
Active Localization with Dynamic Obstacles

Alberto Quattrini Li1, Marios Xanthidis1, Jason M. O’Kane1, and Ioannis Rekleitis1

Abstract— This paper addresses the problem of robot global
localization in a known environment, in the presence of many
dynamic obstacles. Deploying a robot in crowded spaces such
as museums, shopping malls, department stores, or university
campuses is especially challenging because the moving people
occlude the static parts of the environment, such as walls and
doorways, making the robot essentially blind. A new weighting
function is proposed for a particle filter state estimation
algorithm that accounts for the presence of dynamic obstacles
and avoids population depletion. An active localization strategy
is employed which guides the robot to locations that resolve
ambiguities and eliminate hypotheses in a systematic man-
ner. Experimental results from multiple simulations and from
real robot deployments validate the localization improvements
achieved by the proposed method.

I. INTRODUCTION
As autonomous robots integrate more deeply into everyday

human activities, it will be increasingly important for them
to operate reliably in public spaces. Crowded spaces such
as museums and shopping malls [1], [2], [3] have proven
to be particularly challenging for robot localization, because
co-located humans often occlude the robot’s sensors’ view
of the environment, leading to loss of positional accuracy. In
some cases, this has constrained the deployment of robots to
times outside the venue’s normal operational hours [4].

In this paper, we attack the problem of mobile robot global
localization in arbitrary crowded environments on two fronts.
First, we consider the passive problem of inferring some
partial information about the robot’s pose, based on range
sensor data, in environments with a high density of dynamic
obstacles. In this scenario, the particular challenge is that
each range measurement may arise from either the known
static obstacles or from the unknown dynamic obstacles, and
there is no obvious way to distinguish between these two
cases. Second, we address the question of active localization,
in which the robot can choose motions intended specifically
to reduce its uncertainty about its own pose.

This paper makes three specific contributions.
• We introduce a new particle filter designed to account

for the presence of large numbers of unpredictably-
moving dynamic obstacles. The key idea is to ‘punish’
particles that are closer to static obstacles than the sen-
sor range indicates, by assigning them smaller weights.
Simply put, the range sensor cannot see through a
wall. At the same time, this approach does not interfere
with particles that see something, probably a dynamic

1Alberto Quattrini Li, Marios Xanthidis, Jason M. O’Kane, and Ioannis
Rekleitis are with the Computer Science & Engineering Department,
University of South Carolina, 315 Main St. Columbia, SC, 29208,
USA, [albertoq,jokane,yiannisr]@cse.sc.edu,
mariosx@email.sc.edu

Fig. 1. The robot, a TurtleBot 2 equipped with a laser range finder
surrounded by several dynamic obstacles (other robots).

obstacle, closer than expected. This asymmetric weight
function allows the particle filter to make partial esti-
mates of the robot’s state, without being confused by
the presence of dynamic obstacles.

• We describe a planning algorithm for selecting motions
that decrease the pose uncertainty encoded by this
particle filter. The underlying idea is to construct a
compound map, expressed in the robot’s body frame,
and to drive the robot toward locations that allow the
robot to disambiguate between two or more competing
hypotheses about its current position.

• We describe an implementation of these techniques,
along with a series of experiments—both in simulation
and on a Turtlebot 2, with a fleet of other robots
acting as dynamic obstacles—that demonstrate their
effectiveness compared to baseline approaches.

The remainder of this paper is structured as follows: the
next section provides an overview of related work. Section
III describes the problem in detail. Section IV discusses the
particle filter formulation employed and provides a detailed
description of the active localization strategy proposed. The
following section presents experimental results from numer-
ous simulations and from experiments with real robots. The
paper concludes with lessons learned and a discussion of
future directions.

II. RELATED WORK
From the memorable videos of children climbing on

robotic museum tour guides [5], the problem of localizing in
the presence of dynamic obstacles has attracted significant
attention. Early work proposed to navigate close to the
static boundaries, termed coastal navigation [6], in order
to improve the localization quality. This approach enabled
accurate localization even in the presence of many dynamic
obstacles. Alternatively, dynamic obstacles were treated as
outliers [7] assuming a static map of the environment.

Stachniss and Burgard [8] also treated dynamic obstacles as
outliers and maintained a list of alternative hypotheses.

Monte Carlo localization [9], generally in the form of a
particle filter, has been used extensively for passive local-
ization. Milstein, Sánchez, and Williamson [10] proposed a
variant that improves robustness by clustering the particle
population around the major hypotheses. More recently, Li,
Sun, and Duan [11] proposed grouping the particles along
their spatial concentration. In the work of Liu, Shi, and
Zhao [12], the number of particles was dynamically modified
for each cluster in order to improve computational efficiency.
The accuracy of particle filter localization, in conjunction
with scan matching, was shown by Röwekämper et al. [13].

Mapping dynamic environments requires the robot to
differentiate between static and dynamic features. Wolf and
Sukhatme [14] maintained two occupancy grid maps, requir-
ing the ability to differentiate between dynamic and static
obstacles. In an industrial setting, Valencia et al. [15] used
multiple maps at different time scales in order to distinguish
between dynamic and static obstacles.

The problem of global localization, even under the ideal
conditions of a noiseless, infinite range, visibility sensor,
has been proven to be NP-complete. Dudek, Romanik, and
Whitesides [16] proposed an approximation algorithm, based
on the visibility cell decomposition, for selecting specific
destination points that will eliminate alternative hypotheses
and eventually localize the robot. We extend their approach
in a setting of noisy sensors, with occlusions from dynamic
obstacles.

In the past, there has been little work to actively plan lo-
calization positions that will counteract the effect of dynamic
obstacles. In this paper we propose a new planning method
to actively reduce the localization uncertainty by eliminating
alternative hypotheses.

III. PROBLEM STATEMENT

A single autonomous mobile robot moves in a known,
bounded, planar environment E ⊂ R2, which needs not
be simply-connected. The map is represented as a two-
dimensional occupancy grid, in which each cell is marked as
either free or a static obstacle. This map of static obstacles
can be built beforehand by using any SLAM algorithm, like
the one proposed by Grisetti, Stachniss, and Burgard [17].
Within this environment, dynamic obstacles of unknown
number and shape move along unpredictable trajectories. The
robot’s initial pose, q0 ∈ E× [−π,π), is also unknown.

The robot moves via differential drive, equipped with
a laser range finder that is able to perceive the distances
to obstacles within a range r and its field of view. Our
experiments use the TurtleBot 21 platform, equipped with a
laser range scanner with a field of view of 240◦, an angular
resolution of about half a degree, and 6 m range. In general,
the proposed method could be extended to other robotic
platforms.

As the robot moves, it selects a series of destination poses,
relative to its current pose, and continually updates its belief

1http://www.turtlebot.com/

about its pose relative to the map through the acquired
sensor data. This process leads to the two related problems
addressed in this paper.

a) Passive localization: Observing a sequence of laser
scans and movement commands, maintain a probability dis-
tribution of the possible poses of the robot in the presence
of dynamic obstacles.

b) Active localization: Select a sequence of local poses
Q = 〈q0,q1, . . . ,qn〉 the robot should reach so that the belief
on its pose is a consistent estimate of the actual pose of the
robot in the environment. This may be a closed-loop strategy,
so that the next destination pose qi+1 can be selected based
on the robot’s belief upon reaching destination qi. While
performing the active localization, both cost—i.e., traveled
distance—and belief updates are considered, the latter having
a priority over the former.

IV. INFORMATION-BASED GLOBAL LOCALIZATION
The general idea of the proposed algorithm is to use a

particle filter, modified to account gracefully for the presence
of dynamic obstacles. From the particle set, a set of clusters
is extracted, modeling different hypotheses about the robot’s
true pose. The centroids of each cluster are then utilized
to form motion plans that can disambiguate between the
clusters, eventually localizing the robot.

A. Particle Filter based global localization

We employ a particle filter [18], [19], [20] to solve the
passive global localization problem. At the initial step, the
particles are distributed uniformly over the free space of
the known map. Consequently, as the robot moves around
collecting range data, the propagation, update, and occasional
resampling steps are performed. The propagation step fol-
lows the standard equations of motion with linear velocity
vt and angular velocity ω t ; see Equation 1 for particle xi

t+1:

xi
t+1 =

 xi
t+1

yi
t+1

θ i
t+1

=

 xi
t + vt+1dt cosθ i

t
yi

t + vt+1dt sinθ i
t

θ i
t +ω t+1dt

 (1)

For the update step, the standard weight functions are
inappropriate. The presence of dynamic obstacles means that,
even for particles that are at or near the correct pose, the
distances measured by the laser sensor may be significantly
less than the distance to the nearest static obstacle in that
direction. Figure 2 illustrates the idea with representative
laser scans from two experiments. In Figure 2a, the robot
is surrounded by twelve other Turtlebots that operate as
dynamic obstacles; in Figure 2b, the robot is surrounded
by humans moving through the environment. In both cases,
close range measurements from the dynamic obstacles dom-
inate and they would have eliminated most particles when
using a traditional weighting scheme for the updates. In our
preliminary experiments, a standard weighting function—
i.e., a Gaussian weighting—used for update in such a
scenario led the particle filter to divergence very quickly,
as some particles were depleted by shorter measurements
due to occlusions from dynamic obstacles. In addition, the

AMCL localization ROS package,2 a Monte Carlo local-
ization approach, when used with many dynamic obstacles
was unable to localize. This can be explained by the fact
that, although the observation model includes a term for
probabilistically accounting for dynamic obstacles, particles
eventually deplete if they obstruct the view of the robot for
an extended period of time.

(a) (b)

Fig. 2. Laser scans with robots (left) and people (right); the red arrow
represents the robot pose, the scans are post-colored: green represents
dynamic obstacles, while black represents static obstacles.

To resolve this limitation of the standard approach, to
model the sensor, we propose the weighting function in
Equations 2 and 3, using the range measurements ρr, for
r = 1, . . . , l:

wi
t+1 = wi

t

l

∏
r=1

w(i,r) (2)

in which

w(i,r) =

 1
σlaser

√
2π

e
− (ρr−ρ̂i

r)
2

2σ2
laser if ρr− ρ̂ i

r ≥−δ

1 if ρr− ρ̂ i
r <−δ

(3)

ρ̂ i
r is the estimated range measurement r to the wall from the

pose of particle i; σlaser represents the laser sensor’s noise;
and δ is a small positive constant to account for noise of
the sensor. Reasonable values for δ are within an interval
between zero and σlaser. The parameter δ is suggested to
be close to zero so that the weighting function is more
conservative and more scan readings, possibly deriving from
dynamic obstacles, are filtered out.

The intuition is to follow a conservative policy for the
updates. Equation 3 scales down the weight for particles
that appear closer to an obstacle than the sensor reading.
Otherwise, Equation 3 leaves the weight unchanged, because
a shorter range measurement is possibly the result of a
dynamic obstacle that obscures the view of the laser and thus
no additional information is available. We apply a threshold
ε for leaving the weight unchanged, given the sensor model.
See Figure 3 for an instance of the weighting function.

Due to the large number of particles required to effectively
cover all the available free space initially, only a limited
number of laser ranges are used in the update. In the
experiments shown in the following section, with 10000

2http://wiki.ros.org/amcl

Fig. 3. An example of w(i,r) (Equation 3) with σlaser = 0.2 and ε = 0.1.

particles, about 60 scans uniformly distributed across the
sensor’s field of view are considered in the filter.

The proposed weighting function does not decrease its ap-
plicability to different scenarios. It is also general enough to
work when, for example, there is a change in the environment
and no dynamic obstacles are present. The reason is that
particles are not punished if the expected sensor reading is
longer than the actual measurement, as, for example, in a
scenario in which the robot has a wall on one side and open
space on the other side. In such a case, even if possibly
taking more time because of the non-reliability assumption
of some readings, the algorithm will still converge.

As done in state-of-the-art particle filters [20], the effec-
tive sample size ESS [21] is estimated after every update
and, when it drops below 80% of the particle population,
resampling [22] probabilistically eliminates particles with
negligible weights and multiplies the ones with significant
weights.
B. Active Localization strategy

Starting from the particle filter, we derive the following
method to actively decide where to send the robot for
improving the localization accuracy; see Fig. 4 for an outline
of the proposed algorithm.

Our experiments with the passive algorithm from Sec-
tion IV-A show that, after a few iterations of movement, the
particles concentrate in several clusters, each representing
a possible area where the robot could be. For example,
Figure 5a depicts particles in an artificial environment,
particularly challenging for localization because of the self-
similarities, where clusters formed after the robot traveled
less than 10 m. In general, the way that clusters form

Fig. 4. Block diagram representing active localization.

depends on the initial pose of the robot and the number
of self-similarities present in the environment. As the robot
continues to move, some of the clusters of particles may
remain, some others might decrease in size or completely
disappear. In fact, even if the robot has not been able to
sense any of the static obstacles in the map, the motion and
the limited sensing range may provide adequate information
to eliminate particles from areas of the map.

Adequate coverage of the free space requires a large
number of particles, however, reasoning for thousands of
particles is impractical. Therefore, a clustering algorithm is
applied on the particles to concentrate the control strategy
on a select few candidate locations.

The Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm [23] was selected among the
several clustering algorithms, mainly because, unlike other
classical clustering algorithms (e.g., k-means [24]), it does
not require the number of clusters to be given as input.
The algorithm, which takes two input parameters: ε and
MinPts, is outlined next. The first parameter defines an ε-
neighborhood: Nε(x) = {y ∈ X |dist(x,y)≤ ε}, where, in our
case, x and y are two particles and dist() is the distance
function between the two particles in the three-dimensional
state space. In this paper, the Euclidean distance is computed
with a weighting factor to combine linear distance and angu-
lar distance. Its value should be set according to the measure
unit used by the robot and should account for the noise in
the robot odometry. Smaller values increase the number of
clusters or outliers that can be found, while bigger values
reduce that number. The second input parameter defines the
core object, namely, whether a new cluster should be formed.
More formally, the algorithm requires that |Nε(x)| ≥MinPts
before forming a new cluster at a given particle x. Setting the
value of this parameter has similar effect as ε for the number
of clusters and outliers. Given these input parameters, the
algorithm starts with an arbitrary point which has not been
checked yet. A query is performed to retrieve the ε-neighbors
and if there are at least MinPts points, then a new cluster is
added. Otherwise, the point is marked as noise. These steps
are iteratively performed for each non-visited point. If the set
returned by an ε-neighborhood query contains a point that is
already in another cluster, then the two clusters are merged
together; this property is also known as density reachability.
Its time complexity is O(n logn) when using an appropriate
indexing structure to store and query the points. In order to
improve its efficiency for a real-time deployment, particles
to be considered in the clustering are sampled randomly. For
example, with 10000 particles and a sampling of 30% of the
particles, our preliminary experiments showed a decrease of
computation time from about 30 seconds to 1 second with
very little change to the clustering output.

We treat each of these clusters of particles as a plausible
hypothesis about the robot’s current pose. The objective
of the active localization problem is to drive the robot to
eliminate such hypotheses until only one remains. Taking
inspiration from the approach of Dudek, Romanik, and
Whitesides [16] briefly described in Section II, we propose

(a)

(b)

Fig. 5. Result of the clustering and the related compound map. In (a),
each color represents a different cluster of particles. In (b), which is cut
on the right side to fit in the paper, the fixed reference frame is enlarged
and displayed in red; the white and black areas are the common area (free
and occupied) between the maps from different clusters’ centroids; while
the grey area represents spaces that look different from different candidate
poses.

a method to find the destination locations that will drive the
particle filter to discard at least one of the hypotheses on its
position.

Starting from the clusters found by the DBSCAN algo-
rithm, we identify a representative pose for each of them
(e.g., the centroid), we transform the map associated with
each of the representatives to a common frame (without loss
of generality, we arbitrarily take one of them as the fixed
reference frame), and overlay each of the transformed maps
on top of each other. This forms a compound map that shows
differences in the static obstacles that the robot might expect
to observe for each of the cluster hypotheses, in a common
coordinate frame.

More formally, given one pose (x f ,y f ,θ f) that will be the
fixed reference frame for the compound map and another
pose (x,y,θ), the following transformation matrix is applied
to each point of the map of the latter:

T =

 cos(θ −θ f) sin(θ −θ f) −(x− x f)
−sin(θ −θ f) cos(θ −θ f) −(y− y f)

0 0 1

 . (4)

The resulting compound map is a grid of integers, similar to
a standard occupancy grid, but in which each cell stores the
number of clusters whose transformed maps have obstacles
overlapping that cell. See Figure 5b.

In our setting, recall that the particles can be discarded
only if, during propagation, they fall on an obstacle. Particle
weights can change if the robot can acquire a new sensor
reading whose ranges are longer than the last ones. Thus, to
maximize the number of particles that can be discarded—
thereby eliminating hypotheses and making progress toward
global localization— the robot should move to a location
in the compound map that is free for some, but not all, of
the candidate poses. To avoid unnecessarily long movements,
consider only cells with this property that are reachable by
traversing cells that are clear in all layers of the compound
map. We let L denote the set of such cells in the compound
map, and evaluate each candidate l ∈ L according to two
criteria:

• the number of particles expected to be discarded DP(l):
this information can be derived by simulating a motion
with respect to the robot frame for each particle;

• the traveled distance d(l), namely the distance between
the fixed reference frame of the compound map and the
candidate location.

Theoretically, the next candidate location can be chosen
as l∗ = argminl∈{L|DP(l)=n/2} d(l), in which n denotes the
number of particles. In such a way, the theoretical complexity
in the worst case is O(n). However, sometimes it could
happen that no location allows the robot to have an estimated
number of particles removed equal to n/2. Thus, we combine
the two criteria in a utility function, resulting in the following
optimization function:

l∗ = argmax
l∈L

[
αD̃P(l)+(1−α)d̂(l)

]
, (5)

where α is a weight that accounts for the importance of
the criterion DP and D̃P() and d̂() are normalized values
of DP() and d(), respectively, to a common scale between 0
(worst) and 1 (best), by using a linear relative normalization.

After selecting a destination position, the target orientation
of the robot is chosen in such a way that at least one scan
could possibly have the maximum reading, namely pointing
towards one of the grey areas in the compound map.

This planning process is repeated once the robot reaches
the assigned destination location. Note, however, that be-
cause of the presence of the dynamic obstacles, and because
of the probabilistic nature of the underlying particle filter,
the destination location we select might not be reachable in
reality. This requires a reactive local path planner with some
recovery mechanism, so that the robot does not oscillate over
time towards a non-reachable goal location. In particular,
when the robot starts moving, it tries a rotation–translation–
rotation motion. If an obstacle is encountered it stops and
waits until either the obstacle is not present anymore or a
timer expired. In the first case, the robot resumes the motion,
while in the second case, a Bug-type path planner [25] is
activated to try to reach the destination location. If also in this
state the robot is not able to reach the destination location,
either because the environment is too crowded or because it
is oscillating in the same area, then it aborts and computes
a new goal location.

In case no compound map, that is clusters, can be found
(especially when the robot is just deployed in the environ-
ment and thus all the particles are uniformly distributed
over the environment), the robot performs a selects one pose
within the covered area by the laser sensor.

V. EXPERIMENTAL RESULTS

To validate our method, extensive simulation tests have
been performed using the Stage simulator [26] and with
a real TurtleBot 2 robot together with other TurtleBot 1,
2, and Create robots, which act as dynamic obstacles. We
developed the software within the ROS framework [27].
For the experiments, 10000 to 30000 particles are used for
globally localizing the robot according to the size of the

(a) Self-similarities

(b) Corridor

(c) Open

(d) Office (e) Cluttered

Fig. 6. Environments used for tests.

environment. For clustering the two parameters are set to
ε = 1 and MinPts = 50; 30% of the particles are considered
for clustering. Changing the parameters values by ±10% did
not present any significant change in the results.

A. Simulation tests

The proposed method has been tested on different envi-
ronments from the Radish repository [28]; here, we show
the results for four of them along with one synthetic envi-
ronment; see Fig. 6. These environments present different
characteristics and their sizes approximately range between
25 m and 80 m:
• self-similarities: an artificial environment we generated

which presents challenges for localization as there are
4 corridors that look similar;

• corridor (usc-sal200-021120): a real environment con-
sisting of long corridors forming a loop and some
rooms;

• office (sdr site b): a real environment that has many
rooms inside;

• open (fr101-explored): a big open space;
• cluttered (cave bitmap): an outdoor-like environment

cluttered with several obstacles.
Stage was used for simulating a TurtleBot with a simulated

Hokuyo URG04-LX laser range finder. The simulations

also included 8, 24, or 48 additional TurtleBots to act as
dynamic obstacles. The dynamic obstacles were initially
placed around the robot to cover its field of view. The
dynamic obstacles moved using a random walk algorithm.
Figure 7 shows an instance of simulation in the structured
environment with 48 dynamic obstacles surrounding the
robot.

Fig. 7. An instance of a simulation test with Stage (blue: dynamic obstacles;
red: localizing robot).

To evaluate our method, we implemented three other
strategies:
• random goal: the performed steps are as in the proposed

method, but the goal location is chosen randomly from
the compound map;

• furthest: the robot goes along the opposite direction of
the furthest range. The rationale is to force particles to
be discarded;

• random walk: the robot moves randomly through the
environment.

For each environment and 5 initial starting poses selected
to cover different areas of the environments, we run the four
strategies. We measured the computation time to make a de-
cision, the traveled distance, and the weighted average error
in the pose of the robot between the particles and the ground
truth available from Stage given a 15 minutes timeout. If the
weighted average error between the current distribution of
particles and the actual position and orientation of the robot
is less than 1 m and less than 0.5 rad, respectively, then the
robot is considered localized. Note that these thresholds are
set considering the hardware available on the Turtlebot 2 and
testing it with AMCL in a static scenario, observing how
spread the cluster of particles is when the robot is localized.
Figure 8 shows the traveled distance, the weighted average
error, and the average duration of the experiments for the
five environments.

The results show that the proposed method, shown in
Figure 8 as ‘informed’, generally commands the robot to
travel less distance and/or allows the robot to localize faster
and at the same time to have a comparatively lower average
error. Indeed, in all of the experiments, the robot using
the informed strategy was able to localize itself. The most
benefits appear in the structured environment. The reason can
be found in the fact that, being more structured, the com-
pound map is more informative when clusters of particles
are formed. If less structured, such as the open environment,
there are less spots to travel to at which to deplete the
particles. When the number of dynamic obstacles increases,
the performance of the methods possibly degrades, because
of their interference in the motion, leading the localizing

robot to stop or to spend more time in order to avoid
them. Nevertheless, the proposed, informed strategy is able
to accomplish the global localization by avoiding to keep
going back and forth in a small area and trying at every
decision step to get to the candidate location that allows
to disambiguate between hypotheses; see Figure 9 for an
example of paths with different strategies and how the error
with respect to the ground truth evolves over time. Also, the
entropy of the particles is reported computed with a non-
parametric entropy estimator [29]. It is not surprising that
the error could increase over time, as cluster of particles can
move far away from the actual pose of the robot, depending
on the particles’ orientation; however, the entropy of the
particles decreases as the particles converge to a unique
hypothesis.
B. Experiments with real robots

The approach used in the experiments with real robots is
the same as the simulated tests: a TurtleBot 2 equipped with
a Hokuyo URG04-LX laser sensor and several Turtlebot 1,
Turtlebot 2, and iRobot Create robots, each equipped with a
cardboard “hat” so that the Turtlebot 2 with the laser sensor
can detect them, were placed in the Amoco Hall antechamber
at the University of South Carolina; see Figure 1. The size of
the environment is about 20 by 20 m. Before the experiments,
the TurtleBot 2 with the laser range finder was manually
driven (with no dynamic obstacles present) to produce an
accurate map of the environment using the ROS gmapping
package [17]. The resulting map was used as the map for the
particle filter updates. Several experiments were performed
using different configurations of the robots as dynamic
obstacles. The dynamic obstacles had different behaviors as
the Turtlebots were using a random walk, while the Creates
were moving using their preprogrammed patterns. We also
ran the robot on a few occasions with dozens of people in
the space, to verify the performance; see Figure 2b.

Figure 10 represents the distribution of particles during

(a) Informed (b) Random goal

(c) Furthest (d) Random walk

(e) (f)

Fig. 9. Paths followed by the localizing robot using the informed (a),
random goal (b), furthest (c), and random walk (d) strategies with 24
dynamic obstacles. (e) and (f) shows the average error and entropy over
time.

S
E

L
F
-S

IM
IL

A
R

IT
IE

S
C

O
R

R
ID

O
R

O
P

E
N

O
FF

IC
E

C
L

U
T

T
E

R
E

D

Fig. 8. Results in the five different environments; from left to right: distance traveled, average error, average experiment duration.

a representative run of the real robot outside Amoco hall.
The environment has several areas that are quite similar,
as such often the localization algorithm results in some
symmetrical hypotheses; see Fig. 10b. While no ground
truth was available, Figure 10d shows that the particle filter
standard deviation decreases over time and the final cluster of
particles corresponds to the final position of the robot in the
environment; see Fig. 10c. Note that the standard deviation,
as the average error in the simulation, is not necessarily
monotonically decreasing. The reason is that the standard

deviation is computed with respect to the particles’ centroid
and thus leading to an increase in the standard deviation,
as can be seen in Fig. 10b. Although a slight increase
can happen also measuring the entropy, e.g., when different
clusters of particles are in nearby location, it is a more stable
measure to see whether particles are representing a unique
hypothesis; see Fig. 10e.

VI. CONCLUSIONS
In this paper, we presented a method for active global

localization of a single robot in a known environment in

(a) (b) (c)

(d) (e)

Fig. 10. Different steps of the proposed global localization system, with
the robot starting from the center of the environment, surrounded by 12
dynamic obstacles. (a) After a few steps, particles too close to the wall are
eliminated; (b) due to symmetries in the environment some clusters form
indicating alternative hypotheses; (c) traveling towards the corridor allows
to discard all of the hypotheses as they go through the obstacles and thus
the robot is localized. (d) and (e) shows the dispersal of particles and the
entropy, respectively.

the presence of multiple dynamic obstacles. The well-known
particle filter localization algorithm was extended to avoid
penalizing particles from sensor data that might have arisen
from dynamic obstacles. We also introduced an active local-
ization algorithm which guides the robot efficiently toward
areas that will eliminate alternative hypotheses. Extensive
experiments both in simulation and using real robots validate
the proposed approach in a number of realistic environments.

Extending the approach to combine path planning to
task-specific destinations with active localization goals is
currently under development. We are currently porting our
implementation on a Husky robot in order to verify the
proposed approach outdoors. Future experiments will utilize
the GPS location of the Husky in order to verify the
localization accuracy. Future work will theoretically analyze
the observation model for the weighting functions and how to
reduce the computational complexity. As robots will coexist
with humans in public spaces more frequently, it is crucial
to enable them with the capabilities of accurate localization
even when most of their sensory information is occluded by
humans and/or other robots moving in the same space.

ACKNOWLEDGEMENT
This material is based upon work supported by the Na-

tional Science Foundation under Grant Numbers 1513203,
1526862, and 0953503.

REFERENCES

[1] W. Burgard, A. Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun, “Experiences with an interactive museum
tour-guide robot,” Artif. Intell., vol. 114, no. 1-2, pp. 3–55, 1999.

[2] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. Cremers, F. Del-
laert, D. Fox, D. Hahnel, C. Rosenberg, J. S. N. Roy, and D. Schulz,
“Probabilistic algorithms and the interactive museum tour-guide robot
minerva,” Int. J. of Robot. Res., vol. 19, no. 11, pp. 972–999, 2000.

[3] F. Faber, M. Bennewitz, C. Eppner, A. Gorog, C. Gonsior, D. Joho,
M. Schreiber, and S. Behnke, “The humanoid museum tour guide
robotinho,” in Proc. RO-MAN, 2009, pp. 891–896.

[4] B.-O. Han, Y.-H. Kim, K. Cho, and H. Yang, “Museum tour guide
robot with augmented reality,” in Proc. VSMM, 2010, pp. 223–229.

[5] J. Schulte, C. Rosenberg, and S. Thrun, “Spontaneous short-term
interaction with mobile robots in public places,” in Proc. ICRA, vol. 1,
1999, pp. 35–40.

[6] N. Roy, W. Burgard, D. Fox, and S. Thrun, “Coastal navigation-mobile
robot navigation with uncertainty in dynamic environments,” in Proc.
ICRA, vol. 1, 1999, pp. 35–40.

[7] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile
robots in dynamic environments,” J. Artif. Intell. Res., vol. 11, pp.
391–427, 1999.

[8] C. Stachniss and W. Burgard, “Mobile robot mapping and localization
in non-static environments,” in Proc. AAAI, vol. 20, no. 3, 2005, pp.
1324–1329.

[9] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localiza-
tion: Efficient position estimation for mobile robots,” AAAI/IAAI, vol.
1999, pp. 343–349, 1999.

[10] A. Milstein, J. N. Sánchez, and E. T. Williamson, “Robust global
localization using clustered particle filtering,” in Proc. AAAI, 2002,
pp. 581–586.

[11] T. Li, S. Sun, and J. Duan, “Monte carlo localization for mobile robot
using adaptive particle merging and splitting technique,” in Proc. ICIA,
2010, pp. 1913–1918.

[12] Z. Liu, Z. Shi, M. Zhao, and W. Xu, “Mobile robots global localization
using adaptive dynamic clustered particle filters,” in Proc. IROS, 2007,
pp. 1059–1064.

[13] J. Röwekämper, C. Sprunk, G. D. Tipaldi, C. Stachniss, P. Pfaff, and
W. Burgard, “On the position accuracy of mobile robot localization
based on particle filters combined with scan matching,” in Proc. IROS,
2012, pp. 3158–3164.

[14] D. F. Wolf and G. S. Sukhatme, “Mobile robot simultaneous localiza-
tion and mapping in dynamic environments,” Auton. Robot., vol. 19,
no. 1, pp. 53–65, 2005.

[15] R. Valencia, J. Saarinen, H. Andreasson, J. Vallvé, J. Andrade-Cetto,
and A. J. Lilienthal, “Localization in highly dynamic environments
using dual-timescale ndt-mcl,” in Proc. ICRA, 2014, pp. 3956–3962.

[16] G. Dudek, K. Romanik, and S. Whitesides, “Localizing a robot with
minimum travel,” SIAM J. Comput., vol. 27, no. 2, pp. 583–604, 1998.

[17] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques
for grid mapping with rao-blackwellized particle filters,” IEEE T.
Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[18] F. Dellaert, W. Burgard, D. Fox, and S. Thrun., “Using the condensa-
tion algorithm for robust, vision-based mobile robot localization,” in
Proc. CVPR, 1999.

[19] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo
localization for mobile robots,” Artificial Intelligence, vol. 128, no.
1-2, pp. 99–141, 2000.

[20] I. M. Rekleitis, “A particle filter tutorial for mobile robot localiza-
tion,” Centre for Intelligent Machines, McGill University, Montreal,
CANADA, Tech. Rep. TR-CIM-04-02, 2004.

[21] J. S. Liu, R. Chen, and T. Logvinenko, “A theoretical framework for
sequential importance sampling with resampling,” in Sequential Monte
Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon,
Eds. Springer New York, 2001, pp. 225–246.

[22] J. Carpenter, P. Clifford, and P. Fearnhead, “Improved particle filter
for nonlinear problems,” Proc. Radar, Sonar and Navigation, vol. 146,
no. 1, pp. 2–7, 1999.

[23] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in Proc. KDD, vol. 96, no. 34, 1996, pp. 226–231.

[24] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proc. Berkeley Symposium on Mathe-
matical Statistics and Probability, vol. 1, no. 14, 1967, pp. 281–297.

[25] V. Lumelsky and A. Stepanov, “Path-planning strategies for a point
mobile automaton moving amidst unknown obstacles of arbitrary
shape,” Algorithmica, vol. 2, no. 1-4, pp. 403–430, 1987.

[26] R. Vaughan, “Massively multiple robot simulations in stage,” Swarm
Intelligence, vol. 2, no. 2-4, pp. 189–208, 2008.

[27] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in ICRA Workshop on Open Source Software, 2009.

[28] A. Howard and N. Roy, “The robotics data set repository (Radish),”
http://radish.sourceforge.net/, 2003.

[29] G. V. Steeg, “Non-parametric entropy estimation toolbox (NPEET),”
http://www.isi.edu/∼gregv/npeet.html, 2013.

