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Abstract. The problem of state estimation using primarily visual data
has received a lot of attention in the last decade. Several open source
packages have appeared addressing the problem, each supported by im-
pressive demonstrations. Applying any of these packages on a new dataset
however, has been proven extremely challenging. Suboptimal perfor-
mance, loss of localization, and challenges in customization have not
produced a clear winner. Several other research groups have presented
superb performance without releasing the code, sometimes materializing
as commercial products. In this paper, ten of the most promising open
source packages are evaluated, by cross validating them on the datasets
provided for each package and by testing them on eight different datasets
collected over the years in our laboratory. Indoor and outdoor, terrestrial
and flying vehicles, in addition to underwater robots, cameras, and buoys
were used to collect data. An analysis on the motions required for the
different approaches and an evaluation of their performance is presented.
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1 Introduction

One of the most significant challenges in robot autonomy is state estimation,
specifically the dual problems of tracking the pose of the robot as it moves
through its environment and of mapping that environment as the robot moves.
In the last decade, the wide availability of camera sensors, coupled with progress
in computer vision, has given rise to a variety of vision-based techniques for
these problems, known as visual odometry or visual SLAM. Scaramuzza and
Fraundorfer [28, 11] presented a comprehensive overview this work, from the
fundamentals of Visual Odometry to recent research challenges and applications.
Fuentes-Pacheco et al. [12] recently surveyed Visual SLAM methods.

Vision based state estimation can be divided into a few broad appoaches.
One line of research uses probabilistic filters, such as the Extended Kalman Fil-
ter (EKF), to fuse visual features with other data. For example, some influential
works that fuse data from a camera and an inertial measurement unit (IMU)
include those of Mourikis and Roumeliotis [25], Jones and Soatto [17], and Kelly
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and Sukhatme [18]. Another group of approaches builds on Structure from Mo-
tion (SfM) methods and Visual Odometry (VO), in which images are processed
to extract features to be tracked, and the poses are estimated by minimizing
the re-projection error deriving from the reconstruction of such tracked features.
Such approaches include the work of Davison et al. [7] on real time accurate 3D
structure reconstruction and motion estimation of a monocular camera, mov-
ing in a constrained indoor space. Konolige et al. [20], Furgale and Barfoot [13]
have shown real-time visual odometry systems that are capable of accurately
localizing terrestrial robots over tens-of-kilometers-long trajectories. Computa-
tionally expensive global optimization schemes, often termed bundle adjustment
(BA) [31, 24], can also be used. BA can be further subdivided by whether fea-
tures (sparse methods) or pixel intensities (direct methods) are considered for
tracking.

In the recent years, several open source software packages for visual state es-
timation have become available, each supported by impressive demonstrations.
However, the comparative evaluation of such methods, when available, is usu-
ally limited to only a few of them at a time, e.g., [32], making it difficult to
select a reliable and robust method. Also, due to both algorithmic limitations,
such as, number of and sensitivity to parameters, special initialization motions,
etc., and software engineering challenges, such as, diverse input formats, undis-
closed software dependencies, etc., applying these packages on new datasets can
be remarkably difficult. In addition, several other research groups have pre-
sented superb performance without releasing the code, sometimes materializing
as commercial products—e.g., [16], thus making it hard to evaluate and use.

The objective of this paper is to bring clarity to the landscape of visual
state estimation software. Specifically, we evaluate eleven open source packages
on eight new datasets. The datasets span a variety of environments (including
indoor, outdoor, and underwater) and vehicle types (including terrestrial, air-
borne, marine surface, and underwater platforms). We present an analysis on the
motions required for each approach, together with an evaluation of their perfor-
mance on each dataset. The main contribution of this paper is to provide, based
on this analysis, insights on which package to choose according to the problem
at hand, and to highlight some of the open challenges that are still not fully
addressed. Good practices for producing replicable results are also discussed.

This paper is structured as follows. The next section briefly describes the
tested algorithms. Section 3 shows the datasets used in the evaluation. Section 4
presents the results and Section 5 discusses them, concluding the paper.

2 Methods Evaluated

Tables 1 and 2 list the open source vision-based state estimation packages ana-
lyzed in this paper together with a qualitative evaluation on different datasets.
This section briefly introduces each of those methods, without any attempt to
provide a comprehensive discussion of their details; please refer to the original
papers for more information.
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Kalman filter-based methods: MonoSLAM [5] is based on an incremental EKF,
where the state contains the map and the camera pose. The state vector is
updated with the prediction step, assuming a constant motion model that follows
a Gaussian profile. The update is performed according to measurements derived
from the detected features in the images. Feature points are detected with an
active search algorithm that restricts the search space to the most probable area,
according to a window and an estimated motion.

SfM-based methods: Packages that based on the Structure from Motion (SfM)
approach include libVISO [15], which is a library that provides a sparse visual
odometry method. Parallel Tracking and Matching (PTAM) [19], which is also
a sparse method, is designed for augmented reality applications in small work-
spaces. It works with input images from a monocular camera. PTAM performs
state estimation in two steps. First, a tracking phase, in which new frames are
compared with the current map using features. Second, a map updating phase,
which utilizes a set of keyframes. An initialization phase where the same features
are seen from different point of views is required.

ORB-SLAM [26] is a monocular SLAM system, with a recent extension
to stereo visual input, that uses ORB features for tracking, mapping, relocaliz-
ing, and loop closing. Semi-direct Visual Odometry (SVO) [10] extracts features
only when a new keyframe is added to the map and matches the features in the
successive frames as an implicit result of direct motion estimation. Outliers are
filtered out with a Bayesian filter. Large-Scale Direct Monocular SLAM (LSD-
SLAM), instead of using key-points, operates on intensities of images from a
monocular camera [9], both for tracking and mapping, allowing a dense 3D re-
construction. Finally, RatSLAM [2] takes inspiration from the neural processes
in rodent brains for navigation. Given images from a monocular camera and odo-
metric information, the method matches scenes according to their appearance
and constructs a semi-metric topological map.

Global optimization methods: Some of the above real-time solutions utilize global
optimization packages to smooth the resulting trajectories. The open source
packages: g2o [21] and Ceres [1] are both graph optimization frameworks work-
ing with nonlinear error functions. They can model and efficiently solve large
optimization problems.

A very recent solution that involves a complete visual pipeline is COLMAP [29]
that allows a reconstruction of ordered or un-ordered sets of image. It utilizes
the Ceres [1] framework over the whole set of images, resulting in impressive,
albeit very slow, reconstructions of the camera trajectory and the environment.

3 Experimental Datasets

Although standard datasets are important for reproducibility and repeatability
in experimental evaluation, existing datasets for state estimation typically cap-
ture only a single scenario, such as a university campus (e.g. Rawseeds [4]) or
an urban environment (e.g. Kitti [14]).
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Fig. 1. Characteristic images from the evaluated datasets. Top row from left: UGV
outdoors, UGV indoors, UAV outdoors, UAV indoors; Bottom row from left: AUV
over a coral reef, AUV inside a wreck, Drifter, Camera moved manually underwater.

To test the visual state estimation packages discussed above on a richer set
of scenarios, we collected datasets in the form of ROS bag files1 in different
environments using a diverse set of robotic platforms:

– UGV outdoor (H/Out) and indoor (H/In): A Clearpath Husky unmanned
ground vehicle (UGV), equipped with GPS, IMU, and monocular camera
(30fps, 640 × 480), moving both outside and inside a building at the Uni-
versity of South Carolina campus. The camera was mounted forward facing
and lateral facing in different experiments.

– UAV outdoor (Q/Out) and indoor (Q/In): A Parrot AR-drone 2.0 quadrotor,
with front (30fps, 640 × 360) and bottom cameras (60fps, 320 × 240) and
an IMU, in the same environment as above. The forward facing camera was
used for the evaluation. During the indoor experiments, the UAV experienced
several abrupt rotations which resulted in loss of localization in most of the
packages.

– AUV over coral reefs and inside a shipwreck: An Aqua2 autonomous under-
water vehicle (AUV), equipped with an IMU and a forward facing camera
(15fps, 870 × 520), operating off the coast of Barbados.

– Drifter: A custom made passive drifter [3] equipped with GPS, IMU, and a
10fps 640×480 camera, deployed also off the coast of Barbados. The camera
is downward facing and the motion of the asset was caused only by the wave
action. The bobbing motion of the camera resulted in an expanded field of
view up to 120◦. The low quality of the camera, the constantly changing
lighting condition, and the continuous rotations made this dataset the most
challenging among all.

– Manual underwater: A pair of GoPro Hero3+ cameras (30fps, 1920 × 1080)
in a 3D Dual Hero System stereo configuration, deployed off the coast of Bar-
bados. The stereo rig was operated by a diver inspecting inside and around
shipwrecks and coral reefs.

1 http://wiki.ros.org/Bags
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Table 1. Qualitative Analysis: Performance of the different open source packages
using the provided datasets from every other package. The legend is as follows: red–
failure, i.e., the algorithm does not localize the robot with the tested parameters;
orange–partial failure, i.e., the algorithm is able to track the robot in portions of the
trajectory; yellow–partial success, i.e., the algorithm is able to track the robot until the
end, but the trajectory contains some errors; green–success, i.e., the method produces
an accurate trajectory.

Package-Dataset [5] [15] [19] [26] [10] [9] [2] [29]

MonoSLAM [5] N/A N/A

libVISO [15] N/A N/A

PTAM [19] N/A N/A

ORB-SLAM [26] N/A N/A

SVO [10] N/A N/A

LSD-SLAM [9] N/A N/A N/A

RatSLAM [2] N/A

ColMap [29]

The datasets together with detailed instructions on the usage of each package
can be found online at http://afrl.cse.sc.edu/afrl/resources/datasets/
so future packages could be tested and evaluated.

4 Results

The software packages described above were evaluated using the provided datasets
from each package (cross-validation) and also the eight datasets discussed above.
The tests were performed on a computer equipped with an Intel i7-4770 3.4 GHz
CPU, 16 GB RAM, under Ubuntu 14.04 and ROS Indigo Igloo. The cameras
were calibrated and the intrinsic parameters were provided to each package. In
addition, the specific parameters of all packages were manually tuned for each
dataset. The parameters were initially set to the package’s default values, and
tuned to improve the performance. All available suggestions from the packages’
authors for parameter selection were followed. To test the global optimization
frameworks, as they do not provide a complete SLAM system, input graphs were
obtained by saving the pre-optimized resulting graph at the end of the best run
of ORB-SLAM, which already relies on g2o for local optimization. Repeated
trials were conducted for each package-dataset pair; we report the best observed
result for each pair from all the trials.

Table 1 shows a qualitative summary of the cross-validation experiments
which test each package against the datasets provided by every other package.
The cell colors indicate performance, utilizing the best parameters arising after
extensive tuning. Green illustrates that the results were accurate. Yellow means
that the robot was localized for the whole experiment, but the resulting trajec-
tory deviated significantly from the general structure of the observed behavior.
Orange shows that the method tracked the robot pose in some portions of the
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Table 2. Qualitative Analysis: Performance of the different open source packages
using the new datasets. Datasets: Husky outdoors (H/Out); Husky indoor (H/In);
Quadrotor outdoor (Q/Out); Quadrotor indoor (Q/In); Aqua on coral reef (A/Out);
Aqua inside wreck (A/In); drifters on coral reef (D/UW); GoPro stereo on the outside
of a shipwreck (G/UW). The legend is as in Table 1.

Package H/Out H/In Q/Out Q/In A/Out A/In D/UW G/UW

MonoSLAM [5]

libVISO [15]

PTAM [19]

ORB-SLAM [26]

SVO [10]

LSD-SLAM [9]

RatSLAM [2]

COLMAP [29]

g2o [21]

Ceres [1]

trajectory. Red indicates that the package was not able to localize the robot.
The majority of the datasets provided have short duration, usually covering a
small workspace inside a lab.

Table 2 presents a qualitative summary of the results from the eight diverse
datasets collected by the authors. The same colors were used as in the previous
table. In several occasions packages exhibited different performance in repeated
trials under identical conditions. In all cases the best performance was used. In
addition, for PTAM the datasets were tested to provide a starting point which
resulted in initializing the tracking and the package was evaluated using the
hand-tuned (trimmed) trajectory. Figure 2 shows examples of trajectories from
the H/Out and H/In datasets, for each package rated Yellow or Green on that
dataset.

Finally, Table 3 shows quantitative results evaluating the produced trajectory
of each package for select datasets where a good estimate of the trajectory is
available from other sources (GPS or LIDAR sensor). That trajectory is used
as ground truth. In particular, for H/Out the GPS information is available,
while for H/In the ground truth trajectory was obtained using gmapping2 on
the odometric, inertial, and LIDAR data. The metrics considered are:

Er the accuracy, measured in terms of error between ground truth and the
produced trajectory [22]. In particular, the metric is based on the relative
displacement between robot poses. More formally, the error of a trajectory
x1:T with respect to the ground truth trajectory x∗1:T is calculated as:

ε(δ) =
1

N

∑
i,j

trans(δi,j 	 δ∗i,j)
2

2 http://wiki.ros.org/gmapping
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(a) (b)

Fig. 2. Trajectories resulting from the tested methods in H/Out and H/In, together
with the GPS trace (outdoor) and gmapping (laser-based) trajectory (indoor).

where δi,j and δ∗i,j are the relative relation between two consecutive poses
at time i, j for the estimated trajectory and ground truth trajectory, re-
spectively, N is the number of relative relations, and trans considers the
translation component. The error is reported in meters

TL track loss percentage, that is the ratio between the time in which the system
is not localized and the total time of the dataset; lower numbers are better.

Mem the maximum amount of memory used by the package during a run; reported
in megabytes (MB).

Note that as a monocular setup is considered in almost all the packages, a
post-processing step is performed on the produced trajectory to fit/align to the
ground truth minimizing the distance between them. In particular, the vision-
based trajectory is rotated and scaled in order to coincide with the ground truth
trajectory, at least at the starting moments. Some of the packages failed finding
a trajectory, thus the resulting error displays a very large value. In H/Out1,
the robot traveled outdoor in the grass with bushes and trees, while in H/Out2
the robot was moving on the sidewalk. Images in H/In were collected inside the
Computer Science and Engineering department.

ORB-SLAM is the package that provides the best result in terms of accuracy
among the sparse methods, and using g2o at the very end of the dataset does not
improve much the trajectory, highlighting its reliability. MonoSLAM is not able
to localize the robot for most of the trajectory. Packages perform better in struc-
tured datasets (H/Out2 and H/In) than unstructured ones, because features can
be more easily identified. Memory usage does not show any specific pattern con-
sidering the different classes of visual SLAM methods, although for most of them
it grows linearly over time. The difference between online and offline approaches
is illustrated in Fig. 3 which shows the results from ORB-SLAM and COLMAP
for one dataset collected outdoors using a Husky UGV. The global optimization
method provides visually better results compared to the realtime one; however,
it took more than a day for COLMAP to find the presented solution.
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Table 3. Quantitative Evaluation of the different open source packages for the selected
datasets with ground truth. Er measures the accuracy of the trajectory and is reported
for packages which were partially successful, TL is the percentage of track loss, and
Mem is the maximum memory usage. N/A stands for not applicable, e.g., calibration
parameters were not reported for a dataset.

Package-Dataset H/Out1 H/Out2 H/In
tot. length: 413m tot. length: 438m tot. length: 413m

Er TL Mem Er TL Mem Er TL Mem
m % MB m % MB m % MB

MonoSLAM [5] N/A 95.7% 73 N/A 90.6% 646 N/A 97.3% 102

libVISO [15] 112.2 9.5% 155 98.7 3.0% 130 67.8 8.3% 165

PTAM1 [19] 33.4 7.6% 1543 24.0 15.9% 718 23.4 3.5% 437

ORB-SLAM [26] 12.0 33.9% 5537 11.2 6.5% 2089 10.1 0.0% 4222

SVO1 [10] 36.7 18.8% 904 20.0 64.9% 244 18.0 63.5% 261

LSD-SLAM [9] 38.8 0.1% 2728 27.6 12.0% 1376 15.1 78.6% 1067

RatSLAM [2] 37.4 N/A 402 24.4 N/A 444 17.9 N/A 333

ColMap [29] 23.7 N/A N/A 9.2 N/A N/A 29.6 N/A N/A

g2o [21] 12.0 N/A N/A 11.2 N/A N/A 10.1 N/A N/A
1 The error reported is only for a large part of the trajectory

5 Main Experimental Insights

Comparing the behavior and performance of such a diverse set of vision based
estimation packages provided multiple insights. One of the main challenges is to
find the fine balance between computational efficiency and result accuracy. Many
parameters, such as the number of tracked features and the number of RANSAC
iterations, can improve the accuracy at the expense of added computational load.
A slight change in some of the parameters could lead to very different behaviors.

Some of the packages, such as SVO, restricted the operating space to a small
area during their demonstrations. This allows the method to produce very good
trajectories in a limited workspace, as it is possible to run a global optimization
algorithm on all of the keyframes in the map. As a result, SVO was only able
to track the trajectory in the tested datasets partially. The cross validation
and the new datasets results show that in testing a proposed approach more
challenging scenarios should be considered to validate it. Indeed, most of the
attached datasets with the packages are from experiments performed inside a
single laboratory, many times just over a single desk.

The images’ quality is another important factor influencing the results. The
quality depends on the amount of texture in the images, illumination variations,
and the presence of blur, both out of focus and motion blur. As most packages
tested rely on tracking features, the quality of the detected features depends on
the image quality. For example, sharp rotations are a type of motion that authors
of some packages, such as ORB-SLAM, suggested to avoid as it could result in
losing track of the detected features. As a matter of fact, the most successful
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(a) (b)

Fig. 3. Resulting trajectories/reconstruction from (a) ORB-SLAM; (b) COLMAP.

package, ORB-SLAM, failed for Q/Out, which contains continuous rotations.
Moreover, many packages failed in the underwater datasets, due to the difficult
visual conditions, which led to features not detected and also to several wrong
loop closures. This is especially true for the dataset from the drifting sensors, in
which the camera has the lowest frame-rate compared to the other datasets.

Note that, since monocular cameras cannot recover depth from a single frame,
one open issue affecting the performance of methods working with monocular
images is the initialization step. Some packages explicitly reported a required
initial motion to initialize the SLAM algorithm. In many vehicles such motion
might not be feasible for the robotic platform —e.g., PTAM requires an initial
translation along the x-axis of the camera, however, many robotic platforms have
forward-facing cameras to enable navigation and lateral motion is not possible.
In H/Out, PTAM succeeded, because the camera was rotated to face laterally.

Furthermore, for several online packages, an inconsistent behavior was ob-
served in the results between successive runs of the same dataset with the same
parameters; a behavior reported in the papers. For example, H/In resulted in re-
peated failures of ORB-SLAM before producing an accurate trajectory and scene
reconstruction. There are several causes, including the realtime constraint, where
some of the frames could be dropped according to the load of the computing unit,
and the random nature of RANSAC.

RatSLAM, utilizes a learning process for adjusting how neurons are triggered,
thus improving the trajectory as the robot visits the same place multiple times;
e.g., in Q/Out it is able to produce a good result, given the spiral motion.

Global optimization methods improve the resulting trajectory; e.g., running
g2o on the complete graph from ORB-SLAM on H/In, the χ-squared test showed
an improvement from χ2 = 183068 to χ2 < 10−9. However, being an expensive
operation, ORB-SLAM usually runs g2o only on a fixed number of keyframes.
It is interesting to note that, if a general optimization frameworks is tailored for
a specific package, such as in ORB-SLAM, the number of iterations required for
convergence drops—e.g., for g2o used in conjunction with ORB-SLAM, it takes
on average in the order of tens of iterations, while using Ceres ”straight out
of the box” takes tens of thousands of iterations. COLMAP, which provides a
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complete pipeline for SfM problems utilizing Ceres, shows very promising results,
although the time to get the estimated trajectory can be very long—e.g., for 700
images, 7-8 hours.

In addition to the packages reported above, several more packages were
tested. In particular, preliminary tests of the following global optimization pack-
ages: Bundler [30], SBA [24], parallaxBA [33], and GTSAM [8] did not produce
acceptable results. In particular in most cases they failed to reliably track fea-
tures for most of the datasets and the global optimization converged into a local
minima. Ongoing work includes the study of the effects of changing parameters,
collection of data focusing on different type of motions, and the investigation of
more open-source packages on the same datasets, including DTAM [27], DPP-
TAM [6], OKVis [23].
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