
Planning to Chronicle: Optimal Policies
for Narrative Observation of
Unpredictable Events

Journal Title
XX(X):1–19
©The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Hazhar Rahmani1 and Dylan A. Shell2 and Jason M. O’Kane1

Abstract
One important class of applications entails a robot scrutinizing, monitoring, or recording the evolution of an uncertain
time-extended process. This sort of situation leads to an interesting family of active perception problems that can be
cast as planning problems in which the robot is limited in what it sees and must, thus, choose what to pay attention
to. The distinguishing characteristic of this setting is that the robot has influence over what it captures via its sensors,
but exercises no causal authority over the process evolving in the world. As such, the robot’s objective is to observe
the underlying process and to produce a ‘chronicle’ of occurrent events, subject to a goal specification of the sorts of
event sequences that may be of interest. This paper examines variants of such problems in which the robot aims to
collect sets of observations to meet a rich specification of their sequential structure. We study this class of problems by
modeling a stochastic process via a variant of a hidden Markov model, and specify the event sequences of interest as a
regular language, developing a vocabulary of ‘mutators’ that enable sophisticated requirements to be expressed. Under
different suppositions on the information gleaned about the event model, we formulate and solve different planning
problems. The core underlying idea is the construction of a product between the event model and a specification
automaton. Using this product, we compute a policy that minimizes the expected number of steps to reach a goal state.
We introduce a general algorithm for this problem as well as several more efficient algorithms for important special
cases. The paper reports and compares performance metrics by drawing on some small case studies analyzed in
depth via simulation. Specifically, we study the effect of the robot’s observation model on the average time required
for the robot to record a desired story. We also compare our algorithm with a baseline greedy algorithm, showing that
our algorithm outperforms the greedy algorithm in terms of the average time to record a desired story. In addition,
experiments show that the algorithms tailored to specialized variants of the problem are rather more efficient than the
general algorithm.

Keywords
Planning, Story-telling, Reconnoitering, Raconteuring

1 Motivation and Introduction
This paper is about robotic planning problems in which
the goals are expressed as time-extended sequences of
discrete events whose occurrence the robot cannot causally
influence. As a concrete motivation for this sort of setting,
consider the proliferation of home videos. These videos
are, with remarkably few exceptions, crummy specimens
of the cinematic arts. They fail, generally, to establish and
then bracket a scene; they often founder in emphasizing the
importance of key subjects within the developing action, and
are usually unsuccessful in attempts to trace an evolving
narrative arc. And the current generation of autonomous
personal robots and video drones, in their roles as costly and
glorified ‘selfie sticks,’ are set to follow suit. The trouble
is that capturing footage to tell a story is challenging. A
camera only records what you point it toward and part of
the difficulty stems from the fact that you can’t know exactly
how the scene will unfold before it actually does. Moreover,
what constitutes structure isn’t easily summed up with a few
trite quantities. Another part of the challenge, of course, is
that one has only limited time to capture video footage.

Many applications can be cast as the problem of producing
a finite-length sensor-based recording of the evolution of

some process. As the video example emphasizes, one might
be interested in recordings that meet rich specifications
of the event sequences that are of interest. It is easy to
look beyond pure vanity as a motivator: consider cases
where a robot is auditing or inspecting some occurrence,
perhaps to summarize or provide select evidence of
some specific property or portray the manifestation of
some pattern. When the evolution of the event-generating
process is uncertain/non-deterministic and sensing is local
(necessitating that it be directed actively), then one
encounters an instance from this class of problem. The
broad class encompasses many monitoring and surveillance
scenarios. An important characteristic of such settings is that
the robot has influence over what it captures via its sensors,
but cannot control the process of interest.

Our approach to this class of problem involves two lines
of attack. The first is a wide-embracing formulation in which
we pose a general stochastic model, including aspects of

1University of South Carolina, Department of Computer Science and
Engineering, US
2Texas A&M University, Department of Computer Science and
Engineering, US

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

hidden/latent state, simultaneity of event occurrence, and
various assumptions on the form of observability. Secondly,
we specify the sequences of interest via a deterministic finite
automaton (DFA), and we define several language mutators,
which permit composition and refinement of specification
DFAs, allowing for rich descriptions of desirable event
sequences. The two parts are brought together via our
approach to planning to satisfy the specifications as quickly
as possible: we show how to compute an optimal policy
via a form of product automaton. Empirical evidence from
simulation experiments attests to the feasibility of this
approach.

Beyond the pragmatics of planning, a theoretical
contribution of the paper is to prove a result on representation
independence of the specifications. That is, though multiple
distinct DFAs may express the same regular language
and despite the specific DFA being involved directly in
constructing the product automaton used to solve the
planning problem, it turns out that it is the language
expressed, not how it is expressed, that affects the resulting
optimal solution. This means that one can reduce the
automaton size (say, using the famous Myhill-Nerode result)
to reduce the planning time and know that this does not
reduce the quality of the solution produced. Returning to
mutators that transform DFAs, enabling easy expression of
sophisticated requirements, we distinguish when mutators
preserve representational independence too.

A preliminary version of this paper (Rahmani et al.,
2020) appeared in the 14th International Workshop on the
Algorithmic Foundations of Robotics (WAFR-XIV). The
following results are new to this version:

• We generalize the event model, introducing an
occurrence probability for each state-event pair.

• We address the case in which no policy can guarantee
that the robot will successfully capture a desired story.

• We discuss several special cases, showing how they
can be solved more efficiently than the general
problem.

• We added new case studies comparing our general
approach to both a greedy baseline and to our
specialized algorithms for the newly-introduced
special cases.

2 Related Work
In research closely related to the present article, the work of
Shell et al. (2019) (having some authors in common with
the present paper) introduces the idea of using a team of
autonomous robots, coordinated by a planner, to capture a
sequence of events meeting some narrative structure. That
work raised (but did not answer) several questions, among
them: how the robot can formulate effective plans to capture
events relevant a given story specification. Here we build
upon that prior effort showing how such plans can be formed
in a principled way.

Also related is work in the area of autonomous
cinematography, which has recently become an active
research topic in robotics. Mademlis et al. (2019a) focus
on vision-based UAVs (Unmanned Aerial Vehicles), and
specifically multi-UAV, cinematography. They review the
research topic and make a taxonomy of shot types based

on framing types (long short, close-up, etc.) and camera
motion types (orbit, fly-by, etc.), which they extend for multi-
UAV cinematography. A more comprehensive version of
their taxonomy, including several ones for target tracking,
can be found in (Mademlis et al., 2019b). Sabetghadam et al.
(2019) propose for autonomous UAV cinematography, an
optimal trajectory planning algorithm in which the control of
the drone and the control of the gimbal are decoupled. They
also consider in (Alcántara et al., 2021), optimal trajectory
planning for multi-UAV cinematography. All these works
assume that the robot has already been assigned what it is to
capture, while in our work it is the robot that needs to predict
which events will occur and which it should try to capture.

Treatment of narrative in terms of structured sequences
of discrete events, as done in this article, is not unique.
The story validation problem (Yu and LaValle, 2010, 2011)
can be viewed as an inverse of our problem. The aim there
is to determine whether a given story is consistent with a
sequence of events captured by a network of sensors in the
environment. In our problem, it is the robot that needs to
capture a sequence of events that constitute a desired story.

Video summarization is the problem of making a ‘good’
summary of a given video by prioritizing sequences of
frames based on some selection criterion (importance,
representativeness, diversity, etc.). Various approaches
include identifying important objects (Lee et al., 2012),
finding interesting events (Gygli et al., 2014), selection
using supervised learning (Gong et al., 2014), and finding
inter-frame connections (Lu and Grauman, 2013). For
a survey on video summarization see (Truong and
Venkatesh, 2007), which one might augment with more
recent results (Mahasseni et al., 2017; Plummer et al., 2017;
Zhang et al., 2018; Ji et al., 2019; Narasimhan et al., 2021).

Specifically with robot-based observation in mind,
Girdhar and Dudek (2012) considered the related vacation
snapshot problem in which the goal is to retain a diverse
subset from data observed by a mobile robot. However, in
such summarization techniques, the problem is essentially to
post-process a collection of images already recorded. This
paper, by contrast, addresses the problem of deciding which
video segments the robot should attempt to capture in the first
place.

Also, for text-based and interactive narratives, a variety
of methods are known for narrative planning and generating
natural language stories (Riedl and Young, 2010; Robertson
and Young, 2017).

Our work builds on the theory of Markov decision
processes (MDPs) and its extension to partially observable
Markov decision processes (POMDPs), which are surveyed
in (LaValle, 2006; Shani et al., 2013; Ross et al., 2008; Bonet
and Geffner, 2009). In what follows, we tackle our problem
by constructing a product of the event model and the story
specification, which together yield a specific POMDP.

Our own previous work (Chaudhuri et al., 2021b)
considered a multi-robot extension of the problem we study
here. In that work, we compared, in terms of quality
of solution and efficiency, a planning approach in which
planning for all of the robots is conducted jointly against a
sequential approach. We also studied an extension in which
the planning process comprises not only to what events to
try to capture but also which recording styles the robot

Prepared using sagej.cls

Rahmani, Shell, and O’Kane 3

should use to capture events those events, ensuring that the
final result conforms to a given specification of acceptable
styles (Chaudhuri et al., 2021a).

The empirical results we shall present show that as the
robot’s power to perceive the world increases, the robot
can record events that form a desirable narrative more
quickly. As such, the ideas of active perception (Bajcsy,
1988; Bajcsy et al., 2018) could be useful for the robot to
strategically increase its knowledge about the world and the
events happening around it; of course, the present work also
constitutes a planned form of active perception itself.

3 The Problem
To begin, we introduce the problem formalization, starting
with the most basic elements of the model.

3.1 Events and observations
The essential objects of interest are events, that is, atomic
occurrences situated at specific times and places. We treat
each event as a letter drawn from a finite alphabet E, a set
which contains all possible events. Any finite sequence of
events, in particular a story ξ the robot wants to record from
the events that occur in the system, is a word in E∗. (The set
of finite sequences is written here using the Kleene star.)

We model the occurrence of events using a structure
defined as follows.

Definition 1. [event model] An event model M =
(S,P, s0, E, g) is a tuple in which

• S, a nonempty finite set, is the state space of the
model;

• P : S × S → [0, 1] is the transition probability func-
tion of the model, such that for each state s ∈ S,∑
s′∈S P(s, s′) = 1;

• s0 ∈ S is the initial state;
• E is the set of all possible events;
• g : S × E → [0, 1] is an event ‘going-on’ function

defined so that for state s and event e, value g(s, e)
is the probability that event e happens at state s. We
assume that for each e ∈ E, g(s0, e) = 0.

An execution of the model starts from the initial state s0
and then, at each time step k, the system makes a transition
from state sk to state sk+1, the latter being chosen randomly
based on P from those states for which P(sk, ·) > 0. This
execution specifies a path s0s1 · · · . For every time step k,
when the system enters state sk, some (possibly empty) set
of events occurs simultaneously, each event e ∈ E occurring
with probability g(sk, e), independently from other events.

We are interested in scenarios in which a robot is tasked
with recording certain sequences of events. We model the
state of the event model as only partially observable to the
robot. That is, the current state sk of the event model is
hidden from the robot, but the system instead emits an output
observable to the robot at each time step. The next definition
formalizes the idea.

Definition 2. [observation model] For a given event model
M = (S,P, s0, E, g), an observation model B = (Y, h) is a
pair in which

• Y is a nonempty set of observations or outputs;
• h : S × Y → [0, 1] is the emission probability func-

tion of the model, such that for each state s ∈ S,∑
y∈Y h(s, y) = 1.

At each time step, when the system enters a state sk, it
emits an output yk, drawn according to h(sk, ·). The emitted
output yk is observable to the robot. An event model and
observation model can be depicted together as a directed
graph (e.g., see Figure 1a), where we show each state’s
events as an attached set (in braces in the figure) and display
observations from Y along with their emission probabilities
(in brackets). We consider, as important special cases, two
particular types of observation models.

Definition 3. Given an event model M = (S,P, s0, E, g)
with observation model B = (Y, h), we say that B makesM
fully observable if (1) Y = S, and (2) h(s, y) = 1 if and only
if s = y.

We write Bobs(M) to denote the unique observation
model that makesM fully observable. At the other extreme,
another special event model is one in which the emitted
outputs do not help at all to reduce uncertainty.

Definition 4. Given an event model M = (S,P, s0, E, g)
with observation model B = (Y, h), then B causes the event
model to be fully hidden if the observation space Y is a
singleton set.

Since the particular single observation comprising Y
is unimportant, by Bhid(M) we denote some observation
model makingM fully hidden.

3.2 Story specifications, belief states, and
policies

As the system evolves along a path s0s1s2 · · · , the robot
attempts to record some of the events that actually occur in
the world to form a story ξ ∈ E∗. We specify the desired
story using a deterministic finite automaton (DFA) D =
(Q,E, δ, q0, F), where Q is its state space, E is its alphabet,
δ : Q× E → Q is its transition function, q0 its initial state,
and F ⊆ Q is the set of all final (accepting) states of the
automaton. In other words, we want the robot to make a story
ξ in the language of D, denoted L(D), which is the set of all
strings in E∗ that when are tracked from q0, the automaton
reaches an accepting state.

The semantics of event capture are as follows. At each step
k ≥ 0, the robot chooses one event e from E to attempt to
record in the next step, k + 1. If any of the actual events
that do happen at step k + 1 (an event e can happen at
sk+1 only if g(sk+1, e) > 0) match the robot’s prediction,
then the robot successfully records this event; otherwise, it
records nothing. The robot is aware of the success or failure
of each of its attempts. The robot stops making guesses and
observations once it has recorded a desired story—a story in
L(D).

To estimate the current state, the robot maintains, at
each time step k, a belief state bk : S → [0, 1], in which∑
s∈S bk(s) = 1. For each s ∈ S, bk(s) represents the

probability that the event model is in state s at time step k,

Prepared using sagej.cls

4 Journal Title XX(X)

according to the information available to the robot, including
both the observations emitted directly by the event model,
and the sequence of successes or failures in recording events.
It also maintains, for each time k, the sequence ξk of events
it has recorded until time step k, and the (unique) DFA state
qk obtained by ξk.

The robot’s predictions are governed by a policy π :
∆(S)×Q→ E that depends on the belief state and the state
of the DFA. At time step k + 1, the robot may append a
recorded event to ξk via the following formula:

ξk+1 =

{
ξkπ(bk, qk) π(bk, qk) happened at sk+1

ξk π(bk, qk) did not happen at sk+1.

(1)
The initial condition is that ξ0 = ε, in which ε is the empty
string. The robot changes the value of variable qk only when
the guessed event actually happened:

qk+1 =

{
δ(qk, π(bk, qk)) π(bk, qk) happened at sk+1

qk π(bk, qk) did not happen at sk+1.

(2)
The robot stops when qk ∈ F .

3.3 Optimal recording problems
The robot’s goal is to record a story (or video) as quickly as
possible. We consider this problem in three different settings:
a general setting without any restriction on the observation
model, a setting in which the observation model makes the
event model fully observable, and a final one in which the
event model becomes fully hidden.

Definition 5. [correct policy] For a given event set E, event
model M = (S,P, s0, E, g) with observation model B =
(Y, h), DFA D = (Q,E, δ, q0, F), and policy π : ∆(S)×
Q→ E, we say π is a correct policy if it ensures, with
probability 1, that a story within L(D) will eventually be
captured.

First, the general setting.

Problem: Recording Time Minimization (RTM)

Input: An event set E, an event model M =
(S,P, s0, E, g) with observation model B =
(Y, h), and a DFA D = (Q,E, δ, q0, F).

Output: A correct policy that minimizes the expected
number of steps k until ξk ∈ L(D); or ‘NO
SOLUTION’ if no correct policy exists.

Note that k is not necessarily the length of the resulting
story ξk, but rather is the number of steps the system runs
to capture that story. In fact, since the robot captures at most
one event in each time step, |ξk| ≤ k.

The second setting constrains the system to be fully
observable.

Problem: RTM with Fully Observable Model (RTM/FOM)

Input: An event set E, an event model
M = (S,P, s0, E, g), and a DFA
D = (Q,E, δ, q0, F).

Output: A correct policy that, under observation model
Bobs(M), minimizes the expected number of
steps k until ξk ∈ L(D); or ‘NO SOLUTION’ if
no correct policy exists.

In this setting, because states are fully observable to the
robot, we might have defined the policy as a function over
S ×Q rather than over ∆(S)×Q. Nonetheless, our current
definition does not pose any problem. Any reachable belief
state in this setting considers only a single outcome (i.e.,
given any k, bk(s) = 1 for exactly one s ∈ S) and thus, we
are interested in the optimal policy only for those reachable
beliefs.

The third setting assumes a fully hidden event model
state.

Problem: RTM with Fully Hidden Model (RTM/FHM)

Input: An event set E, an event model
M = (S,P, s0, E, g), and a DFA
D = (Q,E, δ, q0, F).

Output: A correct policy that, under observation model
Bhid(M), minimizes the expected number of
steps k until ξk ∈ L(D); or ‘NO SOLUTION’ if
no correct policy exists.

4 Algorithm Description

Next we give an algorithm for RTM, which also solves
RTM/FOM and RTM/FHM, essentially special cases of RTM.

4.1 The Goal POMDP

The first step of the algorithm constructs a specific partially
observable Markov decision process (POMDP), which we
term the Goal POMDP, as follows:

Definition 6. [Goal POMDP] For an event model M =
(S,P, s0, E, g) with observation model B = (Y, h), and a
DFA D = (Q,E, δ, q0, F), the associated Goal POMDP is
a tuple P(M,B;D) = (X,A, b0,T, XG, Z,O, c), in which

1. X = S ×Q is the state space;

2. A = E is the action space;

3. b0 ∈ ∆(X) is the initial belief state, in which b0(x) =
1 if and only if x = (s0, q0);

4. T : X ×A×X → [0, 1] is the transition probabil-
ity function such that, assuming 1{A}(·) to be
set A’s indicator function, for each e ∈ E and
(s, q), (s′, q′) ∈ X ,

Prepared using sagej.cls

Rahmani, Shell, and O’Kane 5

T((s, q), e, (s′, q′)) =

P(s, s′) · g(s′, e) if q /∈ F, q′ = δ(q, e),

and q′ 6= q (4.a)

P(s, s′) · g(s′, e)·
1{q′}(δ(q, e))+ if q /∈ F,

P(s, s′) · (1− g(s′, e)) and q′ = q (4.b)

1 if q ∈ F, q′ = q,

and s = s′ (4.d)

0 otherwise;

5. XG = S × F is the set of goal states;

6. Z = ({True,False} × Y) ∪ {⊥} , in which ⊥ is used
for the observation that the robot has completed
recording a desired story, is the set of observations;

7. O : A×X × Z → [0, 1] is the observation probabil-
ity function such that for each e ∈ E, s ∈ S, q ∈ Q,
and y ∈ Y :

(a) O(e, (s, q), (True, y)) = h(s, y) · g(s, e) if q /∈
F ,

(b) O(e, (s, q), (False, y)) = h(s, y) · (1− g(s, e)) if
q /∈ F ,

(c) O(e, (s, q),⊥) = 1 if q ∈ F ;

8. c : X ×A→ R≥0 is the cost function such that for
each x ∈ X and a ∈ A, c(x, a) = 1 if x /∈ XG, and
c(x, a) = 0 otherwise.

Figure 1 illustrates this construction for an elementary
example. Each state of this POMDP is a pair (s, q) indicating
the situation where, under an execution of the system, the
current state of the event model is s and the current state
of the DFA is q. For each x, x′ ∈ X and a ∈ A, T(x, a, x′)
gives the probability of transitioning from state x to state
x′ under performance of action a. In the context of our
event model, each transition corresponds to a situation where
the robot chooses an event e to observe and the event
model makes a transition from a state s to s′. If e happens
at s′ and δ(q, e) 6= q, then the robot records e and then
changes the current state of the DFA to δ(q, e); otherwise,
it does nothing and the DFA remains in state q. These
correspond to cases (4.a) and (4.b) above, respectively.
Note that the term P(s, s′) · g(s′, e) · 1{q′}(δ(q, e)) in case
(4.b) corresponds to the situation where δ(q, e) = q and the
predicted event e happens at s′, while term P(s, s′) · (1−
g(s′, e)) corresponds to the situation where the predicted
event e, regardless of whether δ(q, e) = q or not, does not
happen at s′. Case (4.c) makes all the goal states of the
POMDP absorbing states. The goal states of the POMDP are
those in which the robot has recorded a story, i.e., the current
state of the specification DFA is accepting.

For each a ∈ A, x ∈ X , and z ∈ Z, the function
O(a, x, z) is an observation model, its value being the
probability of observing z given that the system has entered

b)

q0 q1

a)

s1s0

s2

[x :1, y :0]

[x : .7, y : .3]

[x :0, y :1]

.8
.6

.4

1

{}

.2

c)
(True , y)

(False , y)
(False , x)

(True , x)

s1,q0

s2,q0

s2,q1

s1,q1s0,q0

.8

.8

.6

.4

.4

.6

.2

11
11

1111

11
11

11
11.3.3

.3.3

.3.3

.7.7

.7.7

1

.2

11

Figure 1. a) An event modelM with its observation model B.
b) A DFA D, specifying event sequences that contain at least
one event. c) The Goal POMDP P(M,B;D), constructed by
Definition 6. (Self-loop transitions of the goal states have been
omitted to try reduce visual clutter.)

state x via action a. The POMDP has a special observation,
⊥, which is observed only when a goal state is reached. Any
other observation is a pair (r, y) where r ∈ {True,False}
discloses whether the robot’s prediction was correct —the
event did happen— or not, and y indicates the sensed
observation the robot made (as per B). Rules 7a–7b ensure
that the first element of the observation pair informs the
robot whether its prediction was correct. To see this, if the
robot has predicted e to occur, the event model has entered
state s such that e has happened at s, and the robot has
made an observation y, then the probability of observing
(True, y) by entering to state (s, q) via action e is equal
h(s, y)g(s, e) (case 7a). If event e has not happened at s,
then the robot’s prediction has to be wrong, and thus, the
probability of observing (False, y) in state (s, q) when it
is reached via action e is h(s, y)(1− g(s, a)) (expressed in
case 7b). Case 7c indicates the observation that the robot has
completed recording of a story in L(D).

After making the product automaton in Definition 6, our
algorithm first checks whether or not there is a policy that
assures a desired story will be captured. Then, if there exists
such a policy, it computes a policy minimizing the expected
number of steps to record such a policy. We first focus on
computing such a policy, assuming such a policy exists, in
Section 4.2 (and Section 4.3 as well for special inputs of the
problem), and then we discuss how our algorithm can check
if such a policy exists or not in Section 4.4.

4.2 Solving the Goal POMDP
A POMDP is commonly treated as a fully observable MDP
called a belief MDP whose (continuous) state space consists
of the belief space of the POMDP. For details, see (Astrom,
1965; Sondik, 1978; Bonet and Geffner, 2009; Shani et al.,
2013; Ross et al., 2008). Accordingly, in the belief MDP
from Goal POMDP P = (X,A, b0,T, XG, Z,O, c), for
each belief state b ∈ ∆(X), action a ∈ A, and observation

Prepared using sagej.cls

6 Journal Title XX(X)

z ∈ Z, we denote the updated belief state of b after action a
and observation z by baz . It is computed as follows:

baz(x) = Pr(x|z, a, b) =
O(a, x, z)

∑
x′∈X T(x′, a, x)b(x′)

Pr(z|a, b)
,

(3)
in which

Pr(z|a, b) =
∑
x∈X

O(a, x, z)
∑
x′∈X

T(x′, a, x)b(x′). (4)

For this belief MDP, the cost of each action a at belief state
b is c′(b, a) =

∑
x∈X b(x)c(x, a). In our case, c′(b, a) = 1 if

b is a not a goal belief state, and otherwise c′(b, a) = 0. An
optimal policy π′∗ : X → A for this MDP is formulated as a
solution to the Bellman recurrences

V ′
∗
(b) = min

a∈A

(
c′(b, a) +

∑
z∈Z

Pr(z|a, b)V ′∗(baz)
)
, (5)

π′
∗
(b) = argmin

a∈A

(
c′(b, a) +

∑
z∈Z

Pr(z|a, b)V ′∗(baz)
)
. (6)

Any standard technique may be used to solve these
recurrences. For surveys on methods, see (Bonet and
Geffner, 2009; Shani et al., 2013; Ross et al., 2008). Note
that, in general, solutions to POMDPs are approximate
solutions because it is intractable to provide exact solutions
for POMDPs. An optimal policy computed via these
recurrences prescribes, for any belief state reachable from
b0, an optimal action to execute. Hence, the robot executes,
at each step, the action given by the optimal policy, and
then updates its belief state via (3). One can show, via
induction, that at each step i, there is a unique qi ∈ Q such
that belief state bi has outcomes only for (but probably not
all) xj = (sj , qi) ∈ X, j = 1, 2, · · · |S|. As such, function
β : ∆(X)→ ∆(S)×Q maps each bi of those belief states
to a tuple (d, qi), where for each s ∈ S, d(s) = b((s, qi)).
Subsequently, the optimal policy π′∗ computed forP(M,B;D)

can be mapped to an optimal solution π∗ : ∆(S)×Q→
A to RTM, by interpreting π∗(β(bi)) = π′

∗
(bi), for each

reachable belief state bi ∈ ∆(X).

4.3 Solving RTM/FOM via a Goal MDP
The previous construction can be used to solve RTM/FOM
instances too. But, since the event model fed into a
RTM/FOM is fully observable, it seems rather more sensible,
especially in terms of solution tractability, to construct a
Goal MDP. To do so, for the event model and the DFA
in Definition 6, the Goal MDP M = (X,A, b0,T, XG, c)
embedded in the POMDPP in that definition is extracted and
then an optimal policy for M is solved. An optimal policy
π′′
∗ for the MDP is a function over X = S ×Q, which is

computed via the Bellman equations

V ′′
∗
(x) = min

a∈A

(
c(x, a) +

∑
x′∈X

V ′′
∗
(x′)T(x, a, x′)

)
, (7)

π′′
∗
(x) = argmin

a∈A

(
c(x, a) +

∑
x′∈X

V ′′
∗
(x′)T(x, a, x′)

)
. (8)

These equations may be solved by a variety of methods.
For a survey see (LaValle, 2006, Chp. 10). In the evaluation
reported below, we use standard value iteration. After
computing π′′∗, for each x = (s, q) ∈ X , we make a belief

state b ∈ ∆(S) such that b(s′) = 1 if and only if s′ = s,
and then set π∗(b, q) = π′′

∗
((s, q)), where π∗ is an optimal

solution to RTM/FOM. Observe that π∗ for RTM/FOM is only
computed for finitely many pairs (b, q), those in which b is a
single outcome.

This section provided an algorithm to solve RTM and the
two variants of it, RTM/FOM and RTM/FHM, assuming that
there exists a policy that can guarantee that a desired story
will be captured. However, for some input DFAs and event
models to the problem, no such policy exists. Therefore,
before using the algorithm in this section, one might want to
check whether such a policy exists or not. The next section
discusses how to answer that decision problem.

4.4 Deciding if a Policy Exists
In this section, we discuss how to check if there exists a
policy that guarantees, for any execution of the event model,
a story within the language of the DFA will be captured.

We first consider the RTM/FOM problem, recalling that
we can compute a policy for the Goal MDP underlying the
Goal POMDP in Definition 6 rather than the Goal POMDP
itself. To provide an answer to the decision question, we can
check whether or not there exists a policy for the MDP that
guarantees that the goal states are reachable with probability
1. To find one, we check if there exists any policy that avoids
the MDP’s dead-end states, namely those states from which
no goal state is reachable. If no policy can avoid these dead-
ends, then no policy will ensure that a desired story will be
captured.

To illustrate, consider Figure 2a, which shows a simple
DFA specifying all stories that start with e1. Figure 2b shows
a simple event model in which e1 happens at s1 and e2 occurs
at s2. Figure 2c shows the Goal MDP obtained from the
product of this DFA and event model. In this example, no
policy guarantees that a desired story will be captured with
probability 1 because no policy assures that the goal states of
the MDP are almost surely reachable. Should a policy choose
event e1 to capture in the first time step, then the probability
that a desired story will be captured by this policy is 0.6,
which happens when the event model enters state s1 in the
next time step. Similarly, if a policy chooses event e2 in the
same configuration, then the probability that a desired story
is captured is again 0.6 if the policy chooses event e1 when
the DFA is in state q0 and the event model is in state s1.
Observe that the Goal MDP constructed for this DFA and
event model, which is shown in Figure 2c, has dead-end
states (q0, s2) and (q2, s2) that are unavoidable.

Where there exists no policy that can guarantee a story
will be captured, several strategies can be used to compute a
reasonable policy that, nevertheless, may still be useful in
practice. Generally, these maintain some balance between
maximizing the probability of reaching a goal state and
minimizing the expected number of steps to reach these goal
states. See the discussion of Kolobov et al. (2012) for several
such options.

An alternative strategy, and one specific to our context,
would be to alter the specification by expanding the language
described by the DFA. One seeks to modify the DFA to
obtain a language which will ensure the existence of some
policy guaranteeing a story be captured almost surely. One

Prepared using sagej.cls

Rahmani, Shell, and O’Kane 7

b)

a)

c)

Figure 2. a) A DFA specifying all stories that contain at least an
event over the event set {e1, e2}. b) A sample event model, in
which event e1 happens at s1 and event e2 happens at s2. c)
The Goal MDP obtained from the product of the DFA and the
event model in parts (a) and (b). component.

desires, naturally, that the altered DFA be “close” to the
original in terms of some metric for the distance between
two DFAs. In Section 8, we examine one such metric,
the Levenshtein distance, and discuss how, given a DFA,
to construct another that is within a desired Levenshtein
distance.

Note, however, that the existence of dead-ends does not
mean that no policy ensures that the robot is able to capture
a desired story under any execution of the event model. If all
the dead-ends are avoidable and some goal states are almost
surely reachable, then there will exist such a policy. For
illustration consider the example in Figure 3. In this example,
the MDP, part (c) of the figure, has only a single dead-
end state (q2, s1). But this dead-end is avoidable because
the policy can avoid taking action b in state (q0, s0). Doing
so, the probability of reaching this dead-end becomes zero,
ensuring that all executions under this policy always end in
goals. For the standard value iteration method to work, we
first prepossess the MDP to identify dead-end states. The
value of each dead-end is infinite as no goal state from that
dead-end is reachable. For more discussions about MDPs
with dead-ends, including algorithms to detect dead-ends and
strategies to deal with them, we refer the reader to (Kolobov
et al., 2012; Little and Thiébaux, 2007; Kolobov et al., 2010;
Keyder and Geffner, 2008; Bonet and Geffner, 2003). In our
breadth-first-like implementation, we search backward from
the goal states, finding all states that are reachable from those
states, avoiding dead-ends found so-far.

For RTM and RTM/FOM, to determine whether there exists
any policy guaranteeing that a desired story will be captured,
we need to ascertain, for the Goal POMDP in Definition 6,
whether there exists a policy whose execution ends in the
goal states with probability 1 or not. One must checked
whether any belief state in the reachable part of the (infinite)
belief MDP has an unavoidable dead-end belief state. In this
case, we treat a belief state to be a dead-end if it arises from
a dead-end state. This belief MDP has an infinite state space
and we cannot deal with it directly, but instead one forms the
finite support-belief MDP (Junges et al., 2021), whose states
are the support for belief states. Note that, in general, the size
of this support-belief MDP is exponential in the size of the
MDP underlying the POMDP.

b)

a)

c)

Figure 3. a) A DFA specifying all stories that contain at least an
event over the event set {e1, e2}. b) A sample event model, in
which event e1 happens at s1 and s2 while event e2 happens at
s1. c) The Goal MDP obtained from the product of the DFA and
the event model in parts (a) and (b). component.

5 Representation-invariance of expected
time

The event selected by the policy π∗ at each step depends,
in part, on the current state of the specification DFA.
Because a single regular language may be represented with
a variety of distinct DFAs with different sets of states —and
thus, their optimal policies cannot be identical— one might
wonder whether the expected execution time achieved by
their computed policies depends on the specific DFA, rather
than on the language. The question is particularly relevant
in light of the language mutators we examine in Section 8.
Here, we show that the expected number of steps required
to capture a story within a given event model does indeed
depend only on the language specified by the DFA, and not
on the particular representation of that language.

For a DFA D = (Q,E, δ, q0, F), we define a function f :
Q→ {0, 1} such that for each q ∈ Q, f(q) = 1 if q ∈ F , and
otherwise, f(q) = 0. Now consider the well-known notion of
bisimulation, defined as follows:

Definition 7. [bisimulation] Given DFAs D =
(Q,E, δ, q0, F) and D′ = (Q′, E, δ′, q′0, F

′), a relation
R ⊆ Q×Q′ is a bisimulation relation for (D,D′) if for
any (q, q′) ∈ R: (1) f(q) = f ′(q′); (2) for any e ∈ E,
(δ(q, e), δ′(q′, e)) ∈ R.

Bisimulation implies language equivalence and vice versa.

Proposition 1. (Rot et al., 2016) For two DFAs D =
(Q,E, δ, q0, F), D′ = (Q′, E, δ′, q′0, F

′), we have L(D) =
L(D′) iff (q0, q

′
0) ∈ R for a bisimulation relation R for

(D,D′).

Bisimulation is preserved for any reachable pairs. The
state to which a DFA with transition function δ reaches by
tracking an event sequence r from state q is denoted δ∗(q, s).

Proposition 2. If (q, q′) are related by a bisimula-
tion relation R for (D,D′), then for any r ∈ E∗,
(δ∗(q, r), δ′

∗
(q′, r)) ∈ R.

We now define a notion of equivalence for a pair of belief
states.

Prepared using sagej.cls

8 Journal Title XX(X)

Definition 8. [equivalence of belief states] Given an
event model M = (S,P, s0, E, g), an observation
model B = (Y, h) for M, DFAs D = (Q,E, δ, q0, F)
and D′ = (Q′, E, δ′, q′0, F

′) such that L(D) = L(D′),
let P(M,B;D) = (X,A, b0,T, XG, Z,O, c) and
P ′(M,B;D′) = (X ′, A, b′0,T

′, X ′G, Z,O
′, c′). For two

reachable belief states b ∈ ∆(X) and b′ ∈ ∆(X ′), with
β(b) = (d, q) and β′(b′) = (d′, q′), we say that b′ is
equivalent to b, denoted b ≡ b′, if (1) (q, q′) are related by a
bisimulation relation for (D,D′) and that (2) d = d′, i.e. for
each s ∈ S, d(s) = d′(s).

Equivalence is preserved for updated belief states.

Lemma 1. Given the structures in Definition 8, let b ∈
∆(X) and b′ ∈ ∆(X ′) be two reachable belief states such
that b ≡ b′. For any action a ∈ A and observation z ∈ Z, it
holds that baz ≡ b′

a
z and that Pr(z|a, b) = Pr(z|a, b′).

Proof. Let b2 = baz and b′2 = b′
a
z , and assume β(b2) =

(d2, q2) and β′(b′2) = (d′2, q
′
2). The case where b and b′ are

both goal belief states, that is, where f(q) = f ′(q′) = 1 is
immediately implied from the fact that the goal states of
the POMDPs from in Definition 6 are absorbing, i.g., b2 = b
and b′2 = b′. Therefore, we consider the case where f(q) =
f ′(q′) = 0. Let ba and b′a be respectively the belief states
resulted from doing action a (but before any observation) at
belief states b and b′. These belief states are computed by the
following formulas:

ba(t) =
∑
x∈X

T(x, a, t)b(x), (9)

and
b′a(t′) =

∑
x′∈X′

T′(x′, a, t′)b′(x′). (10)

Given that β(b) = (d, q), belief state b can have
outcomes only for those states that are among
x1 = (s1, q), x2 = (s2, q), · · · , xn = (sn, q), and similarly,
b′ can have outcomes only for states that are among x′1 =
(s1, q

′), x′2 = (s2, q
′), · · · , x′n = (sn, q

′), where n = |S|.
Also, because it is assumed that d = d′, for each integer
1 ≤ j ≤ n, b((sj , q)) = b′((sj , q

′)), or in other words,
b(xj) = b′(x′j). Now, with (9) and given the construction
of the transition probability function T in Definition 6,
the only states for which ba can have outcomes are among
t1 = (s1, q), t2 = (s2, q) · · · , tn = (sn, q) and tn+1 =
(s1, δ(q, a)), tn+2 = (s2, δ(q, a)), · · · , t2n = (sn, δ(q, a)).
Similarly, the only states for which b′a can have outcomes
are among t′1 = (s1, q

′), t′2 = (s2, q
′) · · · , t′n = (sn, q

′) and
t′n+1 = (s1, δ

′(q′, a)), t′n+2 = (s2, δ
′(q′, a)), · · · , t′2n =

(sn, δ
′(q′, a)).

Now, we claim that for each integer 1 ≤ k ≤ 2n,
ba(tk) = b′a(t′k). To prove this, consider that by assumption,
q and q′ are related by a bisimulation relation for (D,D′),
and this, by Definition 7, means that q ∈ F iff q′ ∈ F ′. As
a result, by the construction of the transition probability
function in Definition 6, for each pair of integers 1 ≤
i, j ≤ n, T((sj , q), a, (si, q)) = T′((sj , q

′), a, (si, q
′)) and

T((sj , q), a, (si, δ(q, a))) = T′((sj , q
′), a, (si, δ

′(q′, a))),
which together mean that for integers 1 ≤ j ≤ n and

1 ≤ k ≤ 2n, T(xj , a, tk) = T′(x′j , a, t
′
k). We use this,

the assumption that b(xj) = b′(x′j) for all 1 ≤ j ≤ n, (9)
and (10) to prove our claim as follows:

ba(tk) =
∑

1≤j≤n

T(xj , a, tk)b(xj)

=
∑

1≤j≤n

T′(x′j , a, t
′
k)b′(x′j) = b′a(t′k). (11)

To prove that Pr(z|a, b) = Pr(z|a, b′), consider the
following formulas:

Pr(z|a, b) =
∑
t∈X

O(a, t, z)ba(t), (12)

and

Pr(z|a, b′) =
∑
t′∈X′

O′(a, t′, z)b′a(t′). (13)

By the construction of the observation function in
Definition 6 and that q ∈ F ⇐⇒ q′ ∈ F ′, it follows
that for each integer 1 ≤ j ≤ n, O(a, (sj , q), z) =
O′(a, (sj , q

′), z). Similarly, for each integer 1 ≤ j ≤ n,
O(a, (sj , δ(q, a)), z) = O′(a, (s′j , δ

′(q′, a), z). Together,
these two mean that for each integer 1 ≤ k ≤ 2n,
O(a, tk, z) = O′(a, t′k, z). This, combined with (11),
proves a part of the lemma as follows:

Pr(z|a, b) =
∑
t∈X

O(a, t, z)ba(t)

=
∑

1≤k≤2n

O(a, tk, z)ba(tk)

=
∑

1≤k≤2n

O′(a, t′k, z)b
′
a(t′k)

=
∑
t′∈X′

O′(a, t′, z)b′a(t′)

= Pr(z|a, b′). (14)

To prove that b2 ≡ b′2, consider that for each x ∈ X and
x ∈ X ′, b2(x) and b′2(x′) are computed as follows:

b2(x) = O(a, x, z)ba(x)/Pr(z|a, b), (15)

and

b′2(x′) = O′(a, x′, z)b′a(x′)/Pr(z|a, b′). (16)

These two formulas combined with (11) and (14), and
the fact that O(a, tk, z) = O′(a, t′k, z) for all 1 ≤ k ≤ 2n,
imply that b2(tk) = b′2(t′k) for all 1 ≤ k ≤ 2n. Therefore,
d2 = d′2. We now only need to prove that q2 and q′2 are
related by a bisimulation relation for (D,D′). Observe that
if the robot’s prediction of occurring event a was wrong,
then q2 = q and q′2 = q′, and otherwise, q2 = δ(q, a) and
q′2 = δ′(q′, a). In the former case, by definition, q2 and q′2
are related by a bisimulation relation R for (D,D′), and in
the later case, by Proposition 2, q2 and q′2 are related by the
same bisimulation relation q and q′were related by. Thus, we
conclude baz ≡ b′

a
z .

Note that for a Goal POMDP P with initial belief state b0,
V ∗(b0) is the expected cost of reaching a goal belief state via
an optimal policy for P . We now present our result.

Prepared using sagej.cls

Rahmani, Shell, and O’Kane 9

Theorem 1. For the structures in Definition 8, it holds that
V ∗(b0) = V ′

∗
(b′0).

Proof. For a belief MDP M, let Tree(M) to be its
tree-unravelling—the tree whose paths from the root
to the leaf nodes are all possible paths in M that
start from the initial belief state. A policy π for M
chooses a fixed set of paths over Tree(M), and the
expected cost of reaching a goal belief state under
π is equal to

∑
p∈GoalPaths(π,Tree(M)) C(p)W (p), where

GoalPaths(π,Tree(M)) is the set of all paths that are
chosen by π and reach a goal belief state from the root of
Tree(M), C(p) is the sum of costs of all transitions in path
p, and W (p) is the product of the probability values of all
transitions in p. The idea is that if we can overlap the tree-
unravellings of the belief MDPs P(M,B;D) and P ′(M,B;D′)

in such a way that each pair of overlapped belief states are
equivalent in the sense of Definition 8 and that each pair
of overlapped transitions have the same probability and the
same cost, then for each pair of overlapped belief states
b ∈ ∆(X) and b′ ∈ ∆(X ′), if we use π∗(b) as the decision
at the belief state b′ then, because those fixed paths are
overlapped, we know V ∗(b0) ≥ V ′∗(b′0). And, in a similar
fashion, V ∗(b0) ≤ V ′∗(b′0), and thus, V ∗(b0) = V ′

∗
(b′0).

The following construction makes those trees and shows how
they can be overlapped.

For an integer n ≥ 1, we can make two trees Tn and T ′n
as follows: (1) Set b0 as the root of Tn and set b′0 as the root
of T ′n; make a relation R and set R← {(b0, b′0)}. (2) While
|Tn| < n, extract a pair (b, b′) from R that has not been
checked yet and in which b and b′ are not goal belief states;
for each action a and observation z, compute baz and b′

a
z ,

add node baz and edge (b, baz) to T , and add node b′az and
edge (b′, b′

a
z) to T ′; label both edges (a, z). Also assign to

edge (b, baz), Pr(z|a, b) as its probability value, and set the
probability value of (b′, b′

z
a), Pr(z|a, b′); the cost of each

edge is set 1. Finally, add (baz , b
′a
z) to R.

Given that L(D) = L(D′), by Proposition 1, states q0
and q′0 are related by a bisimulation relation for (D,D′),
which (by Definition 8 and the construction in Definition 6)
implies that b0 ≡ b′0. This combined with Lemma 1 implies
that for each pair (b, b′) ∈ R, b ≡ b′. We now match Tn and
T ′n so that each pair (b, b′) that are related by R overlap.
By Lemma 1, each pair of overlapped edges have the same
probability value and the same cost value. Since for any
integer n ≥ 0 we can overlap trees Tn and T ′n in the desired
way, we can overlap the tree-unravellings of the belief MDPs
of P(M,B;D) and P ′(M,B;D′) in the desired way too; this
completes the proof.

The upshot of this analysis is that we need attend only
to the story specification language (given indirectly via D),
the specific presentation of that language does not impact
the expected number of steps to capture an event sequence
satisfying that specification.

6 Faster Algorithms for Special Structures
In this section, we consider several special cases of event
models and DFAs for which new algorithms are feasible.
Though less general than the approaches introduced in the

prior sections, these new algorithms exploit the structure of
the special cases to run significantly faster.

6.1 The DFA is loop-omitted acyclic
The first case is when the DFA adheres to the following
requirement.

Definition 9. A DFA D = (Q,E, δ, q0, F) is called a loop-
omitted acyclic DFA if for every state q ∈ Q and string
η ∈ E∗ for which δ∗(q, η) = q, it holds for every prefix η′

of η that δ∗(q, η′) = q.

Intuitively, a DFA is a loop-omitted acyclic DFA if it
does not have any cycle except self-loops on the states. We
speculate that many DFAs of interest for this sort of problem
will have this property. In fact, all the DFAs in this paper’s
case studies are loop-omitted acyclic DFAs; likewise for the
case studies in our other extensions to this work (Chaudhuri
et al., 2021a,b)

For this kind of DFA, regardless of the form of the
event model, the graph underlying the Goal POMDP in
Definition 6 will be a layered directed acyclic graph where
each layer is, in fact, a strongly connected component (SCC).
Note that all states x = (q, s) within a single SCC share a
single DFA state q and all those states represent a situation
where either the event predicted by the robot does not happen
in the next time step, making the DFA stay in the same state
q, or the predicted event did happen but state q transitions
back to itself with that predicted event.

For an example, see the DFA in Figure 4a and the event
model in Figure 4b. The set of possible events consists of
e1 and e2. Event e1 happens with probability 1 at state s1,
while event e2 happens with probability 1 at state s2, and
at each state of the event model no more than one event
happens. Figure 4c shows the state space and the transition
function of the Goal POMDP constructed from the product
of the DFA and the event model based on Definition 6.
This product, which is decomposed into its set of SCCs in
Figure 4d, has five SCCs C0, C1, C2, C3, and C4. There
is only a single topological ordering of these SCCs, namely
(C0, C1, C3, C2, C4).

Now, we consider solving the RTM/FOM problem where
the input DFA is loop-omitted acyclic. Recall that to solve
that problem we need to compute a policy that minimizes
the expected number of steps to reach a goal state, and
observe that, in this case, the Goal MDP underlying the Goal
POMDP in Definition 6 is a layered DAG. Thus, to compute
an optimal policy for such a Goal MDP, we can use the
topological value iteration algorithm of Dai and Goldsmith
(2007).

Their algorithm considers each SCC as a metastate
and then computes an optimal policy for those metastates
based on a reverse ordering of a topological ordering of
the metastates. The optimal action for states within each
metastate is computed using value iteration. In Dai and
Goldsmith’s algorithm, each metastate is solved only once
because the graph connecting the metastates is acyclic. Note
that when a metastate (SCC) is solved, only the values
of states within that metastate are backed up, whereas in
the classical value iteration, at each step, the values of
all states are backed up until their values converge. To

Prepared using sagej.cls

10 Journal Title XX(X)

a) b)

c)

d)

Figure 4. a) A loop-omitted acyclic DFA. b) A sample event
model. c) The Goal MDP obtained from the product of the DFA
and the event model in parts (a) and (b). d) It shows the
strongly connected components of graph underlying the MDP in
part c. Each blue circle is a strongly connected component. The
self-loops and the edges between states of different SCCs have
been omitted to reduce visual clutter.

illustrate their algorithm, consider again the Goal MDP
in Figure 4c. Recall that there was only one topological
ordering, (C0, C1, C3, C2, C4), between the SCCs of the
MDP. Accordingly, their algorithm first computes an optimal
action for the single state inC4, then for the states inC2, then
for the states in C3, then for the states in C1, and finally for
the only state of C0.

For solving the RTM and the RTM/FHM problems with
input DFAs which are loop-omitted acyclic, we need to solve
a Goal POMDP that has a layered DAG structure, and for
solving those Goal POMDPs, one can use the algorithm of
Dibangoye et al. (2009), which computes a policy using a
point-based method. Their algorithm constructs the layered
acyclic graph for the belief points by utilizing the layered
acyclic structure of the POMDP.

6.2 The Goal MDP is a directed acyclic graph
Another special case is where the graph underlying the Goal
MDP is a DAG if all the self-loops are removed from it.

We clarify this special case in the following definition.

Definition 10. For a given Goal MDP M = (X,A, b0,T,
XG, c), let G(M) = (V,E) be the graph underlying M,
in which V = X and E = {(x, t) ∈ X2 | T(x, t) > 0}, and
let Loop−(G(M)) = (V,E′) be the graph obtained from
G(M) by removing the self-loops from it, that is, E′ =
E \ {(x, x) | x ∈ X}. We say that M is a loop-omitted

directed acyclic graph, or loop-omitted DAG for short, if
Loop−(G(M)) is a directed acyclic graph.

Note that this is stronger than the previous case, as it
corresponds to the circumstance where each SCC is a single
vertex. Nevertheless, it is possible for a Goal MDP to be
a loop-omitted DAG, while its underlying graph has self-
loops. Figure 5 provides one such example. This kind of
MDPs arises, in particular, in applications where the DFA
specifying all desired stories is a loop-omitted acyclic DFA
and the graph underlying the event model is also a DAG
if the self-loops removed from that graph. A special case
of that kind of event model is where the event model has
only a single state, which might be created by collapsing
all the states of an original event model in order to make an
approximation of the original event model.

In the rest of this section, we only consider RTM/FOM
problems for this kind of MDP. Observe that because any
Goal MDP that is a loop-omitted DAG is a layered DAG
where each strongly connected component of the graph
underlying the Goal MDP has only one state, we can use
the algorithm of the previous section, the topological value
iteration algorithm for MDPs, to compute an optimal policy
for the MDP. This requires iteration to update the value of a
state using the Bellman equation until the value of the state
converges. Though this algorithm is faster than the original
value iteration algorithm for MDPs, for solving large MDPs,
it still may require a considerable amount of time for the
state values to converge, and therefore, we propose a faster
algorithm that does not require value iteration at all, and the
Bellman equation for each state is solved by solving several
simple, single-variable equations.

In this algorithm we first choose a topological ordering of
the non-goal states (state values of all the goal states are zero)
of the MDP. Then, at each step, we take a state from the MDP
based on the reverse of the topological ordering to compute
an optimal action for that state and the value of that state.
To do so, for each state x and action a ∈ A, we introduce a
variable tx,a to denote the expected number of steps from x
to reach a goal state of the MDP if the policy assigns action
a to state x. Also, for each state x, we introduce a variable
tx to denote the expected number of steps to reach a goal
state from x under an optimal policy. To compute the optimal
action for each state x, if x is a goal state, then tx = 0,
meaning that the expected number of steps to reach a goal
state from x under an optimal policy is zero. If state x is not a
goal state, then for each action a ∈ A, we solve the following
equation

tx,a = T(x, a, x)(1 + tx,a) +
∑
x′∈X
x′ 6= x

T(x, a, x′)(1 + tx′).

(17)
Then, we compute tx simply as tx = mina∈A{tx,a}. For
each x ∈ X \XG, we set π∗(x) = arg mina∈A{tx,a}. By
doing so, we compute an optimal policy π∗.

We end this section by illustrating this algorithm via
an example for the MDP in Figure 5. There is a single
topological ordering of the non-goal states: x0 → x1 → x2.
To compute an optimal policy, we pick this (the sole) choice
of ordering. Next, we compute the optimal action for x2.
For this purpose, for actions a and b, we need to solve the

Prepared using sagej.cls

Rahmani, Shell, and O’Kane 11

Figure 5. A sample of an MDP that is a directed acyclic graph
when all the self-loops are removed.

following equations,

tx2,a = 0.2(1 + tx2,a) + 0.8(1 + tx4) (18)

and
tx2,b = 0.4(1 + tx2,a) + 0.6(1 + tx4). (19)

Based on these two equations, we have tx2,a = 1.25 and
tx2,b = 1.67. So, tx2

= 1.25, and thus, we set π∗(x2) = a.
Then, we solve the following equations for x1.

tx1,a = 0.3(1 + tx1,a) + 0.7(1 + tx3
) = 1 + 0.3tx1,a (20)

and

tx1,b = 0.1(1 + tx2
) + 0.9(1 + tx4

) = 1.125. (21)

So, tx1
= 1.125, and hence, we set π∗(x1) = b. To

compute the optimal action for x0, we solve the following
equations,

tx0,a = 0.5(1 + tx2
) + 0.5(1 + tx1

) (22)

and
tx0,b = 0.4(1 + tx2

) + 0.6(1 + tx1
). (23)

As such, tx0
= 2.175, and therefore, we let π∗(x0) = b.

7 Greedy algorithm
In this section, we consider a greedy algorithm for solving
RTM and RTM/FHM, which we also specially adapt for
RTM/FOM. This greedy algorithm will serve as a baseline
for comparison for the case studies in Section 9.

The idea is, at each time step, simply to choose an event
to capture that has the highest probability of occurring in the
next time step. To do so, the robot first uses the event model
M = (S,P, s0, E, g) and the DFA D = (Q,E, δ, q0, F),
to construct the Goal POMDP P(M,B;D) = (X,A, b0,T,
XG, Z,O, c) based on the construction in Definition 6. Then,
at each time step, it uses this POMDP to compute an event
that has the highest probability to be chosen in the next
time step. Importantly, in this greedy approach, the robot
considers only a single step, and does not compute a policy
that minimizes the expected number of steps to reach a goal
state for this POMDP.

For each time step k, the robot maintains the current belief
state bk ∈ ∆(X) of the POMDP and the current state qk of

the DFA. Then, for all events e for which δ(qk, e) 6= qk and
from δ(qk, e) at least one accepting state is reachable, we
compute the probability that e happens in the next time step
given bk as follows:

Pr(e happens in the next time step | bk) =∑
x=(s,q)∈X

bk[x] ·
∑
s′∈S

P(s, s′)g(s′, e). (24)

Hence, the robot hopes to record in the next time step,
an event that has the greatest probability computed by this
equation. In the case that several such events exist, the robot
chooses one of them arbitrarily.

Given that RTM/FOM is a special form of RTM, the
process described so far in this section applies for RTM/FOM
too, but for RTM/FOM we can avoid constructing the product
of the event model and the DFA. For RTM, the robot
maintains, at each time step k, the current state sk of the
event model and the current state qk of the DFA. Then, at step
k, it computes for all events e for which δ(qk, e) 6= qk and
from δ(qk, e) an accepting state is reachable, the following
probability

Pr(e happens in the next time step | sk) =∑
s′∈S

P(sk, s
′)g(s′, e), (25)

which is essentially the probability that e happens in the next
time step. Then, from among all events that obtain the highest
value in this equation, the robot chooses one to attempt to
record in the next time step.

We compare this greedy algorithm with our general
algorithm in Section 9 to assess their relative solution quality.

8 Construction of Specification Languages
This section describes how one might construct, in a partially
automated way, specifications for a variety of interesting
scenarios. The idea is to use a variety of mutators to construct
specification DFAs.

8.1 Multiple recipients
Suppose we would like to capture several videos, one for
each of several recipients, within a single execution. Given
language specifications D1, . . . ,Dn ∈ D , where D denotes
the set of all DFAs over a fixed event set E, how can we
form a single specification that directs the robot to capture
events that can be post-processed into the individual output
sequences? One way is via two relatively simple operations
on DFAs:

(MS) A supersequence operation MS : D → D , where

L(MS(D)) = {w′ ∈ E∗ |w′ is supersequence of a w ∈ L(D)}.

This operation is produced by first treating D as a
nondeterministic finite automaton (NFA) and then, for each
event and state, adding a transition labeled by that event
from that state to itself, and converting result back into a
DFA (Rabin and Scott, 1959).

(MI) An intersection operation MI : D ×D → D , under
which

Prepared using sagej.cls

12 Journal Title XX(X)

L(MI(D1,D2)) = L(D1) ∩ L(D2).

Based on these two operations, we can form a specification
that asks the robot to capture an event sequence that satisfies
all n recipients as follows:

D = MI(MI(MS(D1),MS(D2)) . . . ,MS(Dn))

Then from any ξ ∈ L(D), we can produce a ξi ∈ L(Di) by
discarding (as a post-production step) some events from ξ.

8.2 Mistakes were made
What should the robot do if it simply cannot capture an
event sequence that fits its specification D, either because
some necessary events did not occur, or because the robot
failed to capture them when they did occur? One possibility
is to accept some limited deviation between the desired
specification and what the robot actually captures.

Let d : E∗ × E∗ → Z+ denote the Levenshtein dis-
tance (Levenshtein, 1966), that is, a distance metric that mea-
sures the minimum number of insert, delete, and substitute
operations needed to transform one string into another. A
mutator that allows a bounded amount of such distance might
be:

(ML) A Levenshtein mutator ML : D × Z+ → D that
transforms a DFA D into one that accepts strings within a
given distance from some string in L(D).

L(ML(D, k)) = {ξ | ∃ξ′ ∈ L(D), d(ξ, ξ′) ≤ k}.

This mutation can be achieved using a Levenshtein au-
tomaton construction (Schulz and Mihov, 2002; Konstan-
tinidis, 2007). Then, if the robot captures a sequence in
L(ML(D, k)), it can be converted to a sequence in L(D) by
at most k edits. For example, an insertion edit would perhaps
require the undesirable use of alternative ‘stock footage’,
rendering of appropriate footage synthetically, or simply a
leap of faith on the part of the viewer. By assigning the costs
associated with each edit appropriately in the construction,
we can model the relative costs of these kinds of repairs.

8.3 At least one good shot
In some scenarios, there are multiple distinct views available
of the same basic event. We may consider, therefore,
scenarios in which this kind of good/better correspondence
is known between two events, and in which the robot should
endeavor to capture, say, at least one better shot from that
class. We define a mutator that produces such a DFA:

(MG) An at-least-k-good-shots mutator MG : D × E ×
E × Z+ → D , in which MG(D, e, e′, k) produces a DFA
in which e′ is considered to be a superior version of event
e, and the resulting DFA accepts strings similar to those in
L(D), but with at least k occurrences of e replaced with e′.

The construction makes a DFA in which D has been
copied k + 1 times, each called a level, with the initial state
at level 1 and the accepting states at level k + 1. Most edges
remain unchanged, but each edge labeled e, at all levels less
than k + 1, is augmented by a corresponding edge labeled
e′ that moves to the next level. This guarantees that e′ has
replaced e at least k times, before any accepting state can be
reached.

9 Case studies
In this section, we present several examples, solved via our
Python implementation of the general algorithm proposed in
Section 4. (We will refer to it as “the general algorithm”
from now on.) For RTM/FOM we form the Goal MDP,
while for RTM/FHM and RTM we form a Goal POMDP.
To solve the POMDP, we use APPL online (Approximate
POMDP Planning Online) toolkit, which implements the
DESPOT algorithm (Somani et al., 2013)—one of the fastest
known online solvers. We compare the results for different
observability conditions based upon the number of steps that
the system will run. It will run until the robot records a
desired story under an optimal policy, so we must consider
the expected number of steps.

We also compare our general algorithm with a the greedy
algorithm of Section 7, which, at each time step, attempts
to capture an event that has the highest probability of
occurrence at the next time step.

9.1 Turisti Oulussa
In pre-COVID 2019, William is a tourist visiting Oulu
as shown in Figure 6a. William’s family has privately
contracted a robotic videography company to record him
seeing the sights, specifically the Kauppahalli (k), the
Hupisaaret park (h), and either Tietomaa museum (t) or
the Oulu Cathedral (c). The robot does not know William’s
specific plans, but it does know, through some statistics, that
a typical tourist moves among those districts according to the
event model in Figure 6b.

The desired video is specified using the DFA in Figure 6c.
The robot is given other tasks to do aside from recording
William, and thus, cannot merely follow William; it must
form a strategy that predicts which events to try to capture.

We considered three settings: (1) RTM/FOM: the robot
always knows the current district in which William is located,
perhaps by the help of some static sensors; (2) RTM: the
robot does not know at which district William is currently
located but there is a single useful observation, a message
sent from a security guard in district s1, that informs the
robot that William is in district s1 whenever he is there;
(3) RTM/FHM: the robot receives no direct knowledge
about William’s location. We computed the optimal policy
for RTM/FOM, case (1), using the Goal MDP approach
in Section 4.3. According to this policy, the expected
number of steps to record under an optimal policy with
full observability, a story satisfying the specification, is
approximately 35.39. The computed optimal policy for this
case is shown in Figure 6d. Each oval in this figure is a state
of the DFA and inside each of those ovals, all the states of the
event model are drawn as boxes. The event labeled inside a
box is the event chosen by the optimal policy when the DFA
is in the state represented by that oval and the event model
is in the state represented by that box. Each empty box is
assigned an arbitrary event by the policy and those events
assigned to those empty boxes are irrelevant to recording a
desired story.

To verify the correctness of the algorithm, we simulated
the execution of this policy 5,000 times. In each simulation,
William followed a random path through the city according
to the event model in Figure 6b, and the robot executed

Prepared using sagej.cls

Rahmani, Shell, and O’Kane 13

d)

e) f)

1

�2

�3

4

�7
�6

�8�0

Kauppahalli

Hupisaaret Park

Tietomaa

Oulu cathedral

a)

{k}

b) 0�1

2

3
4 5

7

�6

�8
.25 .25

.25

.25 .25
.25

.3

.2
.5

.5

.5

.5

.25.25

{}

{} {} {c}

{}

{h}
{t}

.25

.25

.25

1 .25

.25 .25 .25

.25

.5
.25

.2.3
..25

�

�

g) h)

i) j)

∅

c)

q{k }

q{h }

q{c−t }

q{k ,h }

q{h ,c− t }

q{k , c−t }

q{k ,h ,c−t }

� 3

RTM/FOM, General Alg. RTM/FOM, Greedy Alg.

RTM/FHM, General Alg. RTM/FHM, Greedy Alg.

RTM(-observable), General Alg. RTM(-observable), Greedy Alg.

Avg=35.59 Avg=43.52

Avg=43.77

Avg=37.28 Avg=44.73

Avg=56.98

D
ec

re
as

ed
 w

or
ld

-o
bs

er
va

bi
li

ty
 o

f
th

e
ro

bo
t

Figure 6. a) Districts of Oulu that William is touring. b) An event model that describes how a tourist visits those districts. Edges are
labeled with transition probabilities. c) A DFA specifying that the captured story must contain events k and h and at least one of
c or t. d) The optimal policy for the RTM/FOM problem for Oulu. Subfigures e–j consist of a histogram showing, for 5,000
simulations, the distribution of the number of hours (steps) William (system) circulated (ran) until the robot recorded a story
specified by the DFA, and a pie chart showing the distribution of recorded sequences in these simulations. Pairs e) and f) are for the
RTM/FOM problem, g) and h) for the RTM problem, and i) and j) are for the RTM/FHM problem. The left column has the robot using
the general algorithm, while the right column uses the greedy approach. Moving down the column, the average number of steps to
record a story increases as the robot’s perception of the world’s state diminishes. While the distribution of the recorded sequences
by the general algorithm differs from the distribution of the recorded sequences by the greedy algorithm, for each of the greedy
algorithm and the general algorithm, the distributions of the recorded sequences under different levels observability were similar.

the computed policy to capture an event sequence satisfying the specification. The average number of steps to record a

Prepared using sagej.cls

14 Journal Title XX(X)

satisfactory sequence for those 5,000 simulations using our
general algorithm was 35.59, quite close to the expected
number of steps. Figure 6e shows results of those simulations
in form of a histogram and a pie chart. We also made 5,000
simulations of the same RTM/FOM problem and in each
simulation we let the robot to use the greedy algorithm to
record a desired story. The average number of steps for
this experiment was 43.52, which is substantially longer
than the expected number of steps to record a desired event
sequence with the optimal policy for RTM/FOM, 35.59. This
is justified, in particular, by the fact that when the robot is
in state s0 and it has captured neither h nor k, the greedy
algorithm does not consider the fact that the best event to
predict at that time to decrease the average number of steps is
h because, if William enters s2 in the next time step, then it is
possible than he enters s3 from s2 and, thus, the robot could
capture both events h and k during a single circuit of the
environment. See Figure 6f for additional details regarding
this experiment.

For cases (2) and (3), our algorithm constructed a Goal
POMDP, as described by Definition 6, which is then supplied
to APPL Online to perform 5,000 simulations. Also, for each
of the two cases, we generated 5,000 simulations in our
program and let the greedy algorithm decide which event to
try to capture. In case (2), RTM with a useful observation,
the average number of steps to record a desired story using
our general algorithm and the greedy algorithm were 37.28
and 44.73, respectively. In case (3), RTM/FHM, the general
algorithm and the greedy algorithm had the robot record
a desired story in 43.77 and 56.98 steps, respectively, on
average.

The histograms and the pie charts for these four
experiments are shown in Figures 6g–6j. In these figures,
notice how a single observation of whether William is in
s1 helps the robot to record a story considerably faster than
when it hasn’t got access to that state information. To such
a robot, even a stream of quite limited information, if aptly
chosen, can be very useful.

A further qualitative remark: note how the histogram
changes as the level of observability increases, from
RTM/FOM to RTM/FHM: the robot is able to utilize the
additional information to capture stories more rapidly. Also,
across each of the three settings RTM/FOM, RTM, and
RTM/FHM, the average number of steps needed via the
greedy algorithm is considerably greater than via the general
algorithm.

9.2 Wedding reception
Suppose a videographer robot is asked to produce videos
that convey different stories, assembled from unpredictable
events at a wedding reception. The wedding guests include
Alice, Bob, and Chris, and the events of interest for any of
those guests are: arriving at the reception, (i); dancing, (d);
drinking coffee, (c); drinking other beverages, (b); smoking,
(s); and being entertained, (e). Each guest has their own
sense of the events they would like to see captured: Alice
is mainly interested in seeing Chris drinking or smoking,
but also has plans to share the last dance with Bob; Bob
cares for nothing but seeing his own dancing through the
evening, but hopes to share the last dance with Alice; Chris
does not care to see any events at all, but Chris’s children

are concerned about his unhealthy habits, and so if Chris is
drinking too much coffee or smoking too much, they would
like to know. The robot in that scenario is given three parallel
objectives. We can formalize those as languages, shown
here for compactness as regular expressions: for Alice, r1 =
(s3 + c3)+d12; for Bob, r2 = (d2 + d12 + d23)+d12; and
for Chris, r3 = (s3 + c3)(s3 + c3)(s3 + c3)+. These three
requests—where subscript labels 1, 2, and 3, respectively
represent Alice, Bob, and Chris—are encoded using DFAs
D1, D2, and D3, respectively.

The behavior of each guest is modeled by the event model
in Figure 7a, in which P is the transition probability function
of the model. The joint behavior of the three guests is
modeled by an event model M obtained as the Cartesian
product of the models for the individuals, which has 63 states
in this example. The joint event model is further enhanced
with joint events created from single events. To form a DFA
D from the given specification DFAs, the robot uses D =
MI(MI(MS(D1),MS(D2)),MS(D3)).

Our implementation for this case study considers five
settings: (1) RTM/FOM: the current state of the event model
is always observable to the robot, that is, the robot always
knows what each of the guests are doing, (2) RTM with a
smoke detector device and a microphone: the robot is not
aware what each of the guests are doing, but there is a smoke
detector that if at each time step tells if somebody is smoking
or not but without telling who is exactly smoking, and there is
a microphone whose being turned on means that someone is
dancing or being entertained; (3) RTM with a smoke detector
device: the robot does not know what each of the guests are
doing, but using the smoke detector can detect if right now
somebody is smoking or not; (4) RTM with a microphone: the
robot is not aware about the current status of the guests but
if the microphone is turned on, then it means that someone
is dancing or being entertained; (5) RTM/FHM: the robot
receives no direct information about the current behavior of
the guests.

For each of these five settings, we conducted two
experiments, each consisting of 5,000 simulations. In one
experiment we let the robot use the general algorithm to
record a desired story, while in the other one we let the robot
use the greedy algorithm.

The expected number of steps for an optimal policy for
RTM/FOM is 35.38, and over the 5,000, simulations, the
average number of steps to record a story using the general
algorithm was 35.58; both numbers are very close. The
average number of steps over 5,000 simulation using the
greedy algorithm was 37.54, which shows that the greedy
algorithm was also outperformed by the general algorithm in
minimizing the number of steps to record for this case study.

The average number for RTM with a smoke detector and
microphone using the general algorithm and the the greedy
algorithm were 37.64 and 38.25, respectively. For RTM with
a smoke detector, the average number was 37.95 when the
general algorithm was used, and it was 38.06 when the
greedy algorithm was used. The general algorithm and the
greedy algorithm for RTM with a microphone respectively
yielded 38.53 and 38.75. Finally, the average number of steps
using the general algorithm for RTM/FHM was 39.20, while
the average number using the greedy algorithm was 38.99.

Prepared using sagej.cls

Rahmani, Shell, and O’Kane 15

c)

d) e)

g)f)

h) i)

k)j)

b)

02.3.3.2.0

2.1.2.3.2.0

3.2.3.1.1.0

2.3.2.1.2.0

2.3.2.2.1.0

2.2.2.3.1.0

P

a)

Avg=35.58 Avg=37.54

Avg=37.64 Avg=38.25

Avg=37.95 Avg=38.06

Avg=38.53 Avg=38.75

Avg=39.20 Avg=38.99

RTM/FOM, General Alg. RTM/FOM, Greedy Alg.

RTM/FHM, General Alg. RTM/FHM, Greedy Alg.

RTM(smoking detector+microphone), General Alg. RTM(smoking detector+microphone), Greedy Alg.

RTM(smoking detector), Greedy Alg.RTM(smoking detector), General Alg.

RTM(microphone), General Alg. RTM(microphone), Greedy Alg.

D
ec

re
as

ed
 w

or
ld

-o
bs

er
va

bi
li

ty
 o

f
th

e
ro

bo
t

Figure 7. a) The event model for the behavior of a person attending a wedding reception, which has six states: Ii, the state of
arriving; Ei, the state of being entertaining; Ci, for consuming coffee; Bi, for drinking other beverages; Di, for dancing; and Si, for
smoking. Each histogram shows the average number of steps to record a desired story for 5,000 simulations of the wedding
reception scenario. b) The general algorithm for RTM/FOM. c) The greedy algorithm for RTM/FOM. d) The general algorithm for
RTM with a smoke detector, which provides the observation of whether someone is smoking, and with a microphone, capable of
detecting that someone is dancing or being entertained. e) The greedy algorithm for RTM with a smoke detector and a microphone.
f) The general algorithm for RTM with a smoke detector. g) The greedy algorithm for RTM with a smoke detector. h) The general
algorithm for RTM with a microphone. i) The greedy algorithm for RTM with a microphone. j) The general algorithm for RTM/FHM. k)
The greedy for algorithm RTM. It seems, at first, that the RTM problem with a smoke detector might be incomparable with RTM
using a microphone, but the single useful observation in the former guarantees that at least one guest is in the state of smoking,
while the single useful observation in the later case guarantees that at least one guest is either in state of dancing or in state of
being entertained, which is less informative. This experiment also shows that increasing observability will decrease the time to
capture a desired story. Furthermore, it shows that although the general algorithm often outperformed the greedy algorithm in terms
of average number of steps to record a desirable event sequence, here the greedy algorithm gives a reasonable approximation to
the optimal solutions.

Prepared using sagej.cls

16 Journal Title XX(X)

Again we observed that increasing the robot’s ability to
perceive the world will help reduce the average number of
steps to record a desirable event sequence. Also, for four
out of the five considered settings, the general algorithm
yielded a fewer average number of steps compared to the
greedy algorithm, but for RTM/FHM, the greedy algorithm
produced a slightly superior average number of steps. In this
experiment, except for RTM/FOM, which we solve using an
MDP rather than a POMDP, the expected number of steps
for the greedy algorithm and for the general algorithm were
close. This is perhaps because APPL Online, the tool we
used for solving the POMDP, is an online POMDP solver
and the solution is provide is an approximate solution rather
than an exact solution, which is in general intractable to
provide for POMDPs. This suggests this particular case study
is an example where the greedy algorithm is able to closely
approximate the optimal solutions.

9.3 Running a race
John and James are two runners that running a race against
one another. A videographer robot is asked to record a video
whose events involve John and James. The events of interest
are: r1, John is running; h1, John is crossing the flag located
the middle of the race field; f1, John is crossing the finish
line; p12, John is passing James; r2, James is running; h2,
James is crossing the flag located the middle of the race
course; f2, James is crossing the finish line; p21, James is
passing John.

To make an event model for this problem, we divide
the racetrack into several sections of the identical length.
Figure 8a shows an example in which the race is divided
into 8 sections, s0 through s7. To make an event model for
a single runner, we represent each of those sections using
a single state of the event model. The transition probability
function is based on the distance a runner can travel in a
single time step, and as the sections form a sequence, their
neighbor-to-neighbor connections.

Figure 8b shows the event model for a runner i where the
track is in sections s0–s7. In this example, when the runner is
in state sj then, at the next time step, based on his speed, he
could be in any of states sj , sj+1, sj+2, and sj+3. The event
model for the joint behavior of John and James is formed
from the product of their individual event models. Each state
of this event model represents a tuple of sections of the
field in which John and James could be. Events p12 and p21
both happen with probability 0.5 at each state representing
a situation where both John and James are in one section of
the track. The current state of the event model is observable
by the robot: perhaps, at specific locations along the course,
there are stationary cameras that tell the robot the sections the
runners currently occupy. The robot does not, however, know
the sections which John and James will be in in the next time
step because it does not know how their speed will change
in the future. Thus, to find an optimal policy for capturing
events, we need to solve the RTM/FOM problem.

The desired story is specified by the DFA in Figure 8c.
To solve this problem, we form the Goal MDP and we can
use the (classical) value iteration to compute an optimal
policy for the MDP. However, because the given DFA
is loop-omitted acyclic, a better option would be to use
the topological value iteration algorithm, introduced in

Section 6.1, to compute an optimal policy for the MDP.
Closer observation suggests that we can even use the
algorithm introduced in Section 6.2 for loop-omitted DAG
MDPs. This is because not only the DFA is loop-omitted
acyclic, but the graph underlying the event model also
does not have any cycles other than self-loops; these facts
together make the Goal MDP a loop-omitted DAG MDP.
We designate the algorithm that we introduced for solving
loop-omitted MDPs, single value iteration, owing to the fact
that only one iteration for each state is required to solve
the Bellman equation for this kind of MDP, and the optimal
action for each state is computed by solving several single
variable equations.

In this experiment, we compare the running times of
classic value iteration, topological value iteration, and the
single value iteration algorithms to compute an optimal
policy for the MDP. To do so, we consider 10 racetracks,
varying the number of sections from 30 to 120. For each
of these 10 problem sizes {30, 40, . . . , 120}, we construct
a Goal MDP from the DFA and the event model, and then
compute an optimal policy for that MDP using each of the
three algorithms. Figures 8d and 8e give a sense of the sizes
of those MDPs; the former shows for each of those MDPs,
the number of states of the MDP, while the latter shows the
number of edges of the graph underlying the MDP.

For each of those 10 problem sizes, we conducted 10 trials
for each of the three algorithms. Figure 8f shows, for each of
those 10 problem sizes, the average computation time of each
of the algorithms. The computation time for the topological
value iteration in this diagram includes the computation for
forming the SCCs of the graph and the time needed to find
a topological ordering. Figure 8g shows how much time
these steps contribute to the overall computation time of
the topological value iteration algorithm. Likewise, Figure8h
shows the contributions for the two phases that make up the
single value iteration, namely, finding a topological ordering
of the MDP states, and solving the single value equations to
find optimal actions for states.

In this experiment, we observe that the topological value
iteration outperforms the classical value iteration and the
single value iteration outperforms both of them. For the
last MDP, which has approximately 57,000 states and
approximately 7,000,000 nonzero entries within its transition
function, it took 174 seconds on average for the classical
value iteration to compute an optimal policy. In contrast, the
single value iteration on average took less than 3 seconds
to compute an optimal policy. This experiment justifies the
use of the algorithms we introduced in Section 6 for special
inputs of our problem.

10 Conclusions and future work
We considered the problem of minimizing the expected time
to record an event sequence satisfying a set of specifications.
This was posed as the problem of computing an optimal
policy in an associated Markov decision problem. Our
implementation confirmed the fact that, by considering
global implications, careful planning of observations can
improve performance significantly. Also, having studied
differing of levels of observability, the results support the
intuition that as the robot’s ability to perceive the world

Prepared using sagej.cls

Rahmani, Shell, and O’Kane 17

a)

b)

30 40 50 60 70 80 90 100 110 120
0

10000

20000

30000

40000

50000

60000

Number of sections of the fieldN
u

m
b

e
r

o
f

st
a

te
s

o
f t

h
e

 M
D

P

c)

30 40 50 60 70 80 90 100 110 120
0

2,000,000

4,000,000

6,000,000

8,000,000

Number of sections of the field

N
u

m
b

e
r

o
f

e
dg

e
s

 o
f

th
e

g
ra

p
h

 u
n

d
e

rl
y

in
g

 t
h

e
 M

D
P

e)

30 40 50 60 70 80 90 100 110 120
0

4

8

12

16

20
Time for the value iterations

Time for computing topological ordering of SCCs

Time for computing SCCs

Number of sections of the fieldC
o

m
p

u
ta

tio
n

 T
im

e
 (

S
e

co
n

d
s)

g)

30 40 50 60 70 80 90 100 110 120
0

1

2

3

4
Time for solving the equations

Time for computing the topological ordering of states

Number of sections of the fieldC
o

m
p

u
ta

tio
n

 T
im

e
 (

S
e

co
n

d
s)

h)

d)

30 40 50 60 70 80 90 100 110 120
0

50

100

150

200
Value Iteration Alg.

Topological Value Iteration Alg.

Topological Single Iteration Alg.

Number of section of the fieldC
o

m
p

u
ta

tio
n

 T
im

e
 (

S
e

co
n

d
s)

f)

Figure 8. a) An example of a race source, which we have divided into 8 sections s0 through s7 form an event model for the race. b)
The event model for a single runner i ∈ {1, 2}, including events ri, runner i is running; hi, runner i is crossing the race flag at the
middle of the race field; fi, runner i is crossing the finish line. The event model for the two runners John and James is made by the
product of the event models for each of them. Two more events, p12 and p21, are introduced to the joint event model. Event p12
denotes that John is overtaking James, while p21 means that James is overtaking John. Each of these two events happens with
probability 0.5 at each state that represents the runners are in the same section. c) The DFA specifying the set of all desirable
videos for the race example. d) A diagram showing the number of states of the MDP created by the product of the event model and
the DFA in this race example. e) A diagram showing the number of edges of the graph underlying the MDP. Parts d and e together
show how the size of the MDP increases as the size of the problem increases. They show as the problem’s size doubles, the MDP’s
size approximately quadruplicates. f) A diagram showing the computation time for classical value iteration, which we use in our
general algorithm, the computation time of the topological value iteration algorithm, which use to solve our problem where the DFA
is loop-omitted acyclic, and the computation time of the topological value iteration, which we use to solve our problem when Goal
MDP is a loop-omitted DAG. For this experiment, the topological single iteration was on average 6.5 faster than the topological
value iteration and also the latter on average was 6 times faster than the general, classical value iteration algorithm. g) A diagram
showing, for topological single value iteration, the breakdown of its computation time into the three phases of the algorithm:
decomposing the MDP into its SCCs, finding a topological ordering of the SCCs, and performing the value iteration. h) A diagram
showing, for the topological single value iteration algorithm, how much each of the two phases of the algorithm, namely, finding a
topological ordering of the states of the MDP, and computing an optimal action for each state via solving the single variable
equations, contribute to the computation time of the algorithm. The results for each of the section sizes 30-120 in the diagrams in
parts (f), (g), and (h) are the average computation times across 10 trials.

Prepared using sagej.cls

18 Journal Title XX(X)

improves, the expected number of steps to record a desired
story decreases.

Gaps remain between the results presented in this article
and the eventual use of real sensors aboard real robots to
chronicle sequences of events. In particular, our approach
relies heavily on the event model, which must abstract
sufficient detail about the physical environment to model the
occurrences of events. In addition, our approach abstracts
the details of planning of the robot’s physical movements
in its attempt to capture events, but of course those details
of motions may have a major impact on the liklihood
of successfully capturing events. The applicability of our
results to real systems depends directly on the practicability
of resolving these abstract elements into fully-realized
implementations within a complete system stack. Such a
process seems likely to involve a number of challenges,
including for example, the tradeoff between granularity of
state (which, at some level, must model locations) and
computational efficiency.

Future work could consider several extensions. For
instance, considering in the means needed to navigate to
record an event, so that the objective might minimize some
expected cost rather than the expected number of steps.
Also, one might consider the case where a set of events
(rather than a single event), each assigned to a single robot,
may be predicted. A more dynamic case might examine
problems where the robot is given new specification DFAs
to satisfy while recording stories for previous requests,
especially where those specification DFAs are prioritized
and the prioritization is subject to changes (Rahmani and
O’Kane, 2019), or perhaps the case where the robot needs
to learn a new event model to describe the environment
owing to failure in predicting events. Thus, since the Goal
MDPs/POMDPs we construct in this paper have particular
structures, future work should consider designing more
efficient algorithms to solve the specific forms of Goal
MDP/POMDP that arise in this context, with an eye toward
computing optimal polities more efficiently than the general-
purpose algorithms utilized in this paper. Using the ideas
of factored-MDPs (Boutilier et al., 2000; Guestrin et al.,
2003), factored-POMDPs (Boutilier and Poole, 1996), and
POMDP-lite (Chen et al., 2016) might be good starting
points for doing so.

Acknowledgements

This work was graciously supported, in part, by the National
Science Foundation through awards IIS-1453652, IIS-1849249, and
IIS-1849291.

References
Alcántara A, Capitán J, Cunha R and Ollero A (2021)

Optimal trajectory planning for cinematography with multiple
unmanned aerial vehicles. Robotics and Autonomous Systems
140: 103778.

Astrom KJ (1965) Optimal control of markov decision processes
with incomplete state estimation. Journal of Mathematical
Analysis and Applications 10: 174–205.

Bajcsy R (1988) Active perception. Proceedings of the IEEE 76(8):
966–1005.

Bajcsy R, Aloimonos Y and Tsotsos JK (2018) Revisiting active
perception. Autonomous Robots 42(2): 177–196.

Bonet B and Geffner H (2003) Faster heuristic search algorithms for
planning with uncertainty and full feedback. In: International
Joint Conference on Artificial Intelligence. pp. 1233–1238.

Bonet B and Geffner H (2009) Solving POMDPs: RTDP-Bel versus
point-based algorithms. In: International Joint Conference on
Artificial Intelligence. pp. 1641–1646.

Boutilier C, Dearden R and Goldszmidt M (2000) Stochastic
dynamic programming with factored representations. Artificial
Intelligence 121(1-2): 49–107.

Boutilier C and Poole D (1996) Computing optimal policies
for partially observable decision processes using compact
representations. In: National Conference on Artificial
Intelligence. Citeseer, pp. 1168–1175.

Chaudhuri D, Ike R, Rahmani H, T Becker A, A Shell D and
M O’Kane J (2021a) Conditioning style on substance: Plans
for narrative observation. In: IEEE International Conference
on Robotics and Automation (ICRA).

Chaudhuri D, Rahmani H, A Shell D and M O’Kane J (2021b)
Tractable planning for coordinated story capture: Sequential
stochastic decoupling. In: International Symposium on
Distributed Autonomous Robotic Systems.

Chen M, Frazzoli E, Hsu D and Lee WS (2016) POMDP-lite for
robust robot planning under uncertainty. In: IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp.
5427–5433.

Dai P and Goldsmith J (2007) Topological value iteration algorithm
for Markov decision processes. In: International Joint
Conference on Artificial Intelligence. pp. 1860–1865.

Dibangoye JS, Shani G, Chaib-Draa B and Mouaddib AI (2009)
Topological order planner for POMDPs. In: Twenty-First
International Joint Conference on Artificial Intelligence.

Girdhar Y and Dudek G (2012) Efficient on-line data summa-
rization using extremum summaries. In: IEEE International
Conference on Robotics and Automation (ICRA). pp. 3490–
3496.

Gong B, Chao WL, Grauman K and Sha F (2014) Diverse sequen-
tial subset selection for supervised video summarization. In:
Advances in Neural Information Processing Systems. pp. 2069–
2077.

Guestrin C, Koller D, Parr R and Venkataraman S (2003) Efficient
solution algorithms for factored MDPs. Journal of Artificial
Intelligence Research 19: 399–468.

Gygli M, Grabner H, Riemenschneider H and Van Gool L
(2014) Creating summaries from user videos. In: European
Conference on Computer Vision. pp. 505–520.

Ji Z, Xiong K, Pang Y and Li X (2019) Video summarization with
attention-based encoder–decoder networks. IEEE Transactions
on Circuits and Systems for Video Technology 30(6): 1709–
1717.

Junges S, Jansen N and Seshia SA (2021) Enforcing almost-
sure reachability in pomdps. In: International Conference on
Computer Aided Verification. Springer, pp. 602–625.

Keyder E and Geffner H (2008) The HMDPP planner for planning
with probabilities. Sixth International Planning Competition at
ICAPS 8.

Kolobov A, M and Weld DS (2010) Sixthsense: Fast and reliable
recognition of dead ends in MDPs. In: Proceedings of the

Prepared using sagej.cls

Rahmani, Shell, and O’Kane 19

Twenty-Fourth AAAI Conference on Artificial Intelligence.
Kolobov A, Mausam and Weld DS (2012) A theory of goal-oriented

MDPs with dead ends. In: Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence. AUAI Press, p. 438–447.

Konstantinidis S (2007) Computing the edit distance of a regular
language. Information and Computation 205(9): 1307–1316.

LaValle SM (2006) Planning Algorithms. Cambridge,
U.K.: Cambridge University Press. Available at
http://planning.cs.uiuc.edu/.

Lee YJ, Ghosh J and Grauman K (2012) Discovering important
people and objects for egocentric video summarization. In:
IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1346–1353.

Levenshtein VI (1966) Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady
10(8): 707–710.

Little I and Thiébaux S (2007) Probabilistic planning vs.
replanning. In: ICAPS Workshop on International Planning
Competition: Past, Present and Future.

Lu Z and Grauman K (2013) Story-driven summarization for
egocentric video. In: IEEE Conference on Computer Vision
and Pattern Recognition. pp. 2714–2721.

Mademlis I, Mygdalis V, Nikolaidis N, Montagnuolo M, Negro
F, Messina A and Pitas I (2019a) High-level multiple-uav
cinematography tools for covering outdoor events. IEEE
Transactions on Broadcasting 65(3): 627–635.

Mademlis I, Nikolaidis N, Tefas A, Pitas I, Wagner T and Messina
A (2019b) Autonomous uav cinematography: A tutorial and
a formalized shot-type taxonomy. ACM Computing Surveys
(CSUR) 52(5): 1–33.

Mahasseni B, Lam M and Todorovic S (2017) Unsupervised video
summarization with adversarial lstm networks. In: IEEE
Conference on Computer Vision and Pattern Recognition. pp.
202–211.

Narasimhan M, Rohrbach A and Darrell T (2021) Clip-it! language-
guided video summarization. arXiv preprint arXiv:2107.00650
.

Plummer BA, Brown M and Lazebnik S (2017) Enhancing video
summarization via vision-language embedding. In: IEEE
Conference on Computer Vision and Pattern Recognition. pp.
5781–5789.

Rabin MO and Scott D (1959) Finite automata and their decision
problems. IBM Journal of Research and Development 3(2):
114–125.

Rahmani H and O’Kane JM (2019) Optimal temporal logic
planning with cascading soft constraints. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). IEEE, pp. 2524–2531.

Rahmani H, Shell DA and O’Kane JM (2020) Planning to chronicle.
In: Algorithmic Foundations of Robotics (WAFR XIV).

Riedl MO and Young RM (2010) Narrative planning: Balancing
plot and character. Journal of Artificial Intelligence Research
39: 217–268.

Robertson J and Young RM (2017) Narrative mediation as
probabilistic planning. In: Thirteenth Artificial Intelligence and
Interactive Digital Entertainment Conference.

Ross S, Pineau J, Paquet S and Chaib-Draa B (2008) Online
planning algorithms for POMDPs. Journal of Artificial
Intelligence Research 32: 663–704.

Rot J, Bonsangue M and Rutten J (2016) Proving language
inclusion and equivalence by coinduction. Information and
Computation 246: 62–76.

Sabetghadam B, Alcántara A, Capitán J, Cunha R, Ollero A and
Pascoal A (2019) Optimal trajectory planning for autonomous
drone cinematography. In: European Conference on Mobile
Robots (ECMR). IEEE, pp. 1–7.

Schulz KU and Mihov S (2002) Fast string correction with
Levenshtein automata. International Journal on Document
Analysis and Recognition 5(1): 67–85.

Shani G, Pineau J and Kaplow R (2013) A survey of point-based
POMDP solvers. Autonomous Agents and Multi-Agent Systems
27(1): 1–51.

Shell DA, Huang L, Becker AT and O’Kane JM (2019) Planning
coordinated event observation for structured narratives. In:
IEEE International Conference on Robotics and Automation
(ICRA). pp. 7632–7638.

Somani A, Ye N, Hsu D and Lee WS (2013) Despot: Online
POMDP planning with regularization. Advances in Neural
Information Processing Systems 26: 1772–1780.

Sondik EJ (1978) The optimal control of partially observable
markov processes over the infinite horizon: Discounted costs.
Operations Research 26(2): 282–304.

Truong BT and Venkatesh S (2007) Video abstraction: A systematic
review and classification. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM) 3(1):
3–es.

Yu J and LaValle SM (2010) Cyber detectives: Determining when
robots or people misbehave. In: Algorithmic Foundations of
Robotics (WAFR IX). Springer, pp. 391–407.

Yu J and LaValle SM (2011) Story validation and approximate path
inference with a sparse network of heterogeneous sensors. In:
IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 4980–4985.

Zhang K, Grauman K and Sha F (2018) Retrospective encoders for
video summarization. In: European Conference on Computer
Vision (ECCV). pp. 383–399.

Prepared using sagej.cls

	1 Motivation and Introduction
	2 Related Work
	3 The Problem
	3.1 Events and observations
	3.2 Story specifications, belief states, and policies
	3.3 Optimal recording problems

	4 Algorithm Description
	4.1 The Goal POMDP
	4.2 Solving the Goal POMDP
	4.3 Solving Rtm/Fom via a Goal MDP
	4.4 Deciding if a Policy Exists

	5 Representation-invariance of expected time
	6 Faster Algorithms for Special Structures
	6.1 The DFA is loop-omitted acyclic
	6.2 The Goal MDP is a directed acyclic graph

	7 Greedy algorithm
	8 Construction of Specification Languages
	8.1 Multiple recipients
	8.2 Mistakes were made
	8.3 At least one good shot

	9 Case studies
	9.1 Turisti Oulussa
	9.2 Wedding reception
	9.3 Running a race

	10 Conclusions and future work

