3C, which is known
to be NP-complete (Garey and Johnson, 1979). Given an instanceG of GRAPH-3C,
we construct an instance of the sensor minimization decision problem, building an
action-first p-graph F as follows: Use one observation in Y for each vertex ofG, so
that Y = V(G). For the set of actions, U, select {emit0, emit1, emit2}. Assign an

31

{e
m
it
0
}

{e
m
it
2
}

{e
m
it
1
}

{e
m
it
0
}

{e
m
it
2
}

{e
m
it
1
}

{e
m
it
0
}

{e
m
it
2
}

{e
m
it
1
}

{e
m
it
0
}

{e
m
it
2
}

{e
m
it
1
}

{a}

{b}

{a, b}

{a, b}

{b}

{c}

{b, c}

{b, c}

{c}

{d}

{c, d}

{c, d}

{b}

{d}

{e
m
it
0
}

{e
m
it
2
}

{e
m
it
1
}

{e
m
it
0
}

{e
m
it
2
}

{e
m
it
1
}

{e
m
it
0
}

{e
m
it
2
}

{e
m
it
1
}

{e
m
it
0
}

{e
m
it
2
}

{e
m
it
1
}

{{x}}

{{y}}

{{x}, {y}}

{{x}, {y}}

{{y}}

{{x}}

{{x}, {y}}

{{x}, {y}}

{{x}}

{{z}}

{{x}, {z}}

{{x}, {z}}

{{y}}

{{z}}

Figure 15: [top] The p-graph expressing a filter constructed from the graph coloring problem shown
in Figure 14. [bottom] The result of applying an observation map under which a 7→ {x}, b 7→ {y},
c 7→ {x}, and d 7→ {z}. This mapped filter is equivalent to the original filter, modulo this map.
Because this filter has a non-destructive map with image of size 3, the graph in Figure 14 can be
colored with 3 colors.

arbitrary but fixed ordering to the edges E(G). For each edge e ∈ E(G) connecting
nodes v and w: (1) insert three action vertices i•e , s•e , and t•e , into Vu; (2) insert
three observation vertices i�e, s

�

e, and t�e, into Vy. Here, the names mnemonically
indicate ‘initial,’ ‘source node,’ and ‘target node.’ Continue to build the p-graph G
by adding an edge from i

•
e to i�e labeled with output {emit0}, adding an edge from

s
•
e to s�e labeled with output {emit1}, and adding an edge from t

•
e to t�e labeled with

output {emit2}. Add an edge labeled with the observation set {v} from i
�

e to s•e .
Likewise, add an edge labeled with the observation set {w} from i

�

e to t•e . Unless
e is the final edge in the ordering, let e′ denote the next G-edge in the arbitrary
ordering, and add edges to F labeled {v, w} from s

�

e to i•e′ and from t
�

e to i•e′ . For
the first edge e ∈ E(G) in the ordering, designate i•e as the single initial node V0.
Select n = 3.

Figure 14 shows an example instance of GRAPH-3C, and Figure 15 shows the
corresponding filter. The construction takes time linear in the size of G. It remains
to show thatG is 3-colorable if and only if F has a nondestructive observation map
hy : Y → 2K with |K| ≤ 3.

Assume that G is 3-colorable. Let c : V (G)→ {0, 1, 2} be a 3-coloring of G.
Since Y = V(G), we construct an observation map for F using c as follows. We
let K = {0, 1, 2} and map only to singleton subsets: hy(y) 7→ {c(y)}.

Note that hy(F) is state-determined; the only states with multiple out-edges
are the i�e states, and since c is a coloring of G, the two observations labeling these
edges in F must map to different sets under hy. Therefore, hy is a nondestructive
sensor map for F , and |K| = 3.

For the other direction, assume F has a nondestructive observation map hy :

32

Y → 2K \ {∅} with |K| = 3. Then, there must also exist a nondestructive map
hsy mapping to singletons from K, i.e., {{k} | k ∈ K} since mapping to sets with
more than one element only loses information. From hy we can construct an hsy by
making some arbitrary choice from items in the image set.

We argue that this hsy forms a valid 3-coloring of G. Suppose, to the contrary,
that hsy is not a valid 3-coloring of G. Then there must exist some edge e ∈ E(G),
connecting two nodes v and w, such that hsy(v) = hsy(w). But in that case, in
hsy(F), and hence hy(F), from the node i�e there are two out-edges, both intersect-
ing labels, leading to differently-colored states, namely s•e and t•e . But s•e results in
{emit1}, while t•e does an {emit2}. In contrast, the original F is state-determined.
Therefore hsy is destructive of F , a contradiction.

Finally, since GRAPH-3C is polynomial-time reducible to sensor minimization,
we conclude that it is NP-hard.

Note, a fortiori, that the proof of Theorem 5.5 does not depend any essential
way on the specific number 3. In fact the chromatic number of the graph coloring
instance and the image size of the smallest nondestructive observation map for the
corresponding p-graph filter are always equal. Combined with known results on the
inapproximability of chromatic numbers (Zuckerman, 2007), this leads directly to
the following stronger result.

Corollary 5.5.1. The optimization problem of finding, for a given filter, the non-
destructive sensor map with the smallest image size, is NP-hard to approximate to
within n1−ε.

Proof. Let ε > 0. Suppose that there exists a polynomial time approximation
algorithm A to solve sensor minimization with approximation ratio n1−ε. Let B
denote an approximation algorithm for graph coloring that works as follows.

1. Given an instance G of graph coloring problem, form the filter F as de-
scribed in the proof of Theorem 5.5.

2. Use algorithm A to apply map hy on F .

3. Find a coloring of G from the applied map hy(F).

We now argue that B has approximation ratio n1−ε.
Let B(G) denote the number of colors used by algorithm B to color G, and,

likewise, let A(hy(F)) denote the image size of filter produced by algorithm A
from input filter F and with map hy applied. Let OPT (hy(F)) and OPT (G)
represent the smallest image size of applying hy on filter F and minimum num-
ber of colors for coloring G, respectively. According to the assumption, we have

33

A(F) 6 n1−εOPT (hy(F)).
Thus, the above construction would be such an approximation algorithm B for
graph coloring problem. So, we have OPT (hy(F)) = OPT (G). Then, for suffi-
ciently large n,

B(G) = A(hy(F (G))) (1)

6 n1−εOPT (hy(F)) (2)

6 n1−εOPT (G). (3)

Therefore,B is an approximation algorithm for graph coloring with approximation
ratio n1−ε, which contradicts Zuckerman (2007).

5.3 Case study: Minimizing the iRobot Create

Figure 16: An iRobot Create is equipped with a collection of simple sensors including four cliff
sensors and a wall sensor, each uses IR to measure distance. As a simple example, we consider a
filter which maps sensor readings into motor commands on a robot tasked with following a wall on
its left, while avoiding negative obstacles. (A suitable environment is shown in Figure 3.)

The following simple scenario, of the sort that the authors have often assigned
in introductory robotics courses, illustrates the utility of the machinery developed
in this paper. Here, we report transformations computed by our Python implemen-
tation of the algorithms described above. Revisiting the scenario in Figure 3, we
wish to have an iRobot Create vacuum cleaning robot follow walls (on its port side)
while avoiding negative obstacles. The five range sensors on the robot provide suf-
ficient information to carry out this basic task. (See Figure 16 for elaboration of
the sensing details.) We approach this problem by constructing a p-graph whose
outputs map directly to actions for the robot, and then we are able to analyze the
effect of observation maps on this p-graph (as a filter) with our implementation of
the algorithms described in the earlier sections of the paper.

First we describe the set of observations for idealized versions of the robot’s
sensors. Each of {w, c1, c2, c3, c4} is fundamentally a device that measures dis-
tance, so it is useful to model each output with a real number that represents

34

Figure 17: A visual representation of the filter (IDEAL) that solves navigation problem for the Create
where edge labels are subsets of R5, and the values in each vertex are velocities that the robot
executes for some small finite time. The action emitF generates a ‘Forward-with-slight-left-bias’
motion with ẋ = 0.2, θ̇ = 0.1, the emitT generates a ‘Turn’ motion via ẋ = 0, θ̇ = −0.2, and
the emitR generates a ‘Reverse’ motion via ẋ = −0.1, θ̇ = 0. (The δij is the Kronecker delta,
i, j ∈ {1, 2, 3, 4}.)

the range reading; naturally, the product of these five sensors gives a label space
with R5. Each state in the filter produces an output that is interpreted as veloc-
ity commands—linear as ẋ and angular as θ̇. The filter is shown pictorially in
Figure 17.

From this a series of filters is constructed via transformations that coarsen the
label space. Observation map hy clips to a maximum ranges supported by the sen-
sors. It is applied to the IDEAL filter, giving a filter CREATE (SIGNALS), whose
labels are based on the data that can be read from the physical sensors through
the software interface (see iRobot Corp. (2015)). Observation map fy, transforms
CREATE (SIGNALS) into CREATE (SYMBOLS) representing a second level of ab-
straction —in this case, a quantization based on thresholding— available through
the robot’s hardware interface. Map gy further reduces the set of labels, while the
final map we define, ky, is destructive. Table 1 collects this information. The rows
in the table also summarize the relationships visually. Starting from IDEAL one
produces the others via composition of the sensor maps, for example, COMBINED

SENSOR results from applying map the gy ◦ fy ◦hy. Only the final map to a sensor-
less model is destructive. The conclusion we reach from this is that, for this filter,
neither the specific distance measurements nor the individual identities of the sen-
sors themselves are necessary. A robot designed exclusively for this task could,
therefore, likely be designed to be simpler than a Create.

35

Name Observation Space Notes

IDEAL R× R× R× R× Ryhy = clipToRange(·)

CREATE (SIGNALS) [0, 1023]× [0, 4095]4 cf. iRobot Corp. (2015, pg. 27).yfy = thresholdT (·) (T = 10 and 20 for w and ci respectively.)

CREATE (SYMBOLS) {0, 1} × {0, 1}4 cf. iRobot Corp. (2015, pgs. 22–23).ygy = min(·)

COMBINED SENSOR {0, 1}yky = 0 (Constant map)

SENSORLESS {0} (Destructive)

Table 1: A hierarchy of filters for the iRobot Create.

36

6 Destructiveness in planning problems

6.1 Plans and Planning Problems

The final section of Tovar et al. (2014), a substantial and recent paper on the
topic of combinatorial filters, concludes with the following:

“Since the methods so far provide only inference, how can their output
be used to design motion plans? In other words, how can the output be
used as a filter that provides feedback for controlling how the bodies
move to achieve some task?”

Next, we make some progress in that direction by using p-graphs to model plan-
ning problems and plans. The example of the iRobot Create in Section 5.3 had a
direct correspondence between filter outputs and actions that the robot executed.
In general, the sequences of actions that a robot performs will depend on the task
it is performing, but in the previous section there was no direct representation of
tasks. Thus, though p-graphs have been used up to this point to encode state space
structure, more information must be provided to talk meaningfully about plans and
planning problems.

Definition 6.1 (planning problem). A planning problem is a p-graph G equipped
with a goal region Vgoal ⊆ V (G).

The idea is that for a pair that make up the planning problem, the p-graph
describes the setting and form in which decisions must be made, while the Vgoal
characterizes what must be achieved. Recall that, because a p-graph may have
multiple initial states, this definition can encompass planning problems in which
the system is known to start from one of possibly many starting states.

Definition 6.2 (plan). A plan is a p-graph P equipped with a termination region
Vterm ⊆ V (P).

The intuition is that the out-edges of each action state of the plan show one or
more actions that may be taken from that point—if there is more than one such ac-
tion, the robot selects one nondeterministically—and the out-edges of each obser-
vation state show how the robot should respond to the observations received from
the environment. If the robot reaches a state in its termination region, it may decide
to terminate there and declare success, or it may decide to continue on normally.
This, then, gives an interpretation of p-graphs as plans. We can now establish the
core relationship between planning problems and plans.

37

Vterm

{y1, y2}

{y1, y2}

{u2}

{u1}

{u1}

{u1}

{y2}

{y1}

Figure 18: A plan that directs the robot of Figure 8
to its charging station, along a hyperkinetic (that
is, exhibiting more motion than is strictly neces-
sary) path.

Definition 6.3 (solves). A plan (P, Pterm) solves the planning problem (W,Vgoal)
if P is finite and safe on W , and every joint-execution e1 · · · ek of P on W either
reaches a vertex in Pterm, or is a prefix of some joint-execution that reaches Pterm

and, moreover, all the e1 · · · ek that reach a vertex v ∈ V (P) with v ∈ Pterm,
always reach vertices w ∈ V (W) with w ∈ Vgoal.

The solution concept here, with its stipulation of finiteness reminiscent of no-
tions of computability, is concerned only with processes that terminate in some
bounded time. (We defer questions about extensions to other prevalent concepts —
such as infinite horizons, models of rewards, and the like— to future work.)

Example 6.1 (Charging around and in the pentagonal world). We can construct a
planning problem from the p-graph of Figure 8, along with a goal region consisting
of only the fully-charged state reached by action u2. Figure 18 shows a plan that
solves this problem. However, that plan, a cycle of three actions, is a bit surpris-
ing since it will take the robot along three full laps around its environment before
terminating. The existence of such bizarre plans motivates our consideration of
homomorphic plans, which behave rather more sensibly, in Section 6.2.

Both plans and planning problems are pairs consisting of a p-graph and a set
of states. In each case, the p-graph can be converted into a state-determined pre-
sentation using Algorithm 2 and doing so preserves the interaction language. But
the semantics for both structures, plans and planning problems, is tied together
through the definition of ‘solves’ (Definition 6.3). That definition has two parts.
The first concerns finiteness and safety, properties of joint-executions only, and is
consequently unaffected by transformations that preserve the interaction language.
The second depends on vertices and their relationship to the associated sets. Thus,
forming something analogous to a state-determined presentation must require some
alteration of the second element of the pair, i.e., the set of states.

Definition 6.4 (state-determined planning problems). The state-determined pre-
sentation of planning problem (W,Vgoal) is (W ′, V ′goal) where W ′ is the state-
determined presentation of p-graph W , and V ′goal is the subset of V (W ′) where

38

v ∈ V (W ′) is included in V ′goal only if all the vertices in V (W) that correspond
with v are in Vgoal.

Definition 6.5 (state-determined plans). The state-determined presentation of prob-
lem (P, Vterm) is (P ′, V ′term) where P ′ is the state-determined presentation of p-
graph P , and V ′term is the subset of V (P ′) where v ∈ V (P ′) is included in V ′term
only if there exists a vertex in V (P) corresponding with v that is in Vterm.

The previous two definitions differ only in terms of the quantifier involved in
their conditions on associated vertices. These mirror the ‘reach a vertex’ and ‘al-
ways reach vertices’ in Definition 6.3. Practically, the conditions can be computed
easily by via the Corresp[·] map used in Algorithm 2.

Lemma 6.1 (state-determined presentations preserve solubility). If (P, Vterm) is a
plan, and (W,Vgoal) a planning problem, with their state-determined presentations
being (P ′, V ′term) and (W ′, V ′goal) respectively, then the following are equivalent:

1. (P, Vterm) solves (W,Vgoal)

2. (P ′, V ′term) solves (W,Vgoal)

3. (P, Vterm) solves (W ′, V ′goal)

4. (P ′, V ′term) solves (W ′, V ′goal)

Proof. The correspondence between vertices in the original p-graph and the state-
determined presentations allows the joint-executions in one case to be traced in the
other. Under the correspondence, one must check the requirements for being a so-
lution do in fact hold. But the logic necessary in updating the goal and termination
sets in Definitions 6.4 and 6.5 correspond to the solution requirements (an event
sequence reaching a vertex in Vterm will reach a set of vertices all of which are in
Vgoal), so they do hold.

Now, given a plan (P, Pterm) and a planning problem (W,Vgoal), we can decide
whether (P, Pterm) solves (W,Vgoal) in a relatively straightforward way. First,
we convert both into state-determined presentations, as just described.Then, the
algorithm conducts a forward search using a queue of ordered pairs (v, w), in which
v ∈ V (P) and w ∈ V (W), beginning from the (unique, due to Definition 3.7) start
states of each. For each state pair (v, w) reached by the search, we can test each of
the properties required by Definition 6.3:

39

• If P and W are not akin, return false.

• If (v, w) has been visited by the search before, then we have detected the
possibility of returning to the same situation multiple times in a single exe-
cution. This indicates that P is not finite on W . Return false.

• If v and w fail the conditions of Definition 2.8 (that is, if v is missing an
observation that appears in w, or w omits an action that appears in v) then P
is not safe on W . Return false.

• If v is a sink state not in Pterm, or w is a sink state not in Vgoal, then we have
detected an execution that does not achieve the goal. (A vertex is a sink if it
has no departing edges.) Return false.

• If v ∈ Pterm and w /∈ Vgoal, then the plan might terminate outside the goal
region. Return false.

If none of these conditions hold, then we continue the forward search, adding to
the queue each state pair (v′, w′) reached by a single event from (v, w). Finally, if
the queue is exhausted, then—knowing that no other state pair can be reached by
any execution—we can correctly conclude that (P, Pterm) does solve (W,Vgoal).

It may perhaps be surprising that both planning problems and plans are defined
by giving a p-graph, along with a set of states at which executions should end. We
view this symmetry as a feature, rather than a bug, in the sense that it clearly illu-
minates the duality between the robot and the environment with which it interacts.
As alluded to in Section 2, observations can be viewed as merely “actions taken by
nature” and vice versa. At an extreme, the planning problem and the plan may be
identical:

Lemma 6.2 (self-solving plans). If P is a p-graph which is acyclic and the set of its
sink nodes is Vsink, then the plan (P, Vsink) solves the planning problem (P, Vsink).

Proof. The plan is obviously finite and safe on itself. Because the set of joint-
executions is simply the set of executions, the result follows from the fact that
every execution on P either reaches an element of Vsink, or is the prefix of one that
does.

We have described, in Definitions 3.6 and 3.7, operations to construct new p-
graphs out of old ones. We can extend these in natural ways to apply to plans.4

4. . . and—via the symmetry between Definitions 6.1 and 6.2—in the same stroke, to planning
problems, though in this paper we’ll use these operations only on plans.

40

Definition 6.6 (∪-product of plans). The ∪-product of two plans (P, Pterm) and
(Q,Qterm), with P and Q akin, is a plan (P]Q,Pterm ∪Qterm.

Theorem 6.3 (state-determined∪-products). Given plans (P, Pterm) and (Q,Qterm),
with P and Q akin, construct a new plan whose p-graph, denoted R, is the expan-
sion of P] Q into a state-determined presentation. Recall that the expansion
means that every state s ∈ V (R) corresponds to sets Ps ⊆ V (P) and Qs ⊆ V (Q)
of states in the original p-graphs (either set can be empty, but never both). Define
a termination region Rterm as follows:
Rterm := {s ∈ V (R) | (Ps 6= ∅ ∧ Ps \ Pterm = ∅) ∨ (Qs 6= ∅ ∧Qs \Qterm = ∅)} .
Then (R,Rterm) is equivalent to (P] Q,Pterm ∪ Qterm) in the sense of having

identical sets of executions. Moreover, any planning problem solved by the former
is also solved by the latter.

Proof. This follows directly from the executions underlying the state-determined
expansion, and the definition of the ∪-product.

This result illustrates how the state-determined expansion is useful — it permits
a construction that captures the desired behavioral properties and, by working from
a standardized presentation, can do this directly by examining states rather than
posing questions quantified over the set of executions.

6.2 Homomorphic solutions

The following are a subclass of all solutions to a planning problem.

Definition 6.7 (homomorphic solution). For a plan (P, Vterm) that solves planning
problem (W,Vgoal), consider the relationR ⊆ V (P)×V (W), in which (v, w) ∈ R
if and only if there exists a joint-execution on P and W that can end at v in P and
in w in W . A plan for which this relation is a function is called a homomorphic
solution.

The name for this class of solutions comes via analogy to the homomorphisms —
that is, structure-preserving maps— which arise in algebra. In this context, a homo-
morphic solution is one for which each state in the plan corresponds to exactly one
state in the planning problem.

Example 6.2. Recall Example 6.1, which shows a cyclic solution that involves
tracing around the cyclic planning problem multiple times (until the least common
multiple of their cycle lengths is found, in this case a series of 30 states in each
graph). This plan is not a homomorphic solution because each plan state corre-
sponds to multiple problem states. However, a simpler plan, depicted in Figure 19,
can be formed in which each plan state maps to only one problem state. This
solution is therefore a homomorphic one.

41

Vterm

{u1}

{y1}
{u1}

{y2}

{y1}

{u1}

{u2}

{y2}

{y1}

{u1}

Figure 19: An alternative, more direct plan that solves the problem of navigating Figure 8’s robot to
its charger. This plan is a homomorphic solution.

The preceding example is a particular instance of a more general pattern.

Theorem 6.4. If there exists a plan to solve a state-determined planning problem,
then there exists a homomorphic solution.

Proof. Suppose (P, Pterm) is a solution to (W,Vgoal). If every joint-execution ar-
riving at v in P arrives at the same w in W , then (v, w) ∈ R is a function, so
(P, Pterm) is a homomorphic solution. Thus, consider the cases for which there
are elements (v, w) ∈ R and (v, y) ∈ R, with w 6= y. Let Rlast ⊂ R be the
relation where (vp, vw) ∈ Rlast iff there is a joint-execution e1 · · · ek arriving at vp
on P and vw on W , and there are no joint-executions which extend the execution
(e.g., e1 · · · ek · · · em, m > k) that arrive at vw again. Then construct a new plan
(Q,Qterm) with V (Q) = V (W) and V0(Q) = V0(W). For all edges departing
v ∈ P associated with w ∈ Q where (v, w) ∈ Rlast, we collect the label sets
by unioning them to form Ve. Then edges departing w are included in Q by car-
rying over edges from W , intersecting Ve with all the labels of edges departing
w, and dropping those for which the result is empty. Finally, an element w is in-
cluded in Qterm if there is a v ∈ Pterm with (v, w) ∈ Rlast. Then (Q,Qterm) is
a solution to (W,Vgoal) because, though (P, Pterm) and (Q,Qterm) have different
sets of executions, every execution on P that reaches Pterm is transformed into
another on Q reaching Qterm (and Vgoal). Moreover, this ensures that the relation
from Definition 6.7 is a bijection, so that (Q,Qterm) is a homomorphic solution to
(W,Vgoal).

6.3 Destructive or not?

If a label map can express a change in a p-graph, the question is whether this
change matters. One can pose this question meaningfully for planning problems as
the added ingredients provide semantics that yield the notion of solubility.

42

Definition 6.8 (destructive and non-destructive on plans). A label map h is de-
structive on a set of solutions S to planning problem (G,Vgoal) if, for every plan
(P, Vterm) ∈ S, (h(P), Vterm) cannot solve (h(G), Vgoal). We say that h is non-
destructive on S if for every (P, Vterm) ∈ S, the plan (h(P), Vterm) does solve
(h(G), Vgoal).

Intuitively, destructiveness requires that the label map break all existing solu-
tions; non-destructiveness requires that the label map break none of them.

Example 6.3 (single plans). If S = {s} is a singleton set, then we can determine
whether h is destructive on S by applying the label map h—recall Definition 4.1—
to compute h(s) and h(G), and then testing whether h(s) solves h(G) —recall the
algorithm described in Section 6. If h(s) solves h(G), then h is nondestructive on
S; otherwise, h is destructive on S. In this singleton case, we say simply that h is
(non-)destructive on s.

Definition 6.8 depends on a selection of some class of solutions. Of particular
interest is the maximal case, in which every solution is part of the class.

Definition 6.9 (strongly destructive and strongly non-destructive). A label map h is
strongly (non-)destructive on a planning problem (G,Vgoal) if it is (non-)destructive
on the set of all solutions to (G,Vgoal).

Note that, while strong destructiveness may be decided by attempting to gener-
ate a plan for h(G) (perhaps by backchaining from Vgoal), strong non-destructiveness
may be quite difficult to verify in general, if only due to the sheer variety of extant
solutions. (Recall Example 6.1, which solves its problem in an unexpected way.)
The next results, while not sufficient in general to decide whether a map is strongly
non-destructive, do perhaps shed some light on how that might be accomplished.

Lemma 6.5 (label maps preserve safety). If P is safe on G, then for any label map
h, h(P) is safe on h(G).

Proof. Consider each pair of states (v, w), with v ∈ V (P) and w ∈ V (G) reached
by some joint-execution on P and G. Suppose for simplicity that v is an action
state. (The observation case is similar.) Let E1 denote the union of all labels for
edges outgoing from v, and likewiseE2 for labels of edges outgoing fromw. Since
P is safe on G, we have E1 ⊆ E2. Then, in h(P) and h(G), observe that

h(E1) =
⋃
e∈E1

h(e) ⊆
⋃
e∈E2

h(e) = h(E2),

and conclude that h(P) is safe on h(G).

43

Lemma 6.6 (label maps never introduce homomorphism). If (P, Pterm) is a non-
homomorphic solution to (G,Vgoal) then no label map h results in (h(P), Pterm)
being a homomorphic solution to (h(G), Vgoal).

Proof. Since (P, Pterm) is a non-homomorphic solution to (G,Vgoal), there ex-
ist two joint-executions e1 · · · ek and e′1 · · · e′m on P and G such that both arrive
at v ∈ V (P) in P , but on G, the former arrives at w ∈ V (G) and the latter
arrives at w′ ∈ V (G) with w 6= w′. Now, given any h(·), pick any particular se-
quence (h1 ∈ h(e1)) · · · (hk ∈ h(ek)), and (h′1 ∈ h(e′1)) · · · (h′m ∈ h(e′m)), mak-
ing choices arbitrarily. These are joint-executions on h(P) and h(G). Application
of the label map means there is a way of tracing both (h1 ∈ h(e1)) · · · (hk ∈ h(ek))
and (h′1 ∈ h(e′1)) · · · (h′m ∈ h(e′m)) on h(P) to arrive at v, while there is a way of
tracing the former on h(G) to arrive at w, and the latter at w′. So (h(P), Pterm)
cannot be a homomorphic solution to (h(G), Vgoal).

Theorem 6.7 (extensive destructiveness). For a state-determined planning prob-
lem (G,Vgoal), let H denote the set of homomorphic solutions that problem. Then
any label map that is destructive onH is strongly destructive.

Proof. Since h is destructive on H, we know that (h(G), Vgoal) can only have
homomorphic solutions if some formerly non-homomorphic solution can become a
homomorphic one under h, but Lemma 6.6 precludes that eventuality. This implies,
via Theorem 6.4, that no plan solves h(G). Therefore h is strongly destructive on
(G,Vgoal).

The interesting thing here is that Theorem 6.7 shows that the class of homo-
morphic solutions play a special role in the space of all plans: By examining the
behavior of h on H, we can gain some insight into its behavior on the space of all
plans. Informally,H seems to function as a ‘kernel’ of the space of all plans.

7 Related work

In earlier sections of the paper we have interspersed precise connections to
specific prior work. This section supplements those links by taking a wider view;
the purpose is not merely coverage, but rather broader context.

This work builds most directly on, and is strongly influenced by, the combina-
torial filtering perspective, with its use of simple, discrete objects that generalize
beyond the methods used in traditional estimation theory, which has a strong re-
liance on probabilistic models. A gap still remains between the theory of discrete
combinatorial filters and the probabilistic, typically recursive Bayes formulations,
employed most often in practice on robots today. Both types have a long history.

44

The probabilistic filters go back to Kalman (1960), having found use in several im-
portant problems in mobile robotics, including estimation of robot pose and map
information (Dissanayake et al., 2001; Smith et al., 1990). This class of filters
is well-known within the community, with a vast surge of interest catalyzed by
the publication of the book by Thrun et al. (2005). The discrete filters we focus
on in this paper have their roots in the minimalist manipulation work of Erdmann
and Mason (1988) and Goldberg (1993). They were formalized more generally by
LaValle (2006), though this paper evolves those models in a new direction.

Discrete filters and their related sorts of representations are recherché rather
than simply obscure: They have been employed in the form of combinatorial filters
to successfully solve a wide a range of useful tasks; recent examples include target
tracking (Yu and LaValle, 2012), mobile robot navigation (Lopez-Padilla et al.,
2012; Tovar et al., 2007), and manipulation (Kristek and Shell, 2012). Both LaValle
(2012), which provides a tutorial introduction and overview to the approach, and
the substantial paper on the topic Tovar et al. (2014), recognize that more work
is needed to extend the theory. There are two directions which have demanded
attention. The first, which the authors of both of the preceding papers identify, is
that, thus far, the approach provides only for inference and more work is needed in
order to express aspects of feedback-aware control for achieving tasks. Section 6
has begun to address this gap.

The second direction is born of the observation that all the combinatorial filters
in the existing work deal with extremely simple sensors. How might combinatorial
filters and other discrete models scale up to larger problems? One may quite rightly
criticize such filters on the basis of their size or expression complexity. An impor-
tant contribution of the present paper is increasing in the complexity of sensors
that may be treated by discrete filters without necessitating an enormous growth of
filter size. Previously, when sets of observations were treated, they required dupli-
cation (usually of an edge in a graph structure), causing substantial blow-up of the
model. The form of filters we examine does not assume that the set of possible ob-
servations is finite. And we have described results for filters with infinite (though
finitely described) subsets of R as labels. This idea was inspired by Veanes et al.
(2012), who developed symbolic finite transducers that are concise and expressive
for processing strings over large alphabets. It is also worth nothing that a set of
techniques have been developed, along quite separate lines, to reduce or simplify
the representation of information within such filters (O’Kane, 2011; O’Kane and
Shell, 2017; Song and O’Kane, 2012).

Both directions have demanded generalization in slightly different ways. We
believe that one of the most useful aspects of the formalism arising from this gener-
alization has been the notion of label maps. These functions allow one to degrade
models, starting (as we did in the iRobot Create case study) with physically un-

45

Figure 20: George Stratton, as he would have appeared in the first few minutes of wearing the
inversion glasses he pioneered. “If a subject is made to wear glasses which correct the retinal images,
the whole landscape at first appears unreal and upside down; on the second day of the experiment
normal perception begins to reassert itself. . . ” (Merleau-Ponty, 1962, p.285)

realizable idealizations, and gradually exploring how behavior is altered. There
is, in fact, a long history and existing precedent for studying intelligent systems
under sensor perturbations. Psychologist George Stratton (shown in Figure 20) pi-
oneered the study of perception in human vision by having subjects wear special
glasses that inverted images Stratton (1897). Stratton observed that after a rela-
tively short adaptation period, the subjects began to perceive the world normally,
in spite of the vertical inversion. This is effectively a sensor map (x, y) 7→ (x,−y)
for suitably chosen coordinates. It is a continuous transformation, satisfying the
monotonicity requirement identified in Example 5.3, and —as Stratton observed—
the map is not destructive.

One recent formulation that emphasizes action from the outset is Erdmann’s
more recent work on strategy complexes (Erdmann, 2012, 2010), as referenced
in Example 3.5. He uses tools from classic and computational topology to re-
late plans, formulated broadly to include sources of non-determinism, to high-
dimensional objects—his loopback complexes—whose homotopy type provides
information about whether the planning problem can be solved. We speculate
that preservation of plan existence under label maps might be productively studied
across planning problems by examining the map’s operation on loopback com-
plexes: classes of maps that can be shown to preserve the homotopy type of such
complexes (perhaps over restricted classes of planning problems) can be declared
non-destructive.

An alternative approach, with goals similar to our own —namely of identify-
ing representational basis for objects that can manipulated by algorithms in order to
guide the design process— is due to Censi (2017). He poses and solves co-design
problems; ascertaining the maximal task set achievable for a given set of resources.
He shows that, given a network of monotone constraints, the selection of compo-

46

nents is a process that can be efficiently automated. Part of the present interest in
studying labels maps is that they can model aspects of different components.

Also adopting an algorithmic stance on the design process, are methods based
on hybrid automata, which blend discrete and continuous elements. Powerful syn-
thesis and verification techniques are known for these models Belta et al. (2007);
Raman et al. (2015); DeCastro and Kress-Gazit (2016). Despite some similarities,
including extensive use of non-determinism, the relationship between p-graphs and
hybrid automata is somewhat involved: guard expressions in a rich logical spec-
ification language have structure missing from the label sets we study; the action
labels in p-graphs are not intended to model continuous dynamics.

Though the present paper has focused on generalization and idealization to a
degree perhaps uncommon in the robotics literature, this abstract style of approach
in fundamental treatments of behavior appears in other settings. The natural ques-
tion is how these treatments are related. At least for the question of bisimulation, a
notion of equivalence employed in process algebras (and, importantly with respect
to the present study, along with some generalizations to systems with continuous
dynamics, see Haghverdi et al. (2005)), one of the authors has recently obtained a
clear result on the relationship between the bisimulation relation and filter reduc-
tion. Rahmani and O’Kane (2018) show that filter reduction (see Section 5.2) can
be achieved by quotienting an input filter by some relation and that bisimilarity is
not the correct notion of equivalence for some types of filters.

8 Conclusion

This paper introduced and explored formalisms for reasoning about interac-
tions between robots and their environments, including interaction languages, p-
graphs, and label maps. We believe that the most crucial intellectual contributions
of the present work are in attaining a degree abstractness missing from prior ideas
in two ways.

First, we separate those entities which have been formalized in robotics because
they have some interpretation that is useful (e.g., the idea of a plan, a filter), from
their representation. The p-graph, in and of itself, lacks an obvious interpretation.
Its definition does not include semantics belying a single anticipated use, rather
context and any specific interpretation are only added for the special subclasses. In
this sense, it is identical to the abstract treatment of computation as the constructive
process of realizing a correspondence from inputs to outputs.

Second, even if something like a p-graph is a representation that is general
enough to express many items of interest, it is not a canonical form. This paper
engenders an important mental shift in lifting most of the notions of equivalence

47

up to sets of executions, via interaction languages, rather than depending on oper-
ations on some specific graph. The present work continues to separate the notion
of behavior from presentation. This helps establish a foundation for the semantics
of the coupled robot-environment system.

The theoretical groundwork laid by this paper for reasoning about sensors
and actuators, and their associated estimation and planning processes, aims to
strengthen the link between idealized models and practical systems. It is impera-
tive that we close the gap between robotics science and robotics practice, and more
work remains to be done. We submit that it should be work aimed unambiguously
and explicitly at that gap.

Acknowledgements

This material is based upon work supported by the National Science Foun-
dation under Grants IIS-1527436, IIS-1526862, IIS-0953503, IIS-1453652. We
thank Yulin Zhang for his close reading of earlier versions of this work.

References

Belta C, Bicci A, Egerstedt M, Frazzoli E, Klavins E and Pappas GJ (2007) Sym-
bolic Control and Planning of Robotic Motion. IEEE Transactions on Robotics
and Automation 14(1): 51–70.

Censi A (2017) A Class of Co-Design Problems With Cyclic Constraints and Their
Solution. IEEE Robotics and Automation Letters 2(1): 96–103.

DeCastro JA and Kress-Gazit H (2016) Nonlinear controller synthesis and auto-
matic workspace partitioning for reactive high-level behaviors. In: Proc. ACM
International Conference on Hybrid Systems: Computation and Control.

Dissanayake G, Newman P, Clark S, Durrant-Whyte H and Csorba M (2001) A
solution to the simultaneous localisation and map building (SLAM) problem.
IEEE Transactions on Robotics and Automation 17(3): 229–241.

Erdmann M (2010) On the topology of discrete strategies. International Journal
of Robotics Research 29(7): 855–896.

Erdmann M (2012) On the topology of discrete planning with uncertainty. in ad-
vances in applied and computational topology. In: Zomorodian A (ed.) Proc.
Symposia in Applied Mathematics, volume 70. American Mathematical Society.

48

Erdmann M and Mason MT (1988) An Exploration of Sensorless Manipulation.
IEEE Transactions on Robotics and Automation 4(4): 369–379.

Erickson LE, Yu J, Huang Y and LaValle SM (2014) Counting moving bodies
using sparse sensor beams. IEEE Transactions on Automation Science and En-
gineering 10(4): 853–861.

Garey MR and Johnson DS (1979) Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W.H. Freeman and Company.

Ghasemlou S, Saberifar FZ, O’Kane JM and Shell DA (2016) Beyond the planning
potpourri: reasoning about label transformations on procrustean graphs. In:
Proc. International Workshop on the Algorithmic Foundations of Robotics.

Gierl D, Bobadilla L, Sanchez O and LaValle SM (2014) Stochastic modeling,
control, and verification of wild bodies. In: Proc. IEEE International Conference
on Robotics and Automation.

Goldberg KY (1993) Orienting Polygonal Parts Without Sensors. Algorithmica 10:
201–225.

Haghverdi E, Tabuada P and Pappas GJ (2005) Bisimulation relations for dynami-
cal, control and hybrid systems. Theoretical Computer Science 342(2–3): 229–
261.

iRobot Corp (2015) iRobotr Creater 2 Open Interface (OI). Technical report.
Last Updated April 2, 2015.

Kalman RE (1960) A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering 82(Series D): 35–45.

Kristek S and Shell DA (2012) Orienting Deformable Polygonal Parts without Sen-
sors. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robot
Systems (IROS).

LaValle SM (2006) Planning Algorithms. Cambridge, U.K.: Cambridge University
Press. Available at http://planning.cs.uiuc.edu/.

LaValle SM (2012) Sensing and Filtering: A Fresh Perspective Based on Preimages
and Information Spaces. Foundations and Trends in Robotics 1(4): 253–372.

Lopez-Padilla R, Murrieta-Cid R and LaValle SM (2012) Optimal gap navigation
for a disc robot. In: Proc. Workshop on the Algorithmic Foundations of Robotics.

49

http://planning.cs.uiuc.edu/

Mason MT, Goldberg KY and Taylor RH (1988) Planning Sequences of Squeeze-
Grasps to Orient and Grasp Polygonal Objects. In: Seventh CISM-IFToMM
Symposium on Theory and Practice of Robots and Manipulators.

Merleau-Ponty M (1962) Phenomenology of perception. Oxon, U.K.: Routledge.
Translated by Colin Smith.

O’Kane JM (2011) Decentralized Tracking of Indistinguishable Targets using
Low-Resolution Sensors. In: Proc. International Conference on Robotics and
Automation.

O’Kane JM and Shell D (2017) Concise planning and filtering: Hardness and al-
gorithms. IEEE Transactions on Automation Science and Engineering 14(4):
1666–1681.

Rahmani H and O’Kane JM (2018) On the relationship between bisimulation and
combinatorial filter reduction. In: Proc. IEEE International Conference on
Robotics and Automation.

Raman V, Piterman N, Finucane C and Kress-Gazit H (2015) Timing semantics for
abstraction and execution of synthesized high-level robot control. IEEE Trans-
actions on Robotics 31.

Saberifar FZ, Ghasemlou S, O’Kane JM and Shell D (2016) Set-labelled filters and
sensor transformations. In: Proc. Robotics: Science and Systems.

Schoppers MJ (1987) Universal Plans for Reactive Robots in Unpredictable Envi-
ronments. In: Proc. International Joint Conference on AI. pp. 1039–1046.

Smith R, Self M and Cheeseman P (1990) Estimating uncertain spatial relation-
ships in robotics. In: Cox I and Wilfong G (eds.) Autonomous Robot Vehicles.
Berlin, Heidelberg: Springer, pp. 167–193.

Song Y and O’Kane JM (2012) Comparison of Constrained Geometric Approxi-
mation Strategies for Planar Information States. In: Proc. International Confer-
ence on Robotics and Automation.

Stratton GM (1897) Vision without inversion of the retinal image. Psychological
Review 4(4): 341–360.

Thrun S, Burgard W and Fox D (2005) Probabilistic Robotics. Cambridge, MA.:
MIT Press.

50

Tovar B, Cohen F, Bobadilla L, Czarnowski J and LaValle SM (2014) Combinato-
rial filters: Sensor beams, obstacles, and possible paths. ACM Transactions on
Sensor Networks 10(3).

Tovar B, Murrieta-Cid R and LaValle SM (2007) Distance-optimal navigation in
an unknown environment without sensing distances. IEEE Transactions on
Robotics 23(3): 506–518.

Veanes M, Hooimeijer P, Livshits B, Molnar D and Bjorner N (2012) Symbolic fi-
nite state transducers: algorithms and applications. In: Proc. of ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’12). New
York, NY, USA, pp. 137–150.

Yu J and LaValle SM (2012) Shadow Information Spaces: Combinatorial Filters
for Tracking Targets. IEEE Transactions on Robotics 28(2): 440–456.

Zuckerman D (2007) Linear degree extractors and the inapproximability of max
clique and chromatic number. Theory of Computing 3: 103–128.

51

	Introduction
	Actions, observations, and interaction languages
	Procrustean graphs and set labels
	Procrustean graphs
	Labels
	Label refinement

	Basic operations on p-graphs

	Label maps
	Destructiveness in filters
	Ascertaining destructiveness of observation maps on filters
	Deterministic filters

	Hardness
	Case study: Minimizing the iRobot Create

	Destructiveness in planning problems
	Plans and Planning Problems
	Homomorphic solutions
	Destructive or not?

	Related work
	Conclusion

