
Set-labelled filters and sensor transformations

Fatemeh Zahra Saberifar
Dept. of Math. and Comp. Sci.

Amirkabir University of Technology,
Tehran, Iran

fz.saberifar@aut.ac.ir

Shervin Ghasemlou Jason M. O’Kane
Dept. of Comp. Sci. & Eng.
University of South Carolina

Columbia, South Carolina, USA
sherving@cse.sc.edu jokane@cse.sc.edu

Dylan A. Shell
Dept. of Comp. Sci. & Eng.

Texas A&M University
College Station, Texas, USA

dshell@cs.tamu.edu

Abstract—For a given robot and a given task, this paper
addresses questions about which modifications may be made
to the robot’s suite of sensors without impacting the robot’s
behavior in completing its task. Though this is an important
design-time question, few principled methods exist for providing a
definitive answer in general. Utilizing and extending the language
of combinatorial filters, this paper aims to fill that lacuna by
introducing theoretical tools for reasoning about sensors and
representations of sensors. It introduces new representations
for sensors and filters, exploring the relationship between those
elements and the specific information needed to perform a task.
It then shows how these tools can be used to algorithmically
answer questions about changes to a robot’s sensor suite. The
paper substantially expands the expressiveness of combinatorial
filters so that, where they were previously limited to quite
simple sensors, our richer filters are able to reasonably model a
much broader variety of real devices. We have implemented the
proposed algorithms, and describe their application to an example
instance involving a series of simplifications to the sensors of a
specific, widely deployed mobile robot.

I. INTRODUCTION

This paper lays theoretical groundwork for reasoning about
sensors and their associated estimation processes, with the goal
of strengthening the link between idealized models and practi-
cal —that is, imperfect, imprecise, and limited— realizations of
those idealized models in hardware. This kind of groundwork
is important because we believe that the lack of any such theory
has hampered progress in robotics to date.

In this paper, we address the problem of determining
whether certain perturbations in sensor specification or per-
formance affect the behavior of a robotic system. (Figure 1
provides a visual overview.) We seek to understand which
changes to a sensor suite might make a system inoperable,
which changes result in graceful degradation of performance,
and which changes might have little or no effect. Transfor-
mations that, in the picture, represent hardware realizations
of the ideal range sensor may either preserve behavior or
alter it. In that latter case, we say it is destructive. The key
insight —an insight not unique to this paper, but one whose
long history is briefly reviewed in Section II— is that whether a
transformation is destructive or not depends on the information
needed for the task being performed.

To motivate these questions more concretely, consider the
pair of scenarios that follows. They emphasize the paper’s
focus on pragmatic concerns, in spite of its apparent theoretical
flavor.

This material is based upon work supported by the National Science Foun-
dation under Grants IIS-1527436, IIS-1526862, IIS-0953503, IIS-1453652.

[0,∞)×S1

Idealized Range Sensor

=

h1 h2 h3

Sick LMS Hokuyo URG
MaxSonar EZ1 

(ultrasound ring)

??

?✔

Fig. 1. Abstract sensors enable the creation and analysis of general algorithms
that use pure, generic properties of certain types of sensing devices. This
paper explores how to weaken sensor abstractions in order to faithfully model
real hardware limitations. For a strong notion of behavioral equivalence,
we examine conditions which ensure that a robot with a weaker sensor
behaves as if it possessed an idealized one, algorithms for transforming sensor
descriptions, as well as examining the hardness of deciding related questions.
The theory and algorithms we introduce allow one to turn the question marks
in the diagram into precise yes/no determinations.

Example 1. Your robot is stationed on a distant planet and,
though fully operable initially, has recently encountered a
problem. It appears that debris has become affixed to one of
the sensors. Should operations be altered by taking more con-
servative paths around obstacles because the robot’s position
estimates now involve greater error than previously? Or has the
mission been entirely compromised? Assuming that the debris
cannot be dislodged, what tasks are still feasible?

Example 2. You lead an R&D team who have built and
tested a successful prototype robot, which performs cosmetic
services (e.g., manicures, pedicures, facials, hair-weaves, etc.)
efficiently and safely. Then. . . disaster! You discover that the
sensor provided to your factory in bulk (say S1), differs from
the device (S0) supplied by the same manufacturer to the team
who built and tested the prototype. A successful redesign of
the robot might require answers to these kinds of questions:
Can S1 be used directly as a plug-and-play replacement for
S0? If not, can we adjust some software parameters to make it
work? Which parameters and what should the adjustments be?
If S1 necessarily incurs a loss in performance, how can this
be understood—perhaps only the hair-styling functionality is
affected? Supposing we can procure S0 at greater cost through
another vendor, is this worth doing?

Underlying these scenarios is the problem of how to ascertain
whether or not a particular sensor modification is destruc-



tive for a given task. We formalize this question, providing
theoretical foundations as well as algorithms to address this
problem, by posing and studying sensor transformations within
the context of combinatorial filters. These filters provide a
broad, abstract theoretical treatment of algorithmic processes
that aggregate information. The word filter is, of course,
most familiar as a term used to describe practical estimation
components of robots and their controller software. The filters
treated in this paper subsume those, representing a larger class.

Until now, most work on combinatorial filters has been
hampered by being too simple to model concisely anything
but the most limited devices. One important innovation in the
present paper is the expansion of filters to include implicitly
represented observation sets on transitions. Previously, when
sets of observations were treated, they required duplication
(usually of an edge in a graph structure), causing substantial
blow-up of the model. This paper introduces a form which is
much richer: the work permits transitions to describe a large
(or even infinite) set of labels. As should become clear, this
enables a vast advancement in terms of practicability.

The contributions of this paper are summarized below.

1) We introduce, in Section III, a generalized formulation of
combinatorial filters, which model a broad class of sensing
and estimation systems. By using set-labelled transitions,
our new formulation is more amenable to analysis of re-
alistic sensor systems than prior models for combinatorial
filters, and, through judicious injections of nondeterminism,
is suitable for a broader range of useful algorithmic manip-
ulations.

2) We identify, in Section IV, useful special classes of these
generalized combinatorial filters and classify the relation-
ships between those classes. We present algorithms for
converting between these classes without altering the filter’s
behavior, when such conversions are possible.

3) We show, in Section V, how to model sensor transformations
in this framework, and describe an algorithm to determine
whether a sensor transformation is destructive.

4) We prove, in Section VI, that the broader question of finding
a non-destructive sensor transformation that is, in a certain
sense, maximal, is NP-hard.

5) We explore, in Section VII, a detailed example of how these
techniques might be applied.

Throughout, we show examples computed by a Python imple-
mentation of the paper’s new algorithms.

II. RELATED WORK

A gap remains between the theory of discrete combinatorial
filters and the probabilistic, typically recursive Bayes formu-
lations, employed most often in practice on robots today. Both
types have a long history. The probabilistic filters go back
to Kalman [7], having found use in several important problems
in mobile robotics, including estimation of robot pose and map
information [1, 14]. This class of filters is well-known within
the community, with a vast surge of interest catalyzed by the
publication of the book by Thrun et al. [16].

The discrete filters we focus on in this paper have their
roots in the minimalist manipulation work of Erdmann and

Mason [3] and Goldberg [5]. They were formalized more
generally by LaValle [9, 10], though this paper evolves those
models in a new direction. These sorts of representations
have been employed in the form of so-called combinatorial
filters to successfully solve a wide a range of useful tasks;
recent examples include target tracking [19], mobile robot
navigation [11, 17], and manipulation [8].

One criticism that has been leveled at combinatorial filters
is their expression complexity and comparative size even for
very simple sensors. A series of techniques have also been de-
veloped to reduce or simplify the representation of information
within such filters [12, 13, 15]. An important contribution of
the present paper is a significant increase in the complexity of
sensors that may be effectively treated by discrete filters. The
formulation for filters below does not assume that the set of
possible observations is finite. We describe results for filters
with infinite (though finitely described) subsets of R as labels.
This idea was inspired by Veanes et al. [18], who developed
symbolic finite transducers that are concise and expressive for
processing strings over large alphabets.

III. STANDARD FILTERS AND PROCRUSTEAN FILTERS

A. Standard filters

The central object of study in this paper is a discrete
transition system. We follow the precedent in the literature
(e.g. cf. models of [9, 13, 19]) with the following definition, in
which we have added the appellation ‘standard’ to distinguish
from the more general filters introduced below.

Definition 1. A standard filter is a tuple 〈Q , q0 ,Y , δ,C , c〉,
with:

1) a finite set, Q , of states,

2) one particular initial state q0 ∈ Q ,

3) a set of possible observations Y ,

4) a transition map δ : Q × Y 7→ Q , which is a partial
function.

5) a set C , which we call an output space, and

6) an output function c : Q → C .

We use Fstd to denote the set of all standard filters.

The underlying idea is that a filter receives a sequence
of observations and produces a sequence of outputs in re-
sponse, transitioning from state to state according to the
filter’s transition map. For any given sequence of observations
y1y2 . . . yn ∈ Y ?, one traces these on some standard filter F
by, starting at q0, transitioning from state to state by following
δ(qi−1, yi) = qi, for i = {1, . . . , n}. There is no requirement
that δ(q, y) have a value for every q ∈ Q and y ∈ Y
pair. When observation sequences are encountered with this
kind of missing transition, the resulting state is undefined. For
each sequence of states, q0, q1 . . . qn, we say that F outputs
c0c1 . . . cn, if ci = c(qi), for i = {0, . . . , n}. We occasionally
use the term color to refer to a specific output. All standard
filters have the property that for any y1y2 . . . yn at most a
single output c0c1 . . . cn can be produced; for input strings of



observations that always result in defined state transitions on
the filter, exactly one output is produced.

Theoretically, standard filters represent minimal, non-trivial
information processing constructs for operating on sequences
of observations; it is difficult to pose a more fundamental ab-
straction than this basic type of filter. Practically they have the
obvious advantage of a very straightforward implementation.
Both of these aspects are important motivators for the present
study.

B. Procrustean filters

Although perhaps not immediately obvious, it is useful to
consider a generalization of the standard filter in which the
observations that mark transitions and the outputs in each state
are sets rather than single values:

Definition 2. A procrustean filter, or p-filter for short, is a
tuple 〈Q ,Q0 ,Y , τ,C , c〉, with:

1) a finite set, Q , of states,

2) a non-empty initial set of states Q0 ⊆ Q ,

3) a set of possible observations Y ,

4) a transition function τ : Q ×Q → 2Y ,

5) a set C , which we call an output space, and

6) an output function c : Q → 2C − {∅}.
We use Fp to denote the set of all p-filters.

Given any p-filter F = 〈Q ,Q0 ,Y , τ,C , c〉, an observa-
tion sequence y1 . . . yn ∈ Y ?, and an output sequence
c0c1 . . . cn ∈ C+, we say that y1y2 . . . yn yields c0c1 . . . cn
under F, if there exists a sequence of states q0, q1, . . . , qn:

1) q0 ∈ Q , and
2) for each i ∈ {1, . . . , n}, yi ∈ τ(qi−1, qi), and
3) for each i ∈ {0, 1, . . . , n}, ci ∈ c(qi).

The set of output sequences yielded by y1 . . . yn under F is
denoted [y1 . . . yn]F. Note that the empty string ε yields single-
element output sequences, so that [ε]F =

⋃
q0∈Q0

c(q0) 6= ∅.

In this definition, the standard filter has been extended to
include non-determinism on three fronts: (i) there may be more
than one initial state; (ii) transitions can occur if there is some
element in in the labelled transition (τ ); and (iii) the output
can be any of the elements associated with the state (via c).

C. P-filter equivalence

Because we consider, in Section IV, algorithms intended
to transform the representation of a p-filter without altering its
behavior, we must introduce a notion of equivalence between
p-filters.

Definition 3. Two p-filters F1 and F2 are equivalent if, for
every observation y1 . . . yn ∈ Y ?, we have [y1 . . . yn]F1

=
[y1 . . . yn]F2

.

Informally speaking, two filters are equivalent to one
another if the outputs they produce are identical given the same

inputs from Y ?. That is if F1 and F2 produce the same outputs,
regardless the observations received, then the two filters are
equivalent (even if their states, labels, etc. differ).

D. Label spaces and operations thereon

It is helpful to think of the transition in a p-filter from
qi to qj as bearing the label ` = τ(qi, qj), in which `
represents a set of observations. This model is particularly
important for systems in which the observation space is large
or infinite—including most nontrivial real sensor systems—in
which it would be, at best, computationally intractable to list
observations individually.

To represent such labels practically, we assume that each
element in the image of τ is contained in a label space L, in
which each label ` ∈ L is a set of observations. The label sets
may be represented in a variety of ways. We only require that
L be equipped with the following six operations.

1–3. UNION, which accepts two labels and computes a new
label representing their union, along with INTERSECTION
and DIFFERENCE, which operate mutatis mutandis for the
intersection and set difference operations.

4. EMPTY, which accepts a label and returns TRUE if and
only if the label represents the empty set.

5. CONTAINS, which accepts a label and an observation, and
decides whether that observation is member of the set
represented by that label.

6. REPRESENTATIVE, which accepts a non-empty label and
returns an observation contained in the set represented by
that label.

Any data structure capable of answering these queries is
suitable for representing the labels in the algorithms in this
paper. Some examples follow.

Example 3. Suppose Y = R. Since each label should
represent a set of real numbers, one option is to let each label
represent a finite union of real intervals. The intervals may
be bounded or unbounded. Each interval may also be open,
closed, or half-closed. Figure 2 shows an example. To represent
a label from this label space, we use a data structure with three
parts:

1) A list of n real number endpoints e1, . . . , en ∈ R.

2) A list of n + 1 boolean interval flags f1, . . . , fn+1. The
interpretation is that, for each 1 < j < n, the real numbers
between ej and ej+1 are included in the set if and only
if fj is TRUE. At the extremes, real numbers less than
e1 are in the set when f1 is TRUE, and likewise numbers
greater than en are in the set when fn is TRUE.

3) A list of n boolean endpoint flags p1, . . . , pn, with the
semantics that, for any 1 ≤ j ≤ n, the real number ej is
in the label’s observation set if and only if pj is TRUE.

Note that any finite union of real intervals (including, for
example, the empty set and the full real line, which have
n = 0) can be expressed in this format.

The UNION, INTERSECTION, and DIFFERENCE operations
can be implemented by performing a left-to-right sweep,
adding endpoints and flags appropriately to the result label.



−9 −3 31

Fig. 2. An interval label for the set [−9,−3) ∪ {1} ∪ (3,∞).
The label data structure has 4 endpoints (−9,−3, 1, 3), 5 inter-
val flags (FALSE, TRUE, FALSE, FALSE, TRUE), and 4 endpoint flags
(TRUE, FALSE, TRUE, FALSE).

The EMPTY method requires a simple check for any endpoint
flags or interval flags that are TRUE. The CONTAINS check can
be implemented by a binary search for the correct interval, fol-
lowed by a check against the relevant flag. REPRESENTATIVE
should return an element, either an endpoint or in the interior of
an interval (in the general case, perhaps the midpoint between
two endpoints) for which the corresponding flag is TRUE.

Example 4. Labels that represent a finite number of elements
—as is the case for many simple sensors such beam detectors
or bump sensors— can be modeled by storing the elements
explicitly in almost any container data structure, such as a
balanced binary tree or a hash table.

Example 5. We expect that a common case will involve
observations spaces that are composed, via Cartesian product,
from simpler sets. That is, we may generally have Y =
Y1 × · · · × Ym, in which each Yi is an observation space for
which we have a suitable label space, including the requisite
operations. In such a case, we can define a label space L̂ over
Y in which each label represents a union of Cartesian prod-
ucts of sub-labels, in the form

⋃
i

(
`
(i)
1 × · · · × `

(i)
m

)
, where

i ∈ {1, . . . ,m}. Under this representation, a UNION between
labels becomes a mere concatenation of Cartesian product lists.
The INTERSECTION operation requires pairwise intersections
between each of the constituent Cartesian products of each of
the two labels:[⋃

i

(
`
(i)
1 × · · · × `(i)m

)]
∩

⋃
j

(
m

(j)
1 × · · · ×m(j)

m

)
=
⋃
i

⋃
j

(
(`

(i)
1 ∩m

(j)
1 )× · · · × (`(i)n ∩m(j)

m )
)
.

The DIFFERENCE operation is similar, but requires first a
refinement —see below— of the labels along each dimension.

E. Label refinement

Several of the algorithms in Sections IV and V rely on
a subroutine to compute of a refinement of a set of labels.
Specifically, we need in several places an algorithm that
accepts as input an unordered set of labels `1, . . . , `n, and
produces as output an unordered set of labels `′1, . . . , `

′
m, such

that
⋃
i `i =

⋃
j `
′
j and, for each `′ ∈ {`′1, . . . , `′m} and each

x1, x2 ∈ `′, we have{
` ∈ {`1, . . . , `n} | x1 ∈ `

}
=
{
` ∈ {`1, . . . , `n} | x2 ∈ `

}
.

The intuition is, given a set of labels, to compute a partition of
the observations spanned by those labels. This partition should
be fine enough to separate the input labels from one another, in
the sense that the set of corresponding input labels is constant

Algorithm 1: REFINELABELS(`1, . . . , `n)
r ← `1
for ` ∈ {`2, . . . , `n} do

r ← UNION(r, {`})
R← (r)
for ` ∈ {`1, . . . , `n} do

R′ ← ( )
for r ∈ R do

R′.append(INTERSECT(r, `))
R′.append(DIFFERENCE(r, `))

R← R′

return R

across all observations in each output label. Such a partition is
valuable because it enables us to ‘drop down’ from the level
of sets to the level of individual observations, by selecting
a REPRESENTATIVE from each of the output labels, without
danger of missing any structure inherent to the input label set.

Algorithm 1 shows how one can perform this operation in
a general way, for any label space that supports the UNION,
INTERSECTION, and DIFFERENCE operations. The algorithm
starts with a single label representing the complete set of
relevant observations, and then refines that partition using each
of the input labels.

IV. NORMAL FORMS

This section introduces and analyzes several particular
classes of p-filters. A defining feature of p-filters is their ability
to represent nondeterminism, which occurs in the selection of
an initial state from Q0, in the transitions made in response
to each observation (since the labels of out-edges at each state
need not necessarily be disjoint), and in the selection of an
output upon arrival at each new state. The various classes we
consider all vary based on (i) how much of this generality is
used in the presentation of the p-filter, and (ii) whether that
nondeterminism impacts the behavior of the p-filter.

A. Single-outputting normal form

First, we recall the fact that Definition 2 allows each state
to be labelled with a set of possible outputs, any of which may
be selected each time the filter visits that state. What happens
if each state has only a single output?

Definition 4. A p-filter F = 〈Q ,Q0 ,Y , τ,C , c〉 is single-
outputting if |c(qk)| = 1 for every reachable qk ∈ Q . A state
qk is considered reachable if some sequence of observations
in Y ? gives a sequence of states, starting from a q0 ∈ Q0 ,
ending in qk.

Having a singleton output set at each state, while a seem-
ingly significant constraint, does not limit the expressivity of
such filters. That is, every p-filter has an equivalent single-
outputting presentation. For this reason, we occasionally refer
this as single-outputting normal form, by analogy to the normal
forms used in formal language theory or database design.

Algorithm 2 shows how to convert an arbitrary p-filter
to an equivalent single-outputting filter. The algorithm makes
duplicates of each state, one for each of its outputs, and those
single outputs to each of these new states. If there had been a



{c}

{a, b}
{a, d} {c}

{c}

{a, b}

{a, d}

{c}

{c}

{a, b}

Fig. 3. [left] A p-filter that is not in single-outputting normal form. [right] The
result of applying our implementation of Algorithm 2 to this filter. Outputs
for each state are shown as colors.

transition from p to q on observation y, then in the new filter
has y-transitions from all the states derived from p to all the
states derived from q. Figure 3 illustrates this.

Algorithm 2: TOSINGLEOUTPUTTINGFORM(F)
Initialize Q ′, Q0

′, τ ′, and c′ as empty
// Build states and output function:
for q ∈ Q do

for ci ∈ c(q) do
Add qci to Q ′, and let c′(qci) = ci
if q ∈ Q0 then

Add qci to Q ′
0

// Construct transition function:
for (q, r,U ) ∈ τ do

for ci ∈ c(q) do
for di ∈ c(r) do

Let τ ′(qci , rdi) = U
return 〈Q ′,Q ′

0 ,Y , τ
′,C , c′〉

B. State-determined normal form

Another source of nondeterminism in Definition 2 arises
from the transition model. Because the labels for each state
need not be disjoint, the model allows multiple ‘next’ states to
be indicated for the same observation. Definition 5 expresses
this idea.

Definition 5. We call a p-filter F = 〈Q ,Q0 ,Y , τ,C , c〉
state-determined if |Q0| = 1, and for every triple of states
q1, q2, q3 ∈ Q with q2 6= q3, τ(q1, q2) ∩ τ(q1, q3) = ∅.

In a state-determined filter, there are never any choices
about which states the filter might be in; each observation
string can be traced to at most one final state. As with single-
outputting normal form, every p-filter is equivalent to a state-
determined filter. We therefore adopt the terminology state-
determined normal form.

Algorithm 3 shows how to convert an arbitrary p-filter into
state-determined normal form. The idea is a forward search
over sets of states, starting from the initial states. This requires
the use of Algorithm 1 to ensure that the edges in the new filter
are drawn correctly. See Figure 4.

C. Deterministic p-filters

Definitions 4 and 5 describe two distinct ways of presenting
a filter, each of which places some restrictions on the kind of

Algorithm 3: TOSTATEDETERMINEDFORM(F)
Initialize W , W0 , τ ′, and c′ as empty
for v0 ∈ V0 do

Add v′0 to W and W0 , and let c′(v′0) = c(v0)
Initialize queue Q← V0

while Q not empty do
s′ ← Q.pop

// Refine each label and determine which states each
refinement maps to:

L← all outgoing edge labels of WHENCE(s′)
L′ ← REFINELABELS(L) // cf. Algorithm 1
dLab[.] = ∅ // Empty the map
for l′ ∈ L′ do

For every WHENCE(s′) record which states you reach
with REPRESENTATIVE(l′) by adding them to dLab[l

′]

// Produce new states as needed:
for s ∈ dLab[l] for some l do

if t ∈W , where t corresponds with s then
Let τ ′(s′, t) = l // Add transition on l

else
Create new state t corresponding to s
Let c′(t) = c(s) and add t to W
Q.push(t) // Add to queue to be processed
Let τ ′(s′, t) = l // Add transition on l

return 〈W ,W0 ,Y , τ
′,C , c′〉

[1.0, 3.0] ∪ [4.0, 5.0)

[2.5, 4.0]

[0.0, 5.0]

[0.0, 5.0]

[0.0, 5.0]

[0.0, 5.0]

[0.0, 5.0]

(3.0, 4.0)

[1.0, 2.5) ∪ (4.0, 5.0)

[2.5, 3.0] ∪ {4.0}

Fig. 4. [top] A p-filter that is not in state-determined normal form. [bottom]
The result of applying our implementation of Algorithm 2 to this filter.

nondeterminism directly present in the filter. Note, however,
that these two normal forms are, in a certain sense, duals
of one another. Algorithm 2 may, in eliminating multi-output
states, introduce some overlapping labels or multiple initial
states; Algorithm 3 may, in eliminating overlapping labels and
multiple initial states, introduce some multi-output states.

A certain class of p-filters, however, can be represented
in a way that is simultaneously single-outputting and state-
determined. We call these filters deterministic.

Definition 6. A p-filter F = 〈Q ,Q0 ,Y , τ,C , c〉 is determin-
istic if every observation sequence in Y ? yields at most one
output sequence in C ?.

Note that, in this context, deterministic does not mean
that each observation sequence determines a unique state, but
only that each observation sequence, if it yields any output,
yields a single, determined output. Figure 5 illustrates the
difference. In that sense, the property of being deterministic is
a property of the p-filter’s behavior, rather than a property of
its representation.

Deterministic p-filters are closely related to standard filters,



a, b, c

b, c, d

a, b, c

b, c, d

b

b

Fig. 5. [left] A p-filter that, in spite of some labels that are not disjoint, is a
deterministic p-filter. [right] A p-filter that is not deterministic. Note that the
observation sequence bb yields two distinct output sequences: red, blue, red;
and red, blue, blue.

as is made clear in the following lemma.

Lemma 1. For every deterministic p-filter F =
〈Q ,Q0 ,Y , τ,C , c〉, there exists a standard filter S ∈ Fstd
where, for every y1 . . . yn ∈ Y ?, [y1 . . . yn]F = {c′0c′1 . . . c′n},
the latter being the output of S on y1 . . . yn.

Proof: One may construct a suitable standard filter S =
〈2Q − {∅}, {q0},Y , δ,C , c′〉, defining δ by exploring each
of the (finite) observation sequence prefixes that visit every
Q in F, and labelling the transitions that are made. Tracing a
prefix string on F might cause one to come to a choice point,
where some observation y is both τ(qi, qj) and τ(qi, qk) and
qj 6= qk: both choices should be taken in constructing δ, which
is why the states in S are subsets of Q . All outputs along all
choices must always produce the same output, o, otherwise F
would not be a deterministic p-filter. Thus, c′ maps to that o.

Thus, determining whether a given filter is deterministic is
of direct interest in practice, since standard filters are those that
are directly amenable to implementation. Fortunately, we can
establish some relationships between the set of deterministic
p-filters and the normal forms introduced above. The next
three lemmas do this work, and Figure 6 illustrates the set
relationships implied by these results.

Lemma 2. Any p-filter that is both single-outputting and state-
determined is deterministic.

Proof: Following the procedure described in Lemma 1
with a single-outputting and state-determined filter never leads
to any choices. Therefore, only singleton subsets of 2Q are
involved. Also, for all states, there is never any choice for the
value that c′ should provide either. As a result, any observation
sequence can yield at most one output sequence.

Lemma 3. All deterministic filters are single-outputting.

Proof: Suppose F = 〈Q ,Q0 ,Y , τ,C , c〉 is a determinis-
tic p-filter which is not single-outputting. There must be some
sequence y1y2 . . . yn ∈ Y ? of observations causing F to arrive
in some qk where |c(qk)| 6= 1. Since ∅ cannot be in the image
of c, there must be at least two distinct elements of C . But then,
a string ending in either element of c(qk) is in [y1 . . . yn]F,
reductio ad absurdum.

Lemma 4. A state-determined filter is deterministic if and only
if it is single-outputting.

Proof: For the forward direction, Lemma 2 suffices. The
backward direction is implied by Lemma 3.

This (finally!) concludes the infrastructure necessary to
evaluate sensor transformations.

p-filtersstate-determined

deterministic

single-
outputting

h
R

n

?

?

Fig. 6. A Venn diagram showing set inclusion properties for the filters and
various representations studied herein. Deterministic filters, a strict subset of
all p-filters, are essentially equivalent in behavior to the standard filters from
the literature. Sensor maps take some filter (R in the picture) and transform
it into another (as h does).

V. SENSOR MAPS

A. Sensor maps

Having established some subclasses of p-filters and their
relationship to standard filters, next we are interested in mod-
ifications produced by altering the fidelity of the observations
provided as input to the filter.

We model degradations from the idealized model (and,
indeed, other kinds of changes to the sensor’s behavior) using
sensor maps.

Definition 7. Given p-filter F = 〈Q ,Q0 ,Y , τ,C , c〉, a sensor
map from Y to K , is a function h : Y → K , where K is
some other set. We say that h is concordant with F because
its domain is the set of observations of the filter.

Though sensor maps are defined in terms of single obser-
vations, we can ‘lift’ a sensor map to apply to sets or to entire
p-filters in the obvious way.

Definition 8. Given a sensor map h : Y → K , its extension
to sets (also denoted h, with the difference always clear
from context) is a function 2Y → 2K , defined by h(S ) =
{h(s)|s ∈ S}. Likewise, the extension to filters of h, is a
function Fp → Fp, under which F = 〈Q ,Q0 ,Y , τ,C , c〉 maps
to p-filter h(F) = 〈Q ,Q0 ,K , τ

′,C , c〉 in which τ ′(q1, q2) =
h(τ(q1, q2)).

The intuition is that a map h describes some alteration in
the perceptual classes (cf. [2]) provided as input to the filter.
If the outputs yielded under this transformation are ultimately
the same, then we conclude that h, despite it potentially
eliminating some information, must retain the “kernel” of
information actually used in processing the input observations.
Interestingly, it captures this notion of information abstractly,
as none of the elements of Y need even be in K .

Note that the ability to compute h(F) given h and F
depends on the ability of our label space to efficiently compute
the extension of h to sets, that is, to the labels of F .

Consider the following illustrative examples of how sensor
maps work.

Example 6. Your robot is equipped with a camera, and triplets
of red–green–blue values within an array comprise Y . Now
imagine that rose-tinted lenses are placed over the camera.



Applied pixel-wise, hrose : 〈r, g, b〉 7→ 〈r, 0, 0〉. Certain scenes
that produce distinct inputs, y1 6= y2, may now be indis-
tinguishable under the transformation, hrose(y1) = hrose(y2),
when, for example, two scenes differ only in elements of the
spectrum filtered out by the lenses.

Example 7. Sensor maps need not only reduce the set. Sup-
pose your sensor incurs cross-talk due to poor cable routing
and cheap shielding. Where formerly a given circumstance
would produce an observation yi, this might be modeled with
a sensor map yi 7→ {yi, y′i, y′′i }. It may be that y′i ∈ Y , or
it might be some heretofore unseen class of signal. What we
are interested in is whether this cross-talk is destructive or
not. As is clear, the answer to this depends on whether some
other yj where y′i ∈ h(yj) exists. Even existence of such a yj
is insufficient, as yi and yj might occur in every pre-image
together.

Next, we formalize the notion of a destructive sensor map,
which is based on a generalized notion of equivalence between
p-filters.

Definition 9. Given two p-filters F = 〈Q ,Q0 ,Y , τ,C , c〉 and
G = 〈R,R0 ,Z , υ,D , d〉 and a sensor map h : Y → Z
mapping from the observation space of F to the observation
space of G, we say that F is equivalent to G modulo h, denoted

F =G mod h,

if for every observation sequence y1 . . . yn ∈ Y ?,

[y1 . . . yn]F = [h(y1) . . . h(yn)]G.

Note that we eschew the traditional equivalence symbol
‘≡’ for this relation because it is not symmetric: F = G
mod h ; G = F mod h. The intuition is that if G, given
observations mutated by h, exhibits the same behavior that F
exhibits when given those same observations, but unmutated,
then any difference between F and G is merely in the change in
manifestation of the observations induced by h; the underlying
structure is the same. In contrast, if the two filters can generate
different outputs under these conditions, then there must be
some other explanation for those differences. This observation
motivates the idea of a nondestructive sensor map.

Definition 10. Given a p-filter F = 〈Q ,Q0 ,Y , τ,C , c〉 and
a concordant sensor map h : Y → K , we say that h is non-
destructive if F = h(F) mod h.

Informally, a nondestructive filter is one that preserves
enough structure that the filter still works after applying it,
as long as the labels are updated accordingly. A destructive
filter is one that creates enough ambiguity (initially expressed
in the resulting p-filter by states with overlapping out-edges)
that the correct outputs can no longer be determined solely by
the observations.

Example 8. Suppose h : Y → K is an injective map,
so that if h(y) = h(z), then y = z. Because this kind
of map does not introduce the possibility of conflating any
two observations, it is clear that h is non-destructive. In
the particular case of interval labels (recall Example 3), this
implies that any sensor map that is a strictly-increasing or

strictly-decreasing—including, for example, affine maps—, is
non-destructive. Contrapositivelty, we can also conclude that
every destructive sensor map is non-injective.

B. Deciding destructiveness

We can now address the algorithmic problem posed by the
examples in Section I.

Decision Problem: Sensor map destructive test (SMDT)
Input: A p-filter F and a concordant sensor map h

Output: TRUE if h is non-destructive on F , or FALSE
otherwise.

Our algorithmic approach to solving this problem depends
on whether the input filter F is deterministic.

If we have an instance (F, h) of SMDT in which F is deter-
ministic —a case that should be quite common, since determin-
istic filters are those that are most directly implementable—
then we can use Algorithm 3 along with Lemma 4 to determine
whether h is destructive. The intuition is to compute h(F ), then
convert that mapped filter to state-determined normal form and
check whether the result is also in single-outputting normal
form. See Algorithm 4.

Algorithm 4: SENSORMAPDESTRUCTIVETEST1(F, h)
G← TOSTATEDETERMINEDFORM(h(F))
return ISSINGLEOUTPUTTING(G)

The algorithm itself is strikingly simple, which we view as
a positive feature. The groundwork from the earlier portions of
this paper enable a complex question like SMDT to be resolved
in a compact and elegant way.

To solve instances of (F, h) of SMDT in which F is
not deterministic, the situation is somewhat more complex,
because we must check explicitly whether F =h(F ) mod F .
Algorithm 5 shows how to perform this check. After converting
to state-determined normal form, if necessary, the algorithm
uses a forward search over pairs of states, one from each filter,
that are reachable by some observation sequence. For each
such pair, we verify that the output colors specified by each
filter are the same. For full generality, we show the algorithm
for arbitrary pairs of filters, not just for an F and its h(F ).

VI. HARDNESS OF SENSOR MINIMIZATION

The treatment of sensor maps in Section V raises the
question of why it is of interest to consider a variety of sensor
maps. Cannot one instead simply find the sensor map that is,
in some sense, the ‘most aggressive’ nondestructive map for
a given filter? In this section, we present a hardness result
establishing that, unless P = NP , no efficient algorithm can
find the nondestructive sensor map of minimal image size for a
given filter, even approximately. Specifically, we consider the
following decision problem.



Algorithm 5: EQUIVALENCEMODULOMAP(F1,F2, h)

Convert F1, F2 to state determined form if needed.
Initialize queue Q← U0 ×V0

while Q is not empty do
(s1, s2)← Q.pop
if c(s1) 6= d(s2) then

return False // Output sets are not equal
U1 ← REFINELABELS(labels leaving s1)
U2 ← REFINELABELS(labels leaving s2)
U ′

2 ← { pre-image of each element of U2 under h}
L← REPRESENTATIVES(U1 ∪U ′

2 )
for l ∈ L do

s′1 ← state that F1 transitions to on l
s′2 ← state that F2 transitions to on h(l)
Q.push((s′1, s′2)) // To be processed

return True

Decision Problem: Sensor minimization (SM)
Input: A p-filter F = 〈Q ,Q0 ,Y , τ,C , c〉 and integer n.

Output: TRUE if there exists a set K and a sensor map
h : Y → K , nondestructive for F, with |K| ≤ n.
FALSE otherwise.

Theorem 5. SM is NP-hard.

Proof: Reduction from 3-coloring. A detailed proof, omit-
ted here due to space limits, appears as a supplemental
document. �

Note, a fortiori, that the proof of Theorem 5 does not
depend any essential way on the specific number 3. In fact
the chromatic number of the graph coloring instance and the
image size of the smallest nondestructive sensor map for the
corresponding filter are always equal. Combined with known
results on the inapproximability of chromatic numbers [20],
this leads directly to the following stronger result.

Corollary 6. The optimization problem of finding, for a given
filter, the nondestructive sensor map with the smallest image
size, is NP-hard to approximate to within n1−ε.

VII. CASE STUDY: MINIMIZING THE ROOMBA

The following simple scenario, of the sort that the authors
have often assigned in introductory robotics courses, illustrates
the utility of the machinery developed in this paper. We wish
to have an iRobot Roomba vacuum cleaning robot follow walls
(on its port side) while avoiding negative obstacles. Five range
sensors on the robot provide sufficient information to carry out
this basic task. We approach this problem by constructing a
filter whose outputs are actions for the robot, and then we are
able to analyze the effect of sensor maps on this filter with
our implementation of the algorithms described in the earlier
sections of the paper.

We begin by describing the set of observations for idealized
versions of the robot’s sensors. Each of {w, c1, c2, c3, c4} is
fundamentally a device that measures distance, so it is useful
to model each output with a real number that represents the
range reading; naturally, the product of these five sensors gives
a label space with R5. Each state in the filter produces an

w
c1

c2 c3
c4

Fig. 7. An iRobot Roomba is equipped with a collection of simple sensors
including four cliff sensors and a wall sensor, each uses IR to measure distance.
As a simple example, we consider a filter which maps sensor readings into
motor commands on a robot tasked with following a wall on its left, while
avoiding negative obstacles.

Forward

Reverse

Turn

Fig. 8. A visual representation of the filter (IDEAL) that solves navigation
problem for the Roomba where edge labels are subsets of R5, and the values
in each vertex are velocities that the robot executes for some small finite time.
(The δij is the Kronecker delta, i, j ∈ {1, 2, 3, 4}.)

output that is interpreted as velocity commands—linear as ẋ
and angular as θ̇. The filter is shown pictorially in Figure 8.

From this a series of filters are constructed via transfor-
mations that coarsen the label space. Sensor map h (detailed
below) applied to the IDEAL filter, gives a filter CREATE
(SIGNALS), whose labels are based on the data that can be
read from the physical sensors through the software interface
(see [6]). Sensor map f (also below) transforms CREATE
(SIGNALS) into CREATE (SYMBOLS) representing a second
level of abstraction —in this case, a quantization based on
thresholding— available through the robot’s hardware inter-
face. Map g further reduces the set of labels, while the final
map we define, k, is destructive. Table I collects this informa-
tion. The rows in the table also summarize the relationships
visually. Starting from IDEAL one produces the others via com-
position of the sensor maps, for example, COMBINED SENSOR
results from applying map the g ◦ f ◦ h. The conclusion that
only the final map to a sensorless model is destructive, shows
that for this filter, neither the specific distance measurements
nor the individual identities of the sensors themselves are
necessary. A robot designed exclusively for this task could,
therefore, likely be designed to be simpler than a Create.

Name Observation Space Notes

IDEAL R× R× R× R× Ryh = clipToRange(·)
CREATE (SIGNALS) [0, 1023]× [0, 4095]4 Ranges from [6, pg.27].yf = thresholdT (·) (T = 10 and 20 for w and ci resp.)

CREATE (SYMBOLS) {0, 1} × {0, 1}4 cf. [6, pgs.22–23].yg = min(·)
COMBINED SENSOR {0, 1}yk = 0 (Constant map)
SENSORLESS {0} (Destructive)

TABLE I. A HIERARCHY OF FILTERS FOR THE IROBOT CREATE.



REFERENCES

[1] G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-
Whyte, and M. Csorba. A solution to the simultaneous
localisation and map building (SLAM) problem. IEEE
Transactions on Robotics and Automation, 17(3):229–
241, 2001.

[2] B. R. Donald and J. Jennings. Sensor interpretation
and task-directed planning using perceptual equivalence
classes. In Proc. IEEE International Conference on
Robotics and Automation, pages 190–197, Sacramento,
CA, 1991.

[3] M. Erdmann and M. T. Mason. An Exploration of
Sensorless Manipulation. IEEE Transactions on Robotics
and Automation, 4(4):369–379, August 1988.

[4] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, New York, 1979.

[5] K. Y. Goldberg. Orienting Polygonal Parts Without
Sensors. Algorithmica, 10:201–225, 1993.

[6] iRobot Corp. iRobotr Creater 2 Open Interface (OI).
Technical report. Last Updated April 2, 2015.

[7] R. E. Kalman. A new approach to linear filtering and
prediction problems. Transactions of the ASME–Journal
of Basic Engineering, 82(Series D):35–45, 1960.

[8] S. Kristek and D. A. Shell. Orienting Deformable Polyg-
onal Parts without Sensors. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robot Systems
(IROS), 2012.

[9] S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, Cambridge, U.K., 2006. Available at
http://planning.cs.uiuc.edu/.

[10] S. M. LaValle. Sensing and Filtering: A Fresh Perspective
Based on Preimages and Information Spaces. Founda-
tions and Trends in Robotics, 1(4):253–372, 2010.

[11] R. Lopez-Padilla, R. Murrieta-Cid, and S. M. LaValle.
Optimal gap navigation for a disc robot. In Proc.
Workshop on the Algorithmic Foundations of Robotics,
2012.

[12] J. M. O’Kane. Decentralized Tracking of Indistinguish-
able Targets using Low-Resolution Sensors. In Proc.
International Conference on Robotics and Automation,
2011.

[13] J. M. O’Kane and D. A. Shell. Automatic Reduction
of Combinatorial Filters. In Proc. IEEE International
Conference on Robotics and Automation, 2013.

[14] R. Smith, M. Self, and P. Cheeseman. Estimating un-
certain spatial relationships in robotics. In I.J. Cox and
G.T. Wilfong, editors, Autonomous Robot Vehicles, pages
167–193. Springer, Berlin, Heidelberg, 1990.

[15] Y. Song and J. M. O’Kane. Comparison of Constrained
Geometric Approximation Strategies for Planar Infor-
mation States. In Proc. International Conference on
Robotics and Automation, 2012.

[16] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.
MIT Press, Cambridge, MA., 2005.

[17] B. Tovar, R. Murrieta-Cid, and S. M. LaValle. Distance-
optimal navigation in an unknown environment without
sensing distances. IEEE Transactions on Robotics, 23(3):
506–518, June 2007.

[18] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and
N. Bjorner. Symbolic finite state transducers: algorithms

and applications. In Proc. of ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’12), pages 137–150, New York, NY, USA, 2012.

[19] J. Yu and S. M. LaValle. Shadow Information Spaces:
Combinatorial Filters for Tracking Targets. IEEE Trans-
actions on Robotics, 28(2):440–456, 2012.

[20] D. Zuckerman. Linear degree extractors and the in-
approximability of max clique and chromatic number.
Theory of Computing, 3:103–128, August 2007.

http://planning.cs.uiuc.edu/

