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Abstract—This paper is focused on providing fast reroute and
loop-free convergence in traditional IP networks, without making
any modifications to the IP datagram and without requiring any
coordination between routers for FIB updates. Failure inference
based fast route (FIFR) is an approach in which routers adjacent
to a failed link or router perform local rerouting around the fail-
ure, without notifying non-adjacent routers about the failure. The
non-adjacent routers utilize interface-specific forwarding tables,
which are precomputed based on potential inferred failures that
could cause a packet for a given destination to arrive through
that unusual interface, to ensure loop-free forwarding towards
the destination. However, as long as the failure lasts, packets that
were to be forwarded over the failed link traverse suboptimal
paths, as they reach the router adjacent to the failure and then
are rerouted along a detour. Therefore, in case of a long-lasting
failure, it is desirable to trigger a network-wide link state update,
so that all routers can converge to new optimal forwarding tables.
But, without some coordination between routers to install their
forwarding entries in a specific order, there may be transient
forwarding loops during the convergence period. As we are
interested in a mechanism that does not require any such
coordination between routers, we consider the possibility of
employing progressive link state updates. In this paper, we show
that FIFR with progressive link metric increments can guarantee
loop-free forwarding not only before/after but during convergence
too and protect against non-partitioning single link failures.

I. INTRODUCTION

The key objectives of any intra-domain routing protocol such
as OSPF are reachability, i.e., forward packets to their destina-
tions, and optimality, i.e., along the shortest paths. To ensure
optimality, any changes in the link state need to be propagated
across the network, so that all routers recompute new shortest
paths and install corresponding forwarding entries. On the
other hand, to respond to failures quickly, due to relatively
long convergence delay associated with a link state update,
optimality is often traded-off for reachability, by having routers
adjacent to failures perform local rerouting, without invoking
the control plane. However, when a failure lasts beyond a
certain duration, it is desirable to trigger a link state update
so that all routers recompute the optimal routes in the new
topology. But a straightforward link state update can cause
transient forwarding loops during the convergence process,
unless routers coordinate to install their forwarding entries in
a particular order. In this paper, we study the feasibility of
developing a combination of local reroute and global update
mechanisms that can achieve loop-free convergence, while
performing disruption-free forwarding around a failed link,

without requiring any modification to the IP datagram and
without needing any additional coordination between routers.

There have been numerous proposals for performing fast
reroute in traditional IP networks [1]–[5]. Many of these
schemes require encapsulation [1] or modification to the IP
header to carry additional bits of information [2]. Among
all the IP fast reroute schemes that provide full protection
against any single non-partitioning failure, we consider failure
inference based fast route (FIFR) [6], as it is an approach
that does not need any changes to the IP datagram. Under
FIFR, routers adjacent to a failed link or router perform local
rerouting around the failure, without notifying non-adjacent
routers about the failure. The non-adjacent routers utilize
backwarding entries, which are associated with each interface
along the reverse shortest path and are precomputed based
on potential inferred failures that could cause a packet for a
given destination to arrive at that interface, to ensure loop-free
forwarding to the destination. While FIFR is quite suitable
for short-lived failures, forwarding packets to the point of
failure and then rerouting them is undesirable for longer-
lasting failures. In such cases, it is preferable to trigger a link
state update and initiate re-convergence to optimal routes.

During the convergence period, i.e., between the time a link
state update is initiated and the time all routers install new
forwarding entries, packets may be forwarded by some routers
based on the new topology and others based on the old
topology, potentially leading to forwarding loops. To prevent
loops, [7] proposed a scheme that imposes a certain order be-
tween the FIB updates of different routers. While it guarantees
loop-free convergence, it requires some form of coordination
among routers to order their updates. As we are interested
in an approach that does not require coordination between
routers, we consider the progressive link metric increment
method [8], which sends a sequence of updates such that each
update is loop-free. The question this paper explores is whether
progressive updates can be used in conjunction with FIFR to
achieve loop-free convergence while performing fast reroute.

We observe that FIFR, due to backwarding entries, mitigates
the problem of forwarding loops during convergence with
traditional unordered updates. However, it does not completely
eliminate the looping problem. Even with progressive link
metric increments, we find that simultaneous updating of both
interface-independent forwarding entries and interface-specific



backwarding entries at a router can cause forwarding loops
in some instances. However, by decoupling the updating of
forwarding and backwarding entries, it is possible to ensure
continuous loop-free forwarding while converging to optimal
routing. We refer to this approach as FIFR++.

The rest of the paper is organized as follows. Section II
presents the background material on both the FIFR approach
and progressive link state updates. Section III describes the
proposed FIFR++ approach of employing progressive link
metric increments in conjunction with FIFR and proves that
FIFR++ is loop-free while protecting against single link fail-
ures. The limitations of this work are discussed in Section IV.
Section V reviews the related work that motivated the design
of FIFR++. Finally, we conclude the paper in Section VI.

II. BACKGROUND

In this section, we present some background material about
the schemes upon which the proposed approach FIFR++ is
built, and then describe FIFR++ in the following section.

A. Convergence with Progressive Link State Updates

An obvious approach to deal with any link state changes
is to propagate them network-wide so that all routers can
recompute their next hops and forward packets along the
optimal routes. The problem is that, during the convergence
period, i.e., between the time a link state update is initiated and
the time all routers install new forwarding entries, packets may
be forwarded by some routers based on new state and others
based on old state, potentially causing forwarding loops.

Consider the topology in Fig. 1, where each link is labelled
with its cost. Suppose the link B−E is being shut down for
maintenance by changing its cost from 1 to ∞, and all routers
are notified of this change. Due to the delays in the propagation
of the link state advertisements and recomputation/installation
of new forwarding entries, it is possible that B is in the ac
(after change) era, i.e., starts forwarding according to the new
cost, whereas A is still in the bc (before change) era, i.e.,
continues forwarding based on the old cost. Then, as per the
new shortest path B→A→C→E, a packet destined for E from
B is forwarded to A. Being in the bc era, router A, as per the
old cost, forwards it back to B, resulting in a loop.
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Fig. 1. A topology used for illustration of progressive updates and FIFR.

To prevent such forwarding loops during convergence, [7]
proposed a scheme that imposes a certain order among the
FIB updates of different routers. In this example, B installs
new FIB entries only after A has done the same (and the
link B−E is shut down only after its adjacent nodes B and E
update their FIBs). Then, a packet from B is forwarded to E,
either along the old path B→E before the update or the new
path B→A→C→E after the update, avoiding loops at any time
instant. Enforcing such an order requires some form of coor-
dination between routers. As we are interested in an approach
that does not require any such coordination, we consider the
progressive link metric increments approach proposed in [8].

The main idea behind the progressive link metric increments
is as follows. Instead of sending an update with B−E cost of
∞, suppose we send a sequence of updates with a cost of 2,
3, and so on, each with a progressively higher cost, until B−E
is not along any shortest path. Note that a subsequent update
is sent only after the network has converged to the previous
update. Consider the first update in this sequence, where the
cost of B−E is increased from 1 to 2. With the old cost of 1
or the new cost of 2, the shortest paths from A to E and B to
E remain the same, and hence this update would not cause a
forwarding loop, even if A and B are in different eras.

When B−E cost is updated to 3, A→C→E becomes a shortest
path with the same cost as that of A→B→E, while the shortest
path from B to E remains B→E. Again, regardless of the eras
A and B are in, this update does not cause a forwarding loop.
Now, by increasing B−E cost to 4, A→B→E ceases to be a
shortest path. The following update of cost to 5 makes A one
of the next hops from B to E. Since B is no longer a next hop
from A to E after the previous update, this update does not
cause any back and forth between A and B. Next, updating the
B−E cost to 6 or higher, effectively eliminates the link from
the topology, since it is not along the shortest path between its
adjacent nodes. We can then send a final update with B−E cost
of ∞, to inform all routers that the link is actually down. Thus,
each update yields loop-free convergence and progressively
brings the network to the desired target topology without B−E,
allowing the B−E link to be shut down gracefully.

It is not necessary that the link cost has to be strictly
incremented in steps of 1 to avoid loops. It has been shown
that loop-freedom can be assured with a shorter metric se-
quence [8], which is specific to each link and depends on the
topology. Table I shows the sequence of metric updates needed
to gracefully bring down a link in the topology in Fig. 1.

B. Failure Inference based Fast Reroute

We now explain the core idea behind the FIFR approach using
a simple example. We refer the reader to [3], [6] for the full
details. Suppose the link between routers B and E is down, and
only B and E are aware of the failure. Imagine forwarding a
packet from source A to destination F. Based on the link costs,
the shortest path from A to F is A→B→E→F. So, router A



TABLE I
METRIC SEQUENCE REQUIRED TO BRING EACH LINK DOWN, FOR THE

TOPOLOGY IN FIG. 1

Link Metric Sequence

A−B 2, 3, 4, ∞
A−C 3, 4, ∞
A−D 4, 5, 6, ∞
B−E 2, 3, 4, 5, ∞
C−E 3, 4, ∞
D−F 4, 5, 6, ∞
F−E 2, 3, 4, 5, 6, 7, 8, ∞

will forward the packet to its next hop B. Router B, being
adjacent to the failed link B−E, initiates local rerouting. Since
shortest path to F, without the B−E link, is B→A→C→E→F,
it forwards the packet back to A. Normally, this would cause
the packet destined for F to go back and forth between routers
A and B, resulting in a forwarding loop.

Under FIFR, however, A infers potential failures along the
shortest path to F that would cause the packet to arrive at A
from its usual next hop B (i.e., through the unusual incoming
interface B→A). It is apparent that the failure of link B−E
would cause the packet for F to arrive through interface B→A.
Similarly, the failure of E−F would also cause the packet
destined for F to arrive through interface B→A, as the shortest
path from E to F without link E−F is E→B→A→D→F. Since
A does not know which of these links actually failed, it
excludes all such candidate links to find an alternate next
hop (which we refer to as back hop), which is D, for packets
destined for F arriving through interface B→A.

We observe that the resulting back hop would be the same, if
we were to exclude just one of those candidates links, referred
to as the key link, that is closest to the destination. In this
example, the key link for destination F and interface B→A
is E−F. Router A can precompute a key link per destination
for each of its interfaces (which may be none if there are no
candidate links), and compute the corresponding back hops.
Table II lists the key links and back hops for all combinations
of unusual incoming interfaces and destinations in Fig. 1.

Effectively, FIFR computes interface-specific forwarding en-
tries, i.e., a packet’s next hop depends not only on its des-
tination but also on the incoming interface. Most of these
entries would be identical to usual forwarding entries based on
destination only, independent of the incoming interface. Only
the unusual interfaces that lie along the reverse shortest path
from the point of failure to the destination have back hops.

To put this formally, under FIFR, each router i has a forward-
ing entry F d

i per each destination d. In addition, it keeps a
backwarding entry Bd

j→i per each destination d and neighbor
j ∈ F d

i (both F d
i and Bd

j→i are sets, as there could be multiple
shortest paths of equal cost). Let K d

j→i be the farthest link
along a shortest path from i to d, whose failure would cause

TABLE II
KEY LINKS AND BACK HOPS FOR UNUSUAL INCOMING INTERFACES FOR

THE TOPOLOGY IN FIG. 1

Interface Destination Key Link Back Hop

B→A E B−E C
B→A F E−F D
A→B C A−C E
A→B D A−D E
E→B C C−E A
E→B F E−F A
A→C B A−B E
E→C B B−E A
F→D E E−F A
B→E A A−B C
F→E D D−F B

the packet to d arrive through interface j→i. While F d
i is the

set of usual next hops from i to d, Bd
j→i is the set of next hops

from i to d without the link K d
j→i . When K d

j→i is ∅, Bd
j→i is

the same as F d
i . A packet originating at i to destination d is

forwarded to F d
i . A packet destined for d arriving at i through

neighbor j is forwarded to Bd
j→i if j ∈ F d

i , otherwise to F d
i .

The forwarding and backwarding entries can effectively com-
bined into one interface-specific forwarding table per interface,
as shown in Table III for router A. Note that most of the entries
are usual next hops along the shortest paths to the destinations.
Only for the interface B→A, the next hops for destinations E
and F are different from the usual forwarding entries. It is also
important to emphasize that these entries are computed a priori
and not on the fly. Moreover, since routers nowadays maintain
a copy of the FIB at each interface to perform forwarding at
line speed, interface-specific forwarding can be implemented
without any changes to the forwarding plane.

TABLE III
INTERFACE-SPECIFIC FORWARDING ENTRIES AT ROUTER A FROM THE

TOPOLOGY IN FIG. 1

Interface Destination
B C D E F

B→A B C D C D

C→A B C D B B

D→A B C D B B

It has been shown that FIFR, by employing interface-specific
forwarding, can guarantee loop-free forwarding to all reach-
able destinations in case of a single link or router failure [3],
[6]. However, because the packets are rerouted along alternate
paths only from the point of failure, the resulting paths are
suboptimal. For instance, in the above example, when link
B−E is down, a packet from A to F traverses the path
A→B→A→D→F, compared to the optimal path A→C→E→F.
Therefore, it is desirable to initiate a link state update in case
of a long-lasting failure, while performing fast reroute, so that
all routers can converge to optimal routes.



III. PROPOSED APPROACH

We have already shown in Section II-A that, without FIFR,
a straightforward updating of B−E’s cost from 1 to ∞ causes
transient forwarding loops during convergence. FIFR, how-
ever, helps mitigate this problem. Again, consider the scenario,
where A is in the bc era and B is in the ac era, that leads to a
loop without FIFR. But with FIFR, when B forwards a packet
destined for E to A, instead of forwarding it back to B, using
interface-specific forwarding, A will forward that to C. We
find that in case of the topology in Fig. 1, updating about
any other link failure, not just B−E, does not cause loops
during convergence with FIFR, even with traditional link state
updates, regardless of the order of routers updating their FIBs.

The above observation does not hold across all topologies.
Consider the topology shown in Fig. 2, where the link I−M is
down and a link state update is triggered with cost ∞. Assume
that J, K, and L have recomputed their forwarding tables and
are in the ac era, whereas the rest are in the bc era. Suppose
J has a packet for M. As per the ac topology, the shortest
path is J→L→N→M, and so J forwards it to L. L, which is
also in the ac era, forwards it to N. According to N, which is
in the bc era, the usual shortest path is N→L→J→H→I→M.
Based on its inference on bc view, only the failure of J−L can
cause a packet for M to arrive through L→N interface along
the reverse shortest path. Therefore, as the backward path,
without J→L, is N→O→K→I→M, the packet is forwarded to
O, which in turn forwards to K. Since K is in the ac era, its
shortest path to M, without I−M, is K→J→L→N→M. Hence,
K forwards to J, which again forwards to L, causing a loop.
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Fig. 2. An illustration of looping during convergence with FIFR when the
link I−M is down. J, K, and L are in the ac era and the rest are in the bc era.

We propose to employ progressive link state updates along
with FIFR to provide loop-free forwarding not only be-
fore/after convergence but during convergence as well. Note
that while progressive updates alone can help gracefully shut
down links for planned maintenance, FIFR facilitates instant
shutdown of links and also protects against unplanned failures.
The looping scenario discussed above does not occur with this
approach, since the cost of I−M is increased gradually with a
sequence of updates (the exact metric sequence is 10, 11, 13,

14, 18, 19, 20, 21, 22, 23, ∞). Imagine the first update, where
the cost of I−M is set to 10. With this cost, regardless of the
eras each router is in, packet from J to M is forwarded to I,
which then reroutes it to H, along the path I→H→G→M. H
infers the failure of I−M, as the packet to M arrives through
unusual interface I→H, it forwards it to G. The router G does
the same and forwards it to the destination M. Thus, with each
update step, one or more source-destination pairs’ shortest
paths are made equal to that passing through I−M or turned
away from I−M, while packets arriving at I are rerouted to
the destination along a loop-free path with the help of FIFR.

There is a caveat, however, that a router, when it receives a link
cost increase advertisement, should update its usual forwarding
entries but not its backwarding entries for unusual incoming
interfaces too. While it does not matter for the two topologies
we discussed earlier, updating back hops can not guarantee
loop-freedom in all instances. Consider the topology in Fig. 3,
where the T−U link is down. Suppose the T−U cost is being
progressively updated and currently the cost is being changed
from 4 to 5. When S computes new tables, with cost 5, the
shortest path to destination W would be S→R→T→U→W.
Also, U−W ceases to be a key link and none of the other
links along its shortest path would be a key link, since any of
their failures would not cause the packet to arrive at S through
the interface R→S. Therefore, for all interfaces, next hop from
S to W would be set to R. On the other hand, R, which is still
in the bc era, has T as its next hop for W. Also, S is the back
hop to W for T→R interface (since U−W is a key link with
T−U cost of 4 as its failure would cause the packet for W to
arrive at R through T→R interface). In this scenario, a packet
from S to W takes the path S→R→T and then gets rerouted
along T→R→S. Because there is no key link associated with
R→S, router S forwards it to R, forming a loop.
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Fig. 3. A looping scenario with simultaneous updating of forwarding and
backwarding entries during convergence with FIFR. Link T−U is down and
it’s cost is progressively updated from 4 to 5. Only router S is in the ac era.

We propose to eliminate the possibility of such loops while
backwarding during convergence by defering the updating of
back hops. In the above example, during progressive link
metric increments, S changes its usual forwarding entries, but
keeps the back hop for W in the table of R→S interface, which
is along the reverse shortest path to W, to be V (since U−W
is a key link with the original T−U cost of 1 as its failure
would cause the packet for W to arrive at S through R→S
interface). At the end of progressive updates, each router can



TABLE IV
NOTATION

F d
i set of next hops from i to d

Bd
j→i set of back hops from j→i to d

K d
j→i key link corresponding to j→i to d

Cu−v cost of the link u−v

Ti shortest path tree (SPT) rooted at i
P (T , d) shortest path from root of T to d

D (T , d) shortest distance from root of T to d

independently, without any need for synchronization, install
its new back hops corresponding to the topology without the
failed link. We refer to this approach as FIFR++.

Operations under FIFR++ can be summarized as shown in
Algorithm 1. The notation used is given in Table IV. A key
aspect of FIFR++ is that while the forwarding entries at a
router i, Fi , are recomputed upon receiving each progressive
link state update, its backwarding entries corresponding to
each neighbor j, B j→i are recomputed only when the link
is finally shut down.1 The advantage of FIFR++ is that it
guarantees loop-free forwarding during convergence too in
case of single link failures. We prove this in the next section.

Algorithm 1 : Operations at router i under FIFR++
1: if Router i originates a packet p to destination d
2: Forward p to F d

i
3:
4: if Router i receives a packet p to d from neighbor j
5: if j ∈ F d

i
6: Forward p to Bd

j→i
7: else
8: Forward p to F d

i
9:

10: if Router i detects a failure of an adjacent link to v

11: Recompute Fi without i−v
12: Send LSAs to progressively update Ci−v to ∞
13: Recompute B j→i without i−v for each neighbor j
14:
15: if Router i receives an LSA with new cost c for link u−v
16: Cu−v ← c
17: Recompute Fi with new cost of u−v
18: if c = ∞
19: Recompute B j→i without u−v for each neighbor j

A. Proof of Loop-Free Convergence with FIFR++

Now, we sketch a proof that FIFR++ is loop-free, based on
the following assumptions: i) There is only one failed link in
the network that is protected with FIFR; ii) Only one link
state update is being propagating throughout the network;

1For convenience, we refer to the cost of a link that is down as ∞. In
practice, however, it is set to the maximum possible metric value.

iii) Each progressive update increments the failed link cost
by 1;2 iv) Links are bidirectional with symmetric costs.

Let u−v, with original cost of Cu−v , be the failed link. Its cost
is progressively updated and currently it is being changed from
←−
Cu−v (cost in the bc era) to

−→
Cu−v (cost in the ac era). For other

symbols too, we use the overhead left arrow to refer to the bc
era state and right arrow to refer to that in the ac era.

Suppose a packet is being forwarded from source s to destina-
tion d. Without loss of generality, let us assume that a packet
from s to d, if it were to cross the link u−v, will pass in the
direction u→v. In the following, we show that, under FIFR++,
this packet does not get caught in a loop, i.e., does not traverse
the same link in the same direction more than once.

Property 1: A packet does not loop if u→v < P (
←−
T s ,d)

If u→v < P (
←−
T s ,d), then u→v < P (

−→
T s ,d), i.e., if the shortest

path from s to d in the bc topology does not include u→v,
then same is the case in the ac topology too. This is true
because the path through u→v gets costlier as the cost Cu−v is
increased from bc to ac. Since this is the only change between
the bc and ac topologies, P (

←−
T s ,d) = P (

−→
T s ,d). Therefore, all

routers along that path forward the packet consistently to d.

Property 2: A packet does not loop if it is not rerouted by u.

As per FIFR++, a packet may be forwarded using back hops
in B tables, only after it reaches u and gets rerouted. In all
other cases, it is forwarded using usual next hops in F tables.
Suppose that is not the case and a router i forwards the packet
using the back hop entry Bd

j→i . For this to happen, i should
be a next hop to d according to j and vice versa. Obviously
this can not happen if i and j are in the same era.

Let us assume that router i is in the ac era and j in the bc era.
Then, in j’s view of the topology, D (

←−
T j ,d) > D (

←−
T i ,d) and

in i’s view, D (
−→
T i ,d) > D (

−→
T j ,d). This is not possible consid-

ering that D (
−→
T j ,d) = D (

←−
T j ,d) or D (

−→
T j ,d) = D (

←−
T j ,d)+1,

and D (
−→
T i ,d) = D (

←−
T i ,d) or D (

−→
T i ,d) = D (

←−
T i ,d) + 1.

Similarly, when i is in the bc era and j in the ac era, no
back hops are used to forward the packet.

In other words, when a packet is not rerouted by u, all routers
along the path forward it using F tables only and FIFR plays
no role in forwarding it. This scenario is already shown be
loop-free due to progressive link metric increments [8].

Property 3: A packet does not loop if it is rerouted by u.

The path taken by a packet rerouted by u can be split into
3 segments: a forward segment to the point of failure s u,
a backward segment u x→y to a turning point y (where it
switches from backwarding to forwarding), and an additional
forward segment y→z d to destination. Note that s and x

2Using the arguments analogus to that in [8], which shows that updating
with optimized metric sequence is loop-free, it is possible to prove that similar
sequence with larger metric increments also does not cause loops with FIFR.



can be u itself and similarly z can be same as d. It follows
from Property 2 that no looping occurs in the path s u. Next,
we prove that the other two segments are also loop-free.

From the properties of FIFR, it is known that both the seg-
ments are loop-free in the original topology (with original cost
of Cu−v for u−v). Since back hops B are based on the original
topology, backwarding is done consistently by the routers
following u. The only deviation is that some unusual incoming
interfaces with associated back hops in the original topology
may no longer be unusual incoming interfaces in the bc or ac
topology. Without loss of generality, let y be the turning point
from backwarding segment to forwarding segment.

We show that y can safely switch from using backhops, Bd
x→y ,

to either
←−
F d

y or
−→
F d

y , when x is no longer a next hop from y to
d. First, consider the scenario when router y is in the bc era.
Let z be the next hop from y to d in the bc topology (with cost
←−
Cu−v greater than original cost of Cu−v for link u−v). Then, we
can show that the packet from z to d would not arrive back at
u, avoiding any potential for looping. For z to be a next hop
from y in the bc topology, we must have D (

←−
T x ,d) + Cx−y >

D (
←−
T z ,d) +Cy−z , whereas D (Tx ,d) +Cx−y < D (Tz ,d) +Cy−z

in the original topology. Considering that there is no change
in the cost of any other link except u−v, this is possible only
if u→v < P (

←−
T z ,d), i.e., the shortest path from z to d does not

pass through u→v. Therefore, a packet gets forwarded from z
to d without getting caught in a loop according to Property 1.

Now, suppose router y is in the ac era with z as its next hop
to d, whereas x was the next hop in the bc topology. Since
z or any other downstream routers may be in the bc era, the
question is whether the packet from z to d reaches u and then
gets rerouted to y, resulting in a forwarding loop. For that
to happen, the backward path u x→y must be shorter than
u z→y, while the forward path y→z d must be shorter
than y→x d. This is an impossibility if z d were to pass
through u, considering that link costs are symmetric.

Finally, if the failure of u−v partitions the network and there
is no path from s to d, then the packet is dropped, instead of
getting rerouted, by u or v. Thus, FIFR++ can guarantee loop-
free forwarding to reachable destinations during convergence.

B. Validation of FIFR++

We have validated the FIFR++ approach using Rocketfuel
topologies [9], details of which are listed in Table V. We
also used 10 random topologies generated using BRITE [10],
varying the number of nodes from 25 to 125, each with average
degrees of 4 and 6. We developed a customized simulator that
fails one link at a time in the given topology and verifies
if a packet from each affected (whose shortest path passes
through that link) pair of source and destination nodes gets
caught in a loop, considering all possible combinations where
each node can be in either bc or ac state. As expected, under
FIFR++, with progressive updates, no packet incurred any

loop. Interestingly, even when FIFR is coupled with traditional
updates, only in one of the random topologies, with 50 nodes
and average degree 4, we observed forwarding loops between
4 pairs of nodes for one particular link failure. This indicates
that looping scenario illustrated using Fig. 2 in Section III
is uncommon. Therefore, we believe it is possible to shorten
the link metric sequence with FIFR++ to guarantee loop-
free forwarding while also accelerating convergence, exploring
which is part of our immediate future work.

TABLE V
SUMMARY OF ROCKETFUEL TOPOLOGIES

AS Number Name Nodes Edges

1221 Telstra 108 306

1239 Sprint 315 1944

1755 Ebone 87 322

3257 Tiscali 161 656

3967 Exodus 79 294

6461 Abovenet 141 748

IV. LIMITATIONS AND DISCUSSION

Link metric changes besides failures: The focus of this paper
has been about dealing with failed links. But a similar ap-
proach can be used to increase the link cost to a certain target
metric, instead of ∞. An issue that arises then is when to
update the backwarding entries to reflect the new cost. We
suggest updating backwarding table after a certain timeout
interval since a previous link cost increase update. Again, this
does not need any coordination between routers. Similarly, this
approach can be used to introduce a new link or bring up a link
that was previously down. We find that in case of decreasing
link cost, both forwarding and backwarding table entries can
be updated simultaneously without causing any loops.

Node failures and asymmetric link costs: Our discussion and
the proof assumed that there is only one link failure in the
network. The question is can FIFR++ deal with failure of
multiple links attached to a single router. Since both FIFR and
progressive updates can individually handle router failures, we
plan to investigate that. Similarly, this paper assumes links are
bidirectional with symmetric link costs. We plan to expand on
this work to deal with asymmetric link weights too.

Optimization of link metric sequence: As mentioned earlier,
back hops under FIFR, meant for facilitating fast reroute, can
help mitigate potential forwarding loops during convergence.
However, they can not completely prevent them, necessitating
progressive link updates. This work used the metric sequence
output by the method in [8], without taking into account
the natural capabilities of FIFR in mitigating loops. We see
significant potential in shortening the metric sequence with the
knowledge of FIFR and we plan to exploit this potential.



V. RELATED WORK

An approach most related to this work uses the combination of
NotVia [1] and interface specific forwarding [11] for loop-free
convergence and fast reroute. The relative merit of FIFR++,
unlike NotVia which relies on encapsulation, is that it provides
the same service without any modification to the IP datagram.

Safeguard [12] aims to provide both fast route and transient
loop prevention, by carrying remaining path length in all pack-
ets. Compared with such schemes, FIFR++ provides failure
resilience without additional information in the packet header.

Along the lines of progressive updates, [13] and [14] provide
efficient algorithms for determining metric sequences for shut-
ting down a link or a router. Similar to [8], they are, however,
meant for planned maintenance. FIFR++ can leverage them
and handle both unplanned and planned failures gracefully.

An approach for mitigating transient forwarding loops during
convergence using interface-specific forwarding was proposed
in [15]. But this method prevents loops by discarding packets
that arrive through unusual interfaces. In contrast, FIFR++
ensures loop-free convergence without any packet loss.

Failure carrying packets [16] does away with the need for
convergence by carrying the list of failed links in the packet.
Packet Recycling [17] can deal with more than one failure
by rerouting packets leveraging cellular graph embeddings,
but needs multiple bits in the header. Both these require a
significant modification to the packet header.

Software defined networking (SDN), with a centralized control
plane, has been gaining in popularity [18]. Yet, there have been
attempts to combine the advantages of SDN and traditional
routing. In [19], Vissicchio et al propose a hybrid approach
called Fibbing, which introduces fake nodes in the network to
induce the desired forwarding tables. Since link failures will
necessitate changes in the forwarding plane and fake nodes,
we believe approaches like FIFR++ for providing failure
protection and loop-free convergence are still relevant.

A recent work [20] shows resiliency to 4 simultaneous failures
using interface-specific forwarding. We plan to study this
approach and extend FIFR++ to provide loop-free forwarding
and convergence even in the presence of multiple failures.

VI. CONCLUSION

This paper investigated the possibility of using failure infer-
ence based fast reroute (FIFR) coupled with a link state update
mechanism for loop-free convergence while performing fast
reroute, without making any modification to the IP datagram
or requiring coordination between routers. We found that FIFR
mitigates potential loops during convergence with traditional
link state updates. However, progressive link metric updates
need to be employed in conjunction with FIFR to guarantee
loop-free convergence. We proved that this combined approach
of FIFR++ is loop-free and validated it using Rocketfuel and

random topologies. Based on encouraging results about FIFR
even without progressive updates, we are currently devising
ways to determine the optimized metric sequence for FIFR++
that can lead to faster loop-free convergence.
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