
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017 373

Loop-Free Convergence With Unordered Updates
Glenn Robertson, Nirupam Roy, Phani Krishna Penumarthi, Srihari Nelakuditi, and Jason M. O’Kane

Abstract—This paper studies the feasibility of minimizing con-
vergence delay and forwarding disruption without carrying any
additional bits in the IP header, to provide high availabil-
ity despite link failures in traditional IP networks. Previously
proposed mechanisms achieve two of these three objectives by
trading off the other objective. For instance, the ordered for-
warding information base updates approach may prolong the
convergence delay, whereas the SafeGuard scheme requires car-
rying the path cost in the IP header. As a better alternative,
we propose a scheme called fast convergence with fast reroute
(FCFR), which combines the features of IP fast rerouting and
interface-specific forwarding. We show that FCFR can achieve
minimal convergence delay, while ensuring loop-free delivery dur-
ing convergence, after a single non-partitioning failure in an
IP network, without altering the IP header format, making it
amenable for immediate deployment.

Index Terms—Network failures, resilient routing, convergence
delay, fast reroute, routing loops, order of updates.

I. INTRODUCTION

STUDIES on the occurrence of failures in a backbone
network have shown that failures of links and routers are

common even in a well managed network [1]. On the other
hand, an increasing number of users and services are rely-
ing on the Internet and expecting it to be always available. In
order to ensure high availability in spite of failures, a routing
scheme needs to quickly restore forwarding to affected des-
tinations. Traditional routing schemes such as OSPF trigger
link state advertisements in response to a change in topology,
and cause network-wide recomputation of routing tables. Such
a global rerouting incurs some delay before traffic forwarding
can resume on alternate paths. During this convergence delay,
routers may have inconsistent views of the network, resulting
in forwarding loops and dropped packets [2].

Several IP fast reroute schemes such as NotVia [3],
FIFR [4], MRC [5], LFA [6] and its variants like RLFA [7]
have been proposed in the past to initiate local rerouting
as soon as a failure is detected. In addition to the benefit

Manuscript received January 23, 2016; revised September 14, 2016
and February 18, 2017; accepted February 21, 2017. Date of publication
March 2, 2017; date of current version June 9, 2017. This work was supported
in part by the National Science Foundation (NSF) under grants CNS-0448272
and CNS-0551650. The associate editor coordinating the review of this paper
and approving it for publication was S. Schmid. (Corresponding author:
S. Nelakuditi.)

G. Robertson is with the Department of Electrical Engineering
and Computer Science, United States Military Academy, West Point,
NY 10996 USA.

N. Roy is with the Department of Electrical and Computer Engineering,
University of Illinois at Urbana–Champaign, Urbana, IL 61801 USA.

P. K. Penumarthi, S. Nelakuditi, and J. M. O’Kane are with the
Department of Computer Science and Engineering, University of South
Carolina, Columbia, SC 29208 USA (e-mail: srihari@cse.sc.edu).

Digital Object Identifier 10.1109/TNSM.2017.2675921

Fig. 1. Illustration of the actions of a router after a network event.

of prompt forwarding resumption, local rerouting can also
prevent unnecessary routing updates when the network out-
age is temporary. The downside of local rerouting is that
the packets take longer detours to reach their destinations.
In order to regain optimal routing if the failure lasts longer
than a preset threshold duration, routing updates are triggered
and a re-convergence of the network takes place. Thus, fast
reroute techniques do not obviate the need for the eventual
convergence process.

In order to prevent routing loops during this transitional
period, other authors have proposed schemes such as ordered
FIB updates [8]. This approach creates a stable transition
from the outdated network topology to an updated view of
the network. However, this process extends the convergence
period of the network by waiting for acknowledgments that
all routers have updated their information base in the proper
order before proceeding. This process takes longer to converge
than conventional OSPF and prolongs the time period before
the network is prepared to adapt to another outage or change.

SafeGuard [9] was proposed to address the above concerns
and achieve three interconnected objectives: 1) loop-free for-
warding; 2) minimal forwarding disruption; and 3) minimal
convergence delay. At no time can a forwarding loop happen
with SafeGuard in the case of a single failure. SafeGuard also
reduces the period when packets are dropped due to the lack
of valid routes. Moreover, SafeGuard minimizes the conver-
gence delay, i.e., packets are forwarded along optimal paths
and the network is ready to absorb another change as soon
as possible. The drawback of SafeGuard, however, is that it
requires each packet to carry the cost of the remaining path
to the destination, needing multiple bytes in the header. Our
aim is to maintain these benefits, but without changing the IP
header format, eliminating practical hurdles for deployment.

We propose a scheme called fast convergence with fast
reroute (FCFR), which uses an existing fast reroute technique
such as NotVia to create alternate routing during the con-
vergence process. Under FCFR, each router maintains two
forwarding tables (Fig. 1). The before change (bc) table is

1932-4537 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

374 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

Fig. 2. (a) An example using NotVia on a part of the Abilene topology. (b) An illustration of transient loops caused by adjacent routers with inconsistent
routing tables. (c) Using FCFR, KC forwards a packet using its ac routing table.

based on the outdated topology, and the after convergence
(ac) table is computed once the router has the updated topol-
ogy. Routers that have absorbed the new topology begin to
forward packets with the ac table. But, if a packet reaches a
router with only the bc table, it will use bc table for forward-
ing. Once a packet has been diverted using a bc forwarding
table, the packet will continue to be forwarded along a path
from the bc topology, with the aid of fast rerouting when
necessary. This guarantees that packets which originate at an
updated router will always get forwarded, either along an ac
path, or an ac path followed by a bc path. Packets originating
at not-yet-updated routers follow the bc path all the way to
the destination.

To ensure that a packet does not alternate between bc and
ac path segments and thus avoid forwarding loops during con-
vergence, FCFR needs to be aware of the packet’s forwarding
mode. To that end, FCFR can either indicate the forwarding
mode with a bit in the packet’s header (called FCFR1) or infer
the forwarding mode based on the packet’s incoming interface
(called FCFR0). We prove that FCFR1 with an additional bit
guarantees loop-free convergence regardless of the order of
updates after a single non-partitioning failure in an IP network.
Using FCFR1 as a stepping stone to develop FCFR0, we prove
that FCFR0 with interface-specific forwarding can guarantee
the same for network topologies with symmetric link weights,
without carrying any additional information in the packet.

The rest of this paper is organized as follows. Section II
illustrates FCFR1 that uses one bit in each packet to mark its
current forwarding mode. Section III discusses how FCFR0
can achieve the same outcome, without needing an additional
bit in the packet, by utilizing interface specific forwarding.
Section IV presents the results of our simulation. The limita-
tions of FCFR are discussed in Section V. Section VI discusses
the related work that motivated the design of FCFR. Finally,
we conclude the paper in Section VII.

II. FCFR1: FAST CONVERGENCE WITH

ONE BIT OVERHEAD

In this section, we illustrate a simple example, describe the
intuition behind our approach, gradually develop the FCFR1

scheme that requires an additional bit in the header for for-
warding, and show how it provides fast loop-free convergence.

A. Motivation

Fig. 2a shows an example using a part of the Abilene
topology [10]. Suppose the link between Kansas City (KC)
and Indianapolis (ID) fails. The routers adjacent to the fail-
ure would initiate an IP Fast Reroute scheme such as NotVia
to temporarily reroute traffic. In order to reroute the traffic
around the failed link, the NotVia mechanism would encap-
sulate each packet with the destination of ID, using a special
address which indicates that the link KC−ID has failed. This
special address is precomputed and known to each router along
the alternate route. Therefore, the temporary reroute scheme
would send packets along the path KC−HS−AT−ID.

After detecting the failure, the KC router would also send
out an LSA1 to advertise the failure throughout the network.
Each router in the network would recompute its forwarding
table according to the updated topology. Once KC completed
its computation, it would update its Forwarding Information
Base (FIB) as soon as possible and begin to forward using
the updated tables. Thenceforth, packets at KC bound for ID
would be routed toward Houston (HS) as the next hop.

During the transient period when all routers have not com-
pleted updating their FIB, there is an inconsistent view of the
network topology. The routers adjacent to the failure (KC and
ID) may be the first to update their FIBs. However, their imme-
diate neighbors, HS and AT, might update their FIBs a little
later due to the delay in propagation and processing of LSAs
across the network. Therefore, for a short time, packets at HS
bound for ID would be re-routed back toward KC.

Fig. 2b shows an illustration of what are termed transient
loops, or micro-loops, which occur during the convergence
period. These loops are caused by adjacent routers that have
differing views of the network topology. In this example, KC
has begun to forward based on the updated forwarding table,
indicated by the dashed line. Note that rerouting with NotVia
is not triggered at KC since the new next hop is not ID

1Though we are discussing an LSA corresponding to a link going down,
the same arguments about loop-free convergence apply to LSAs about a link
coming up or an increase or decrease in its weight.

ROBERTSON et al.: LOOP-FREE CONVERGENCE WITH UNORDERED UPDATES 375

because KC has already updated its forwarding table. HS is
re-computing its topology and is still using the old forwarding
table, as indicated by the dotted line. This conflicting view of
the network is the cause of these temporary loops.

Transient loops can cause dropped packets due to TTL
expiration, and additional load on the affected links, which
competes with legitimate traffic for bandwidth on those links.
These packets are not delivered due to forwarding inconsis-
tencies in the network, and can cause the loss of critical data,
such as VoIP calls and real-time collaboration sessions.

The previously proposed approach using ordered updates [8]
can eliminate these transient loops. With ordered updates, KC
would update its forwarding table only after HS has updated
its table. Therefore, until KC updates its table, packets to ID
that arrive at KC get rerouted using NotVia address of ID.
This NotVia path would be the same in both new and old
forwarding tables since the link KC−ID is excluded from the
computation. Once KC updates its table, packets get forwarded
along the new path KC−HS−AT−ID without any loops.

The goal of FCFR is to minimize convergence delay and
minimize network disruption during the convergence process.
The drawback of ordered updates is that loops are prevented at
the expense of increased convergence delay. This may not be
a serious concern since packets are delivered use fast rerout-
ing during this period. However, it is desirable to reduce the
convergence delay for two reasons. First, packets take longer
detours during convergence and it is preferable to restore the
optimal routing as soon as possible. Second, and perhaps more
importantly, once the network converges after a failure, it is
ready to handle another failure. Thus overlapping multiple fail-
ures can be treated as sequential single failures which are
easier to handle. These are the reasons that motivated the
design of SafeGuard [9]. Our aim is to achieve the same ben-
efits as SafeGuard, without requiring 4 bytes of information
in the header of each packet. In the following, we present the
intuition behind FCFR1 that achieves both fast convergence
and fast rerouting with only one additional bit of overhead.

B. Intuition

Suppose a link’s state changes at time t0. Let us refer to
the forwarding table as being in the before change (bc) era if
it was computed before t0 and therefore, does not reflect the
change. Similarly, a recomputed forwarding table that accounts
for the change is said to be in the after convergence (ac) era.
Based on this naming convention, a network is said to be
converged at time tc, when all the routers are in the ac era.
During the time between t0 and tc, which is the convergence
delay, some routers’ forwarding tables are in the bc era while
others are in the ac era. Due to this inconsistency, packets
may get caught in transient forwarding loops.

Clearly, when all the routers forward using the ac era table,
packets will not loop. Similarly, no loops can exist if all the
routers use the bc era forwarding tables. Using the bc table,
packets could arrive at a router adjacent to the failure and
potentially get dropped because the next-hop is not reach-
able. However, fast reroute mechanisms such as NotVia are
employed to handle this scenario by having adjacent routers

perform local rerouting along an alternate loop-free path. In
other words, with ac era forwarding by all routers, no packet
encounters a forwarding loop or routing failure. The same
scenario occurs by using bc era forwarding at all routers in
combination with NotVia. The only difference is that ac era
forwarding is optimal. Therefore, we would like to have all
routers start using ac tables as early as possible.

Now, imagine a hypothetical scheme where all routers use
the bc table for forwarding along an alternate route using
NotVia during the time between t0 and tc. Then, at time tc, all
routers would switch to using the ac table for forwarding.
Such a hypothetical scheme would not have any forward-
ing loops or forwarding failures. Obviously, this hypothetical
scheme is not feasible. First of all, the time to recompute
(tc − t0) is not known in advance. Second, and perhaps more
importantly, it is not feasible for all the routers to update their
FIBs simultaneously at time tc. Therefore, we need a practi-
cal scheme that behaves approximately like this hypothetical
scheme.

Our approach is based on the following intuition. Consider
the path traversed by a packet. Suppose we segment the
packet’s path into ac and bc segments (with one or more
hops) such that all forwarding within a segment belong to the
same era. The possible combinations of segments in a path
could be:

1) bc
2) ac
3) ac−bc
4) bc−ac
5) bc−ac−bc−· · ·
6) ac−bc−ac−· · ·
A forwarding loop is only possible when a path is allowed

to alternate between bc and ac segments as in cases
of (5) and (6). Therefore, by constraining a packet to traverse
between bc and ac segments only once at the most, we can
ensure that the packet does not loop. Our approach is based
on this intuition — it allows only the first 3 cases to happen.
In other words, a packet gets forwarded using ac tables until
it encounters a router which has only the bc table. Thereafter,
it gets forwarded by bc tables until it reaches the destination.

C. Scheme

We now describe how FCFR1 achieves fast loop-free
convergence using NotVia to provide fast rerouting. Under
NotVia, when a link l fails, the adjacent router encapsulates
the original datagram inside another packet with the destina-
tion address set to the next-hop’s not-via address. Because
of the meaning of the not-via address, it gets routed con-
sistently by all routers along an alternate path that does not
include l. Without notifying others about the failure, NotVia
can guarantee delivery to all destinations in the case of a single
failure. But routing would be suboptimal and another concur-
rent failure could cause loops. Therefore, a link state update is
triggered even while performing local rerouting with NotVia.

The basic idea behind FCFR1 is to use one bit, which rep-
resents the era, in the packet to convey how it should be
forwarded. This bit represents either bc or ac. As illustrated

376 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

in Fig. 1, during the time between receiving LSA and updat-
ing FIB, a router uses only the bc table. Between the time of
FIB update and network convergence, a router may reference
either the bc or ac table based on packet’s era field. When
the network is converged to a stable state, each router has both
bc and ac tables but only the ac table is used for forwarding.

When a packet has the era bit set to bc, all routers con-
sistently forward according to their bc tables as per the fast
reroute mechanism. If the packet has the era bit set to ac,
routers forward it according to the ac table if their FIB update
is complete. If a router is still in the bc era, it resets the era
bit in the packet to bc. From then on, the packet only gets
forwarded along the bc path. The packet era is initialized to
bc or ac based on the state of the originating router.

The mapping of bc/ac to 0/1 is not static. It changes
after every link up/down event. However, it is consistently
interpreted by different routers provided the following two
conditions are satisfied. 1) A router does not install a new
FIB before its neighbor receives the corresponding LSA. This
is a reasonable assumption considering that propagating the
LSA over a link takes much less time than the time needed
to recompute new forwarding table and update the FIB. 2) At
most one failure event is being propagated in the network,
which is observed to be the most common scenario [1]. Under
these conditions, we can prove that if the convergence delay
for OSPF is (tc − t0), then FCFR1 converges within (tc − t0).

The actions taken by a router in response to different events
under FCFR1 are specified in Algorithm 1 (see Table I for the
notation). These operations can be summarized as follows.
• Each packet p has a 1-bit field in the header called era.
• Each router R maintains its current era.
• A packet p’s era is set to R’s era if p originates at R.
• R forwards p using the table for p.era.
• If R does not have a table for p.era, then it toggles p.era

and forwards it according to that table.
• A packet in the bc era stays in that era until it reaches

its destination using fast reroute.
• A packet in the ac era switches to the bc era if it encoun-

ters a router in the bc era enroute to the destination.
Now let us revisit the Abilene example shown in Fig. 2 and

consider what would happen under FCFR1 for the same fail-
ure. The routers at KC and ID would be the first to recompute
the updated topology and begin forwarding using the updated
ac forwarding table. However, the routers at HS and AT incur
a notification delay due to the LSA propagation process before
they can compute the new table. Therefore, during the tran-
sition period, we have neighboring routers in the network
with inconsistent forwarding tables. Fig. 2c shows how FCFR1
prevents loops from forming in this situation.

First, the router at KC begins to forward packets using its
updated (ac) forwarding table. KC sends each packet with the
era bit set to ac, as indicated by the dashed line. The router
at HS would receive the packets with ac era and recognize
that it does not have the updated forwarding table. Therefore,
HS would reset the era bit to bc in these packets and forward
them using the outdated (bc) forwarding table back to KC.
This return path is indicated by the original dotted line. Once
a packet arrives back at KC with era set to bc, it must look

TABLE I
NOTATION

Algorithm 1 Operations Under FCFR1

1: if Router R receives a packet p
2: if FR[p.era] does not exist, then p.era← R.era
3: forward p to FR[p.era](p.dst)

4:

5: if Router R receives a new LSA
6: purge FR[R.era]
7:

8: if Router R has recomputed new FIB
9: R.era← R.era

10: FR[R.era]← new FIB
11:

12: if Packet p originates at router R
13: p.era← R.era
14: forward p to FR[p.era](p.dst)

15:

16: if Router R initializes its state
17: R.era← 0
18: FR[1]← FR[0]

up its previous (bc) forwarding table. Since the link from KC
to ID is down, the router uses NotVia encapsulation to route
the packet via the path KC−HS−AT−ID, as before. Once HS
computes its ac table, packets follow the new optimal path.
Thus, as soon as the routers along the shortest path update
their FIBs, FCFR1 resumes optimal forwarding.

Next, we discuss FCFR1’s ability to handle multiple failures
and interoperate with fast reroute schemes other than NotVia,
and address potential concerns with its implementation.

Handling multiple failures: Thus far, we have described
FCFR1 assuming a single link failure2 is being propagated in
the network. However, FCFR1 can handle multiple correlated
link failures, for instance due to a router failure, by treat-
ing them as a single event with a single FIB update. In case
of a router failure, another router R would receive multiple
LSAs, one from each of the neighbors of the failed router,
in quick succession. The router R can then treat them all as
corresponding to a single failure event: purge the bc table,
toggle the era, and update the new FIB or ac table, all only
once. This requires a change in the line 5 of the Algorithm 1.
Once the router R receives a new LSA and the bc table is
purged, no further action is taken upon receiving the subse-
quent LSAs that arrive before the computation and updating

2Unless otherwise explicitly stated as a node failure, in this paper, by
default, a failure event refers to a single link failure.

ROBERTSON et al.: LOOP-FREE CONVERGENCE WITH UNORDERED UPDATES 377

of new FIB. Further, the FIB computation has to take into
account the information from all those LSAs, such that new
FIB reflects the new topology. In addition, FCFR1 can suc-
cessfully protect against any two unrelated failures if they are
spaced apart by a time interval of at least (tc − t0).

Working with other fast reroute schemes: The above discus-
sion of FCFR1 assumes that NotVia is being employed for
fast rerouting. We chose NotVia as it provides 100% coverage
against single failures, besides helping us make the description
of FCFR1 concise and clear. Here, we argue that FCFR1 also
works well with other fast reroute schemes such as Loop Free
Alternates (LFA) [6] and Remote LFA (RLFA) [7].

LFA essentially routes around a failure by identifying a
neighbor that would not route back to it. For instance, in
Fig. 3, given a link outage between ID and CH, the router at
ID could forward packets destined for NY to AT. The router
AT is considered a loop-free alternate because it is closer to
the destination NY than the path going back through the for-
warding router ID. In this case, the cost from AT-WA-NY is
1100, and the cost from AT-ID-CH-NY is 1550. While LFA
has very low overhead, it does not offer full protection against
some failures depending on the topology. In the above failure
scenario, for destination CH, router ID can not find a loop-
free alternate. RLFA is an extension of LFA that improves
coverage against failures with the aid of tunneling. The core
idea behind RLFA is to pick an intermediate node, between
the router adjacent to the failure and the destination such that
both the shortest path segments do not include the failed link.
In the above example, under RLFA, ID would tunnel packets
destined for CH to NY along the shortest path ID-AT-WA-
NY. The router NY will then forward the original packet to
the destination CH, along the shortest path NY-CH.

Note that the shortest paths from ID to NY and NY to
CH do not include the ID-CH link. Consequently, a link state
update indicating the failure of ID-CH does not affect the for-
warding between them, as their shortest paths will be the same
before and after convergence. Essentially, packets destined to
CH arriving at ID in bc mode would get encapsulated with
destination address set to NY. These packets get routed con-
sistently by all routers along the shortest path from ID to NY,
as it does not include ID-CH link. The same is true for the
onward routing from NY to the destination CH. Thus, the
operation of FCFR1 with RLFA would be very similar to that
with NotVia.

Deploying in real world: FCFR1 requires that each packet
carry its era, a 1-bit field in the header. A way to implement
this in current networks is to use the reserved flag bit in the
IPv4 header [11]. Then, while forwarding a packet, a router
has to lookup the corresponding forwarding table based on this
flag bit and set that bit as per Algorithm 1. Effectively, using
one bit in each packet and an additional forwarding table at
each router, FCFR1 can guarantee loop-free fast convergence
and fast rerouting, the proof of which is given below.

D. Proof of Loop-Free Convergence With FCFR1

We now present a formal proof of the loop-free conver-
gence property of the FCFR1 scheme, assuming the following

Fig. 3. Illustration of FCFR1 with LFA and RLFA: When the link ID-CH is
down, using LFA, router ID forwards packets bound for NY to AT, which is
downstream, as the next hop. But there is no such LFA from ID to CH. So,
RLFA tunnels packets bound for CH to intermediate destination NY, which
in turn sends them to their original destination CH. Since the shortest paths
of these two segments remain the same before and after convergence, FCFR1
can coexist with RLFA to provide loop-free fast reroute and fast convergence.

constraints: 1) Only one network event propagates through-
out the network until the convergence for that event is
complete; 2) A router R does not install a new FIB and
change its R.era until its direct neighbors are notified of the
corresponding LSA.

Invariant 1: ∀Rn ∈ N(R), R.era = Rn.era iff FR[R.era]
and FRn [Rn.era] correspond to the same topology.

According to the FCFR1 scheme, before a network event, all
routers in the network have the same era value and operate
with forwarding tables that use the same topology. Therefore
this condition always holds true before a failure event. After
an event, a router changes its era value when installing the
updated forwarding table which represents the topology after
the event. This table update happens only once during the con-
vergence period given that only one network event propagates
throughout the network at a time. Therefore, if two routers
have same the era value, then their forwarding tables will
represent the same topology and vice versa.

Invariant 2: ∀Rn ∈ N(R), R.era �= Rn.era iff exactly one
of FR[R.era] and FRn [Rn.era] does not exist.

According to the FCFR1 scheme, a router R changes its era
value only when it has completed a FIB update. Therefore,
the value of the era bit for R differs from its neighbor Rn

only if one of them, say Rn, has installed a new FIB and the
other hasn’t. Then, according to our assumptions, the neigh-
bor R of the updated router Rn should have received the LSA
and purged its forwarding table FR[R.era] immediately after
receiving it. Therefore, FR[R.era] will not exist until R com-
pletes a FIB update. Conversely, if FRn [Rn.era] does not exist,
that implies Rn is computing an update and would have the
same era value as R until its FIB update is complete.

Invariant 3: During the convergence period, the forwarding
table FR[eraold] exists in all routers, where eraold is the era
value in all routers before the network event.

A router R contains both the tables FR[eraold] and
FR[eraold] before the event (after initialization and possible
convergence from previous events). After receiving an LSA
for a network event, it removes the table FR[eraold]. This can
not happen prior to receiving the LSA, so R.era still remains
as eraold after removing the old table. It changes R.era bit

378 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

only after computing the new table. Therefore, a router always
removes the table FR[eraold], and FR[eraold] table exists in
all routers at least until the end of the convergence period.

Invariant 4: A packet p can change its p.era value at most
once during its flight.

Initially, a packet p’s era value is the same as the era
value of the router that originates it. According to FCFR1
p.era changes only when the packet visits a router R where
FR[p.era] does not exist. Since an updated router has both
the tables, p.era can only change its value at a non-updated
router. All non-updated routers have eraold as their R.era
value, so p.era always gets the value eraold after the change.
Once p.era value becomes eraold, it never changes because
by Invariant 3, FR[eraold] exists at all routers.

In order to prove the loop freedom property of FCFR1, it is
necessary and sufficient to establish that “a packet never visits
a router twice with same p.era value”.

We prove this property of FCFR1 by contradiction. Assume
that a packet has visited router R twice with same p.era value
through a non-empty sequence of routers S starting and ending
with R. Invariants 1 and 2 prove that the interpretation of era
values is consistent among all routers in the network. Based
on Invariant 4, p.era could not have changed more than once
in flight. If p.era is eraold, then at all the routers in S the
packet would have been routed using the forwarding table cor-
responding to the old topology. If p.era is eraold, then all
routers in S would have installed new tables and the packet
would have been routed using only the tables that correspond
to the updated topology. In both cases, in a single topology
(whether updated or not) the shortest path from R to the des-
tination can not include R twice, a contradiction. Therefore,
using FCFR1 a packet will never visit a router twice with same
p.era value, hence FCFR1 is loop free.

III. FCFR0: FAST CONVERGENCE WITHOUT

ANY ADDITIONAL BITS

While FCFR1 achieves the desired objectives of minimal
forwarding disruption and convergence delay as mentioned in
the introduction, with just one additional bit per packet and
thus much less than the four bytes needed by SafeGuard, it
still requires a change in the IP header and the forwarding pro-
cess at a router. To eliminate this requirement and facilitate
practical deployment, we explore the possibility of achieving
the same without any changes to the packet format and the for-
warding paradigm. In this section, we present such a scheme,
FCFR0, that behaves like FCFR1 in networks with symmetric
link weights, using interface-specific forwarding.

Interface-specific forwarding implies that a packet’s next-
hop is determined based on both its destination and incoming
interface. Let ISF R[prv] be the forwarding table correspond-
ing to the incoming interface prv→R. Then, a packet p
arriving at R from the previous hop prv gets forwarded to
the next-hop ISF R[prv](p.dst). Note that interface-specific
forwarding is quite feasible with the current router architec-
tures, as they already maintain a forwarding table at each line
card of an interface for performing lookup at line speed. The
only deviation is that unlike in current routers which have a

copy of the same forwarding table at each interface, under
FCFR0, some of the entries in these tables could be different.

Apart from interface-specific forwarding, FCFR0 assumes
that all the links in the network are bidirectional with equal
weight in both directions, which is generally true for back-
bone networks. With symmetric link weights, a forwarding
loop happens only when a packet traverses two neighboring
routers that are in different eras and each router is the other
router’s next-hop for the packet’s destination according to their
view of the network topology. Therefore, a router R in the ac
era can infer that a packet’s previous hop Q is in the bc era, if
in the ac era the next hop from R to destination is Q. In that
case, R can forward the packet according to its bc table and
avoid a potential forwarding loop. When R has only the bc
table, a packet is forwarded under FCFR0 like in FCFR1, based
on its destination alone regardless of the incoming interface.

Consider the topology in Fig. 4, where each edge is labelled
with its weight. The routers marked with S and D are the
source and destination of the packet respectively. Let us con-
sider the situation where the link between routers R3 and D is
broken and the network has not yet converged. The darker blue
routers are ac routers and the lighter yellow routers are in the
bc era. A packet destined for D and originated at the router S
gets forwarded to the router R1 according to the bc topology.
R1 uses R2 as its next hop in both the ac and bc topology, so
the packet reaches R2 from R1. Upon receiving the packet, R2
uses the ac table to forward it to R4 which in turn sends it to
R5. R5 is a bc router, so it has only the bc forwarding table.
According to that table, R5 forwards the packet back to R4.
This time, R4 observes that the packet arrives along the incom-
ing interface R5→R4, which indicates that R5 is in the bc era.
Therefore, R4 now uses the bc table to forward the packet to
R2, which sends the packet to the router R3, applying the same
inferencing mechanism. Now, R3 being aware of the adjacent
link failure, reroutes the packet to the NotVia address of D,
avoiding the failed link R3−D. Since the path to this NotVia
address of D, R3→R2→R4→R5→D, is the same in both ac
and bc tables, the packet gets forwarded consistently without
any loops to destination D. Thus, FCFR0 achieves the same
effect as FCFR1, without an era bit in the packet, in networks
with symmetric link weights.

FCFR0 operations are formally specified in Algorithm 2.
These operations are similar to those in Algorithm 1 for
FCFR1, except for the usage of interface-specific forwarding.
When a packet p arrives at R from the previous hop prv, it
is simply forwarded to ISF R[prv](p.dst). Upon computing
a new FIB, it is pushed to all the interfaces as usual, except
for the interfaces corresponding to the next-hops (could be
multiple with ECMP) of each destination. Only those entries
will be set to the next-hops corresponding to the bc table.
When the router receives an LSA, these entries are reset to
the usual next-hops, and thus effectively purging the bc table.

Note that only the ISF table needs to be in the for-
warding plane, and the rest reside in the control plane. As
mentioned earlier, current router architectures already main-
tain a forwarding table at each line card of an interface for
performing lookup at line speed. Therefore, FCFR0 can be
realized by changing only the forwarding table computation

ROBERTSON et al.: LOOP-FREE CONVERGENCE WITH UNORDERED UPDATES 379

Fig. 4. Illustration of forwarding during convergence under FCFR0, when
the link between R3 and D goes down. Routers R2 and R4 have updated their
forwarding tables and entered the ac era, while others are in the bc era.

Algorithm 2 Operations Under FCFR0

1: if Router R receives a packet p from previous hop prv
2: forward p to ISF R[prv](p.dst)

3:

4: if Router R receives a new LSA
5: for each destination dst
6: ISF R[FR[R.era](dst)](dst)←FR[R.era](dst)

7: purge FR[R.era]
8:

9: if Router R has recomputed a new FIB
10: R.era← R.era
11: FR[R.era]← new FIB
12: for each neighbor prv of router R
13: ISF R[prv]← FR[R.era]
14: for each destination dst
15: ISF R[FR[R.era](dst)](dst)←FR[R.era](dst)

16:

17: if Packet p originates at router R
18: forward p to FR[R.era](p.dst)

19:

20: if Router R initializes its state
21: R.era← 0
22: FR[1]← FR[0]

algorithm in the control plane such that some of the entries
are interface-dependent. Thus, it is possible to deploy FCFR0
without altering the packet format or the forwarding plane
of current networks. However, FCFR0 has an obvious limi-
tation. It is applicable only in networks with symmetric link
weights. This is a fundamental constraint and we do not fore-
see any possibility of extending FCFR0 to networks with
asymmetric link weights. Note that FCFR1 can however be
deployed in such topologies, as it is agnostic to link weight
symmetry.

A. Proof of Loop-Free Convergence With FCFR0

We now prove that FCFR0 is loop-free, under the following
constraints: 1) Only one network event propagates throughout
the network until the convergence for that event is complete;

Fig. 5. A generic circular loop scenario in a symmetric link network.

2) A router R does not install a new FIB and change its R.era
until its direct neighbors are notified of the corresponding
LSA. 3) Links are bidirectional with symmetric weights. We
show that under FCFR0, a packet does not traverse the same
link in the same direction more than once.

We first analyze the loop freedom property of a shortest path
routing protocol. The only property assumed in this generic
routing protocol is that each router delivers a packet to the next
hop in the shortest path to the destination according to its view
of network. We show that shortest path routing can avoid a cer-
tain type of routing loop. Once loop freedom is established for
the shortest path routing, we extend the argument for FCFR0
to prove its loop freedom in general.

Property 1: The generic shortest path routing protocol is
free from circular loops in symmetric link networks.

We use the term circular routing loop to refer to a sce-
nario where a packet reaches the initial router (can be any
of the participating routers that is considered as the starting
point of the looping packet) without traversing any edge twice
in the same direction, Consider an example scenario shown
in Fig. 5. In this loop, the updated and non-updated routers
are arbitrarily chosen. The darker nodes depict the updated
routers that use the new topology and lighter nodes are for
non-updated/uninformed ones that use the old topology to for-
ward a packet. Uninformed nodes can not be neighbors of any
updated node as per our assumptions, however they would use
the same topology as the non-updated nodes. Since the path
used by uninformed nodes does not differ from a non-updated
neighbor, we can consider uninformed nodes as non-updated
ones in this proof without loss of generality.

The circular loop consists of segments of consecutive
updated/non-updated nodes that follow the same path to the
destination. These segments can contain one or more possible
nodes. For example, the segment consisting of routers Rnew

1
through Rnew

p follows the new topology path to the destina-
tion. The last router in this segment Rnew

p forwards the packet
to Rold

1 , the first node of the next segment. This node uses the
old topology shown by the dotted lines from router Rold

1 to
router Rold

q . We define the collective edge weight of the links

380 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

from Rnew
1 to Rold

1 as l1 and that of the links along the old
path from Rold

1 to the destination as d1. Similarly, the values
for next segment are l2, d2 respectively and so on. We con-
sider i such segments in the circular loop. To show that the
shortest path routing will not complete any circular loop in a
symmetric link network, it will be sufficient to show that the
loops are not possible with shortest path routing.

We first assume that a loop exists and then we prove the loop
free property by showing a contradiction. In a circular loop
as shown in Figure 5, the router Rnew

1 can forward the packet
from Rnew

1 � Rold
1 and then follow the new path shown with

the dotted line from router Rold
1 . Alternately, Rnew

1 can forward

the packet from Rnew
1 � Rold

k and then follow the path shown
with the dotted line from the router Rold

k . Rnew
1 chooses the

first path as the shortest path to the destination, therefore the
total weight of the first path must be less than the second one
as captured in the following inequality:

l1 + d1 < li + di−1

Following the similar argument for all of the i segments, we
can obtain the following inequalities.

l2 + d2 < l1 + di

l3 + d3 < l2 + d1
...
...

li−1 + di−1 < li−2 + di−3

li + di < li−1 + di−2

Now adding the left and right hand sides yields a contra-
diction,

i∑

n=1

(ln + dn) <

i∑

n=1

(ln + dn)

Therefore, in symmetric link networks, no generic shortest
path routing protocol will cause circular loops.

Property 2: FCFR0 is free from circular routing loops.
In FCFR0 an updated router does not follow the old or new

topology independently. The previous hop decides the choice
of topology in updated routers. However, a non-updated router,
which is a neighbor of any updated one, has only the old table
and therefore no choice of topology. It always forwards with
the old topology view. As the generic routing algorithm proves
freedom from circular loops without any restriction on the
choice of topology in updated nodes and FCFR0 does not con-
tradict any assumption made therein, it is evident that FCFR0
is also free from a circular loop.

Next, we consider what we refer to as the linear routing
loop, where a packet reaches the initial router by traversing
all the edges of the loop exactly once in each direction, as in
Figure 6. We prove that FCFR0 does not cause a packet to
go around a linear routing loop more than once. Towards that
end, we establish some invariants under FCFR0.

Invariant 5: In FCFR0 an updated node can not return a
packet to the router that last forwarded the packet to it.

Fig. 6. A generic linear loop scenario in a symmetric link network.

Suppose an updated node R gets a packet from a neigh-
boring node Q. For R to return the packet to Q, in the new
topology Q must be its next hop, which implies that Q must
be using the old topology. In this case, R will forward this
packet using the old topology. When both Q and R use the
same old topology for forwarding, R can not return the packet
to Q.

Invariant 6: Though an uninformed node has two for-
warding tables, it always uses the old topology to forward
packets.

FCFR0 assumes that there can not be any uninformed node
as a neighbor of an updated node. Therefore an uninformed
node can only get a packet from another uninformed node or a
non-updated node. Moreover, at any time there can be at most
a single event which an uninformed node is unaware about.
Therefore, when an uninformed node A forwards a packet
to another uninformed node B, it always uses its FA[A.era]
table and it in turn leads B to use its FB[B.era], both new
tables in their view. But, FA[A.era] and FB[B.era], in unin-
formed nodes A and B respectively, actually correspond to the
old topology. Now, in case a non-updated node C forwards
a packet to B, C uses its only table FC[C.era] which repre-
sents the topology before the failure according to the FCFR0
actions. Therefore, from B’s view the packet comes follow-
ing a new topology and it uses its FB[B.era] to forward this
packet. This shows that under all circumstances an uninformed
node uses the old topology to forward a packet.

Invariant 7: In FCFR0, an uninformed node does not get a
packet returned from the node it forwarded the packet to.

We use the similar argument as in Invariant 2 to claim that
an uninformed node can only pass a packet to another unin-
formed node or a non-updated node. Now, according to the
Invariant 2, in both of the cases the recipient node uses the
old topology, which is also used by the uninformed sender
node. As both the sender and receiver nodes use the same
topology to forward the packet, the receiver will not return it
to the sender.

ROBERTSON et al.: LOOP-FREE CONVERGENCE WITH UNORDERED UPDATES 381

Property 3: FCFR0 does not cause a packet to go through
a linear routing loop more than once.

We consider a generic linear loop repetition scenario in
a symmetric link network as shown in Fig. 6 and argue
that the scenario is not possible with FCFR0. According
to the Invariant 5, such a loop must have more than two
nodes. Moreover, the nodes at the extreme ends of the loop
must return the packet to the router that last forwarded it.
Therefore, these two nodes must be non-updated as indicated
by Invariant 5. The intermediate nodes have to forward a
packet to two different neighbors and it is possible if the nodes
contain two tables for old and new topologies. In FCFR0, a
router can have two tables if it is an uninformed or updated
node. Note that an uninformed node can not be a neighbor
of an updated node. So, the intermediate nodes of the repeat-
able linear loop must be either all uninformed or all updated.
According to Invariant 7, the node adjacent to the end nodes
must be updated, therefore all intermediate nodes are updated.
The two non-updated nodes at the extreme ends of the loop
forward a packet with old topology paths in opposite direc-
tions in the loop. To make this possible, there must be an old
topology path from the router Rold to the destination that devi-
ates from the loop at an intermediate node, R, as shown in the
figure.

The linear loop as shown in Fig. 6 must involve forwarding
a packet from R′old to Rold and back twice to be an incident of
loop repetition. Lets consider a packet being forwarded from
R1 to R. If R→R1 exists in the new shortest path tree, then R
uses the old path and forwards it to Rany and thus breaks the
loop. Otherwise, the packet will follow the new shortest path
from R to R2, and then through the consecutive updated nodes
to R′old. Now, suppose packet comes back to the router R from
R2. Since we have considered R→R2 as being part of the new
shortest path, when the packet goes from R to R′old, R2→R
can not be part of the new path. So, R forwards the packet to
Rany and thus breaks the loop again. Thus, in networks with
symmetric links, forwarding with FCFR0 is loop-free.

IV. PERFORMANCE EVALUATION

To evaluate the performance of FCFR, we used
SSFNet [12]. Since both variants of FCFR are similar
except for the bit in the header, we compared FCFR’s
performance against Safeguard, ordered FIB updates (oFIB),
and standard OSPF. Implementations of all schemes except
FCFR were obtained from the authors of SafeGuard. oFIB
prevents micro-loops during convergence by enforcing a
strict order of routing updates across different routers. As
in [9], we simulate the fast mode of oFIB which uses
signaling messages to impose the update order. Further, oFIB
is employed in combination with NotVia, to ensure that
packets are fast rerouted through a backup path when they
encounter a failed component during the convergence period.
We used two well-known topologies Abilene and Exodus for
the simulation. In addition, we used one randomly generated
topology for comparison.

The schemes are evaluated using the following metrics:
average convergence delay, average packet loss rate, average

path stretch during convergence, and loop duration. This last
metric captures the fraction of links in the network whose sta-
tus change to up or down can cause loops and the duration
they last. This study validates that OSPF causes loops during
convergence whereas Safeguard, ordered updates, and FCFR
effectively preclude loops from forming during convergence.

For each topology, we simulated four different failure sce-
narios: link down, node down, link up and node up. For
example, in the first scenario, we randomly generate a sin-
gle link failure in the network, and repeat the simulation for
100 different runs. For each failure scenario, we record data
for the four metrics listed, and then report the average metric
or cumulative distribution function for each type of failure.

A. Convergence Delay

The first metric evaluated during the simulation was the con-
vergence delay of each protocol. As illustrated in Figure 7, the
convergence delay of OSPF, SafeGuard, and FCFR is the same
for all four topologies. This is because under these protocols,
each node updates its FIB immediately upon receipt of an
LSA. Therefore, there is no additional delay required due to
ordered updates or obtaining some kind of routing consensus
prior to convergence. This feature of our scheme satisfies the
first part of our goal of fast convergence with fast rerouting.
The ordered updates approach takes longer to converge, par-
ticularly for node failures. One effect of this delay is that the
network is performing sub-optimal routing for a longer period
of time by relying on the underlying fast reroute mechanism.
The major impact, however, is that the network is not prepared
to deal with another failure because it is still compensating for
a previous event.

With our approach, we can achieve both fast rerouting and
fast convergence. During the time the network is recomput-
ing new routes, a fast reroute scheme like NotVia can redirect
packets to their destinations, albeit over a sub-optimal path.
This in itself is no better or worse than any other fast reroute
scheme. However, our key advantage is that during conver-
gence, we can achieve loop-freedom without incurring any
additional cost in terms of convergence delay. Therefore, the
network is prepared as soon as possible to deal with another
failure.

B. Packet Loss

We also compared the performance of these schemes in
terms of their rate of packet loss during the process of conver-
gence. Figures 8 and 9 show the packet loss incurred by all the
schemes for single link and single node failures respectively.
It is evident that all other schemes have significantly lower
packet loss rate than OSPF. As expected, FCFR restores for-
warding just as well as SafeGuard. Other measurements in the
remaining topologies confirm this result as well.

C. Path Stretch

The path stretch metric measures the optimality of routes
during the convergence process. It is the ratio of the actual path
length to the optimal path length. Any path stretch greater than
1 indicates a sub-optimal path; the higher the value, the longer

382 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

Fig. 7. OSPF, SafeGuard, and FCFR have minimal convergence delay, while ordered updates incurs higher delay, particularly for a node up or down event.

Fig. 8. Packet loss rates for a single link failure. Fast rerouting algorithms (i.e., FCFR, SafeGuard, and ordered updates) begin delivering packets immediately
after the failure is detected, whereas OSPF continues to drop packets until forwarding tables are updated.

Fig. 9. Packet loss rates for a single node failure. These results are similar to those for a single link failure.

Fig. 10. Path stretch for a single link failure remains low initially for OSPF as packets get dropped at the failed link, then increases as routing inconsistencies
start to occur. Stretch is higher initially with fast reroute schemes as they deliver packets through longer routes, then decreases as the network converges.

the route is compared to the optimal path. Fig. 10 illustrates
the path stretch plotted over time for different topologies used
in our simulation with single link failures. Similar behavior has

been observed for single node failures too. The path stretch for
OSPF is quite high during convergence mainly because some
packets loop for a while and then escape the loop to reach

ROBERTSON et al.: LOOP-FREE CONVERGENCE WITH UNORDERED UPDATES 383

Fig. 11. The cumulative fraction of links vs. loop duration for a single link failure. SafeGuard, ordered updates, and FCFR guarantee loop prevention during
the convergence period and therefore have a loop duration of zero for all links. OSPF enables routing loops to form during convergence, and thus a significant
fraction of the links in the network have loops lasting about 100 ms.

the destination. Safeguard generates the shortest paths and
converges the quickest back to the unit path length. Ordered
updates also has lower path stretch than OSPF but takes longer
to converge due to its strict updating requirements and signal-
ing. We find that FCFR converges as quickly as Safeguard, but
with the cost of at most one bit of overhead and no additional
signaling, such as that required by ordered updates.

D. Flow Amplification

The final metric we measured is loop duration. This metric
shows the duration of time a probe packet is caught in a tran-
sient loop before it is dropped. Figure 11 shows the CDF of
the fraction of links whose status update caused loops vs. the
loop duration for single link failures. OSPF clearly has a sig-
nificant fraction of links that cause loops during convergence.
Safeguard, ordered updates, and FCFR all have their own
mechanism which prevents loops from forming. This behav-
ior is confirmed by the simulation, which shows no forwarding
loops for any of the above three schemes.

These results affirm that FCFR performs better than each
of the competing approaches. It can achieve loop-free conver-
gence unlike OSPF, with lower convergence delay than ordered
FIB updates and lower header overhead than SafeGuard.

V. LIMITATIONS AND DISCUSSION

FCFR is critically dependent on the consistent interpretation
of a packet’s era field by different routers along its path.
FCFR assumes single or correlated failures and does not
guarantee loop-freedom in the case of multiple, independent
failures. Another scenario in which the era field could be mis-
interpreted is when a failure partitions the network temporarily
until the failure is repaired. The problem of synchronizing the
era value between two segmented partitions of the network
can be solved by utilizing OSPF’s mechanism for synchro-
nizing router databases. When two routers establish a new
adjacency, they establish which router is the master and slave
based on which has the higher router ID. The master node
then controls the exchange of LSA information between the
two routers. If one router has a more recent LSA than the
other, the newer one is promulgated so that both routers have
consistent databases.

In order to solve the problem of era synchronization, we
can utilize this mechanism to resynchronize the era value when
a network partition is repaired. In the case of identical eras
on both sides of the partition, no action is needed. If both
sides of the partition are in a different era, then the master
router will impose its era on the slave. The slave router will
then flood this new value out to all other nodes in that former
partition. Once a network partition is repaired, all nodes will
have a consistent view of the network topology.

VI. RELATED WORK

The idea for FCFR was developed from other schemes
which provide transient loop prevention, but at a greater cost
in packet header information or signaling overhead across the
network. Extensive work has been done in the area of loop-free
convergence. The previously cited papers on Safeguard [9] and
ordered updates [8] are good examples of this work. Compared
with these two schemes, we showed that FCFR provides the
same level of robustness without the cost of carrying remain-
ing path length in all packets or the delay of waiting for all
routers in the network to update in the proper order.

Another work in this area is the incremental update mech-
anism proposed in [13] and [14], which also alleviates the
transient loop problem. However, this method is aimed largely
at ISPs who need to conduct planned maintenance on a
link and have a network management tool to implement the
required metric changes. In contrast, FCFR could be applied
in any network with little operator intervention and can react
to any changes in the network, whether they are planned or
not.

Failure carrying packets [15] tries to eliminate the need for
convergence. However, the cost of this scheme is that it must
maintain a list of failed links in the network, which is a sig-
nificant modification to the routing protocol and the packet
header, while FCFR works without requiring such changes.

Path Splicing proposed in [16] perturbs link weights to pro-
duce multiple routing trees and allows traffic to switch trees
at any hop en route to the destination. While path splicing can
sustain connectivity despite multiple failures, the number of
splicing header bits needed is proportional to the number of
hops and there is a small probability of forwarding loops.

384 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 2, JUNE 2017

The concept of Packet Recycling [17] takes advantage of
cellular graph embeddings to reroute packets that would oth-
erwise be dropped in case of failures. It needs log2(d) bits
in the header to cover all non-disconnecting failure combina-
tions, where d is the diameter of the network. While the low
header overhead is remarkable, packets under PR take long
detours.

Loop Free Alternates [6] have been implemented in pro-
duction networks. This approach works well depending on
the network topology but cannot guarantee protection against
multiple failures nor even any single link failure without
modifying the network specifically to work with LFA’s.

Keep forwarding [18] uses an approach to protect against
k-link failures in the network by using interface-specific
forwarding. However, KF also does not guarantee delivery
even under single link failures. Another similar scheme [19]
guarantees packet delivery under multiple link failures using
rooted arc-disjoint spanning trees. However, this approach
is not meant to eliminate routing loops caused during the
convergence process.

Another relevant work is Slick Packets [20] which uses
source controlled routing to avoid failures. However, SCR
requires multiple round trips in some cases to determine an
alternate route, which often exceeds the 50 ms standard for fast
rerouting. In order to overcome this constraint, Slick Packets
employs a directed acyclic graph called a forwarding subgraph
(FS), which is encoded in each packet header. This FS speci-
fies a set of paths that intermediate routers can use in case of
failures. One drawback of SP is that it requires a large amount
of overhead in each packet in order to encode the FS.

Recently, software defined networking (SDN), in which the
control plane is centralized, is gaining in popularity [21].
This trend has increased the granularity of control over the
forwarding plane, however at the cost of relying on a sin-
gle point to distribute routing updates the entire network.
To combine the advantages of SDN and traditional rout-
ing, Vissicchio et al. [22] describe a hybrid approach called
Fibbing, which introduces fake nodes in the network to induce
the desired forwarding tables. Inherently, link failures will
necessitate changes in the forwarding plane and fake nodes,
which requires recomputation by the control plane of each
router in the network. Therefore, loop-free convergence with
FCFR without any signalling overhead would aid Fibbing too.

An approach most related to this work was proposed in [23].
It also uses interface-specific forwarding to mitigate transient
loops during convergence. But it prevents loops by discard-
ing packets that arrive through unusual interfaces. In contrast,
FCFR ensures loop-free convergence without any packet loss.

An earlier version of the FCFR approach with one bit in
the header, i.e., FCFR1, appeared in [24]. Compared to that
version, apart from significant revisions including pseudocode
and formal proof, this paper presents FCFR0 that does not
require any changes to the IP header or forwarding plane.

VII. CONCLUSION

In this paper, we proposed the FCFR scheme to prevent for-
warding loops during the convergence period and restore the

network to an optimal routing state as soon as possible. We
have shown that FCFR with NotVia can achieve fast conver-
gence with fast rerouting using only one bit per packet and
an additional forwarding table per router, without any signal-
ing overhead. Further, we have proved that, it is possible to
achieve the same outcome using interface-specific forward-
ing in networks with symmetric link weights, without any
changes to the packet format or the forwarding plane. We
evaluated the performance of FCFR using SSFNet simulator
and demonstrated that it has lower packet loss than OSPF,
shorter convergence delay than ordered updates, and over-
all similar performance as SafeGuard with lower overhead.
One drawback of FCFR, however, is that it can not gracefully
handle multiple independent failure events that occur in suc-
cession, before each event has been completely absorbed by
the network, addressing which is our immediate future work.

ACKNOWLEDGMENT

The authors would like to thank Xiaowei Wang and Ang Li
for making their SafeGuard implementation in SSFNet avail-
able to them.

REFERENCES

[1] A. Markopoulu, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot “Characterization of failures in an IP backbone,” in Proc. IEEE
INFOCOM, Hong Kong, Mar. 2004, pp. 2307–2317.

[2] U. Hengartner, S. B. Moon, R. Mortier, and C. Diot, “Detection and anal-
ysis of routing loops in packet traces,” in Proc. ACM IMW, Marseilles,
France, Nov. 2002, pp. 107–112.

[3] S. Bryant, S. Previdi, and M. Shand, “A framework for IP and MPLS
fast reroute using not-via addresses,” Internet Eng. Task Force, Fremont,
CA, USA, RFC 6981, Aug. 2013.

[4] J. Wang and S. Nelakuditi, “IP fast reroute with failure inferencing,” in
Proc. INM, Kyoto, Japan, Aug. 2007, pp. 268–273.

[5] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Fast IP
network recovery using multiple routing configurations,” in Proc. IEEE
Infocom, Barcelona, Spain, Apr. 2006, pp. 1–11.

[6] G. Rétvári, J. Tapolcai, G. Enyedi, and A. Császár, “Ip fast ReRoute:
Loop free alternates revisited,” in Proc. INFOCOM, Shanghai, China,
Apr. 2011, pp. 2948–2956.

[7] S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N. So, “Remote loop-free
alternate (LFA) fast reroute (FRR),” Internet Eng. Task Force, Fremont,
CA, USA, RFC 7490, Apr. 2015.

[8] P. Francois and O. Bonaventure, “Avoiding transient loops during
IGP convergence in IP networks,” ACM Trans. Netw., vol. 15, no. 6,
pp. 1280–1292, Dec. 2007.

[9] A. Li, X. Yang, and D. Wetherall, “SafeGuard: Safe forwarding dur-
ing routing changes,” in Proc. ACM CoNEXT, Rome, Italy, 2009,
pp. 301–312

[10] Abilene Network. Accessed on Feb. 28, 2017. [Online]. Available:
https://en.wikipedia.org/wiki/Abilene_Network

[11] J. Postel et al., “Internet protocol,” Internet Eng. Task Force, Fremont,
CA, USA, RFC 791, 1981.

[12] Scalable Simulation Framework. Accessed on Feb. 28, 2017. [Online].
Available: http://www.ssfnet.org

[13] F. Clad, P. Mérindol, J.-J. Pansiot, P. Francois, and O. Bonaventure,
“Graceful convergence in link-state ip networks: A lightweight algorithm
ensuring minimal operational impact,” IEEE/ACM Trans. Netw., vol. 22,
no. 1, pp. 300–312, Feb. 2014.

[14] F. Clad, S. Vissicchio, P. Mérindol, P. Francois, and J.-J. Pansiot,
“Computing minimal update sequences for graceful router-wide recon-
figurations,” IEEE/ACM Trans. Netw., vol. 23, no. 5, pp. 1373–1386,
Oct. 2015.

[15] K. Lakshminarayanan et al., “Achieving convergence-free routing using
failure-carrying packets,” in Proc. ACM SIGCOMM, Kyoto, Japan,
Aug. 2007, pp. 241–252.

[16] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path splicing,”
ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 27–38,
2008.

ROBERTSON et al.: LOOP-FREE CONVERGENCE WITH UNORDERED UPDATES 385

[17] S. S. Lor, R. Landa, and M. Rio, “Packet re-cycling: Eliminating packet
losses due to network failures,” in Proc. ACM HotNets, Monterey, CA,
USA, Oct. 2010, Art. no. 2.

[18] B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng, “Keep forwarding:
Towards k-link failure resilient routing,” in Proc. IEEE INFOCOM,
Toronto, ON, Canada, Apr. 2014, pp. 1617–1625.

[19] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “IP fast rerouting
for multi-link failures,” in Proc. IEEE INFOCOM, Toronto, ON, Canada,
Apr. 2014, pp. 2148–2156.

[20] G. T. K. Nguyen et al., “Slick packets,” ACM SIGMETRICS Perform.
Eval. Rev., vol. 39, no. 1, pp. 205–216, 2011.

[21] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” Queue,
vol. 11, no. 12, p. 20, 2013.

[22] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central con-
trol over distributed routing,” in Proc. ACM SIGCOMM, London, U.K.,
Aug. 2015, pp. 43–56.

[23] S. Nelakuditi, Z. Zhong, J. Wang, R. Keralapura, and C.-N. Chuah,
“Mitigating transient loops through interface-specific forwarding,”
Comput. Netw., vol. 52, no. 3, pp. 593–609, 2008.

[24] G. Robertson, J. Bedenbaugh, and S. Nelakuditi, “Fast convergence with
fast reroute in IP networks,” in Proc. IEEE HPSR, Richardson, TX, USA,
Jun. 2010, pp. 100–106.

Glenn Robertson received the B.S. degree in
electrical engineering from United States Military
Academy, West Point, in 1996, the M.S. degree
in computer engineering from Colorado Technical
University in 2000, and the Ph.D. degree in com-
puter science and engineering from the University
of South Carolina, Columbia, in 2012. He is
currently an Assistant Professor with the United
States Military Academy. His current research
interests include network reliability and cybersecu-
rity education.

Nirupam Roy is currently pursuing the Ph.D.
degree in electrical and computer engineering with
the University of Illinois at Urbana–Champaign.
His research interests are in the broad areas of
networking, wireless systems, and mobile comput-
ing. He was a recipient of the Best Student Project
Award for his bachelor’s thesis from IIEST, Shibpur,
India, the Outstanding Thesis Award for his mas-
ter’s thesis from the University of South Carolina,
Columbia, and the M.E. Van Valkenburg Graduate
Research Award from the University of Illinois at

Urbana–Champaign in 2015.

Phani Krishna Penumarthi received the M.S.
degree in computer science and engineering from
the Indian Institute of Technology Madras, in 2012.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
University of South Carolina. His research interests
lie in the intersection of wireless networks and
software defined networking.

Srihari Nelakuditi received the B.E. degree from
Andhra University, Visakhapatnam, the M.Tech.
degree from the Indian Institute of Technology
Madras, and the Ph.D. degree in computer science
and engineering from the University of Minnesota,
Minneapolis. He is currently a Professor with the
Department of Computer Science and Engineering,
University of South Carolina, Columbia. His
research interests are in resilient routing, wireless
networking, and mobile computing. He was a recip-
ient of the NSF CAREER Award in 2005 and the

Google Faculty Research Award in 2013.

Jason M. O’Kane received the B.S. degree from
Taylor University, in 2001, and the M.S. and Ph.D.
degrees from the University of Illinois at Urbana–
Champaign, in 2005 and 2007, respectively, all in
computer science. He is an Associate Professor of
Computer Science and Engineering and the Director
of the Center for Computational Robotics, University
of South Carolina. His research spans algorithmic
robotics, planning under uncertainty, and compu-
tational geometry. He was a recipient of the NSF
CAREER Award in 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

