
Robust-by-Design Plans for Multi-Robot Pursuit-Evasion

Trevor Olsen, Nicholas M. Stiffler, and Jason M. O’Kane

Abstract— This paper studies a multi-robot visibility-based
pursuit-evasion problem in which a group of pursuer robots
are tasked with detecting an evader within a two dimensional
polygonal environment. The primary contribution is a novel
formulation of the pursuit-evasion problem that modifies the
pursuers’ objective by requiring that the evader still be de-
tected, even in spite of the failure of any single pursuer robot.
This novel constraint, whereby two pursuers are required to
detect an evader, has the benefit of providing redundancy to the
search, should any member of the team become unresponsive,
suffer temporary sensor disruption/failure, or otherwise become
incapacitated. Existing methods, even those that are designed to
respond to failures, rely on the pursuers to replan and update
their search pattern to handle such occurrences. In contrast,
the proposed formulation produces plans that are inherently
tolerant of some level of disturbance. Building upon this new
formulation, we introduce an augmented data structure for
encoding the problem state and a novel sampling technique
to ensure that the generated plans are robust to failures of any
single pursuer robot. An implementation and simulation results
illustrating the effectiveness of this approach are described.

I. INTRODUCTION

Pursuit-evasion is a two-player game where the players
are diametrically opposed. Members of one team, called the
pursuers, actively seek out members of the second team, the
evaders. The pursuers’ goal is to capture (either physically
or visually) the evaders; the evaders wish to evade capture
for as long as possible.

A number of tasks can be modeled as pursuit-evasion prob-
lems albeit with differing levels of antagonism displayed by
the evaders. Some such examples include search-and-rescue
scenarios (rescuers/rescuee), agriculture/livestock monitoring
(stockman/predator), and active pursuit (hunter/prey), among
many others. With the proliferation of robots into various
domains, we have seen instances where robots are used in
all of the aforementioned scenarios to perform the role of
the pursuers [2], [4], [7].

This paper addresses a form of the pursuit-evasion problem
where the pursuers’ task is to establish visibility with all
evaders that exist in a given environment. These games take
place in a two-dimensional space in which each pursuer is
capable of detecting any evader within its line of sight.

Specifically, this paper investigates how one might gen-
erate strategies for the pursuers that are robust in the face
of malfunctions which may inhibit members of the team,

T. Olsen and J. M. O’Kane are with the Department of Computer Science
and Engineering, University of South Carolina, Columbia, SC 29208,
USA. N. M. Stiffler is with the Department of Computer Science, Univer-
sity of Dayton, Dayton, OH 45469, USA. tvolsen@email.sc.edu,
jokane@cse.sc.edu, nstiffler1@udayton.edu This material
is based upon work supported by the National Science Foundation under
Grant Nos. 1659514 and 1849291.

(a) A 1-failure robust solution with 3 pursuers.

(b) Red failure (c) Green failure (d) Blue failure

Fig. 1: A simple example of a 1-failure robust solution for
n = 3 robots. Removal of any single pursuer does not
preclude the remaining pursuers from capturing an evader
in the n = 2 subsolution.

as shown in Figure 1. A few such defects include utter
failure, intermittent sensor failure (i.e. false negatives), and
incorrectly transmitted information. To the authors’ knowl-
edge, the literature regarding failures in the realm of pursuit-
evasion is scant. Our own previous work considered the
situation where members of the pursuer team suffered com-
plete and catastrophic failure, necessitating that the pursuer
strategy be re-planned online [17]. This replanning step
introduces execution delays and requires all of the remaining
pursuers to be aware of failures when and where they occur.
This paper addresses a larger range of potential robotic
defects by generating joint motion strategies for the pursuers
which guarantee detection of the evaders, regardless of any
single pursuer malfunction and without the need to detect
such malfunctions when they occur nor to halt the current
execution to update the pursuers’ motion strategies.

Beyond the previously-studied pursuit-evasion component,
which must reason about the regions of the environment
which may contain an evader, the major challenge in gen-
erating such ‘failure-robust’ joint pursuer strategies is the
need to track these ‘contaminated’ regions separately for
each possible pursuer failure, while ensuring that a single
solution can be extracted when the process is complete.
Note that the best known complete algorithm for multi-
robot visibility-based pursuit-evasion solves the problem in

time doubly exponential in the number of pursuer agents.
To address this shortcoming, sampling-based methods have
been developed [18], [23] that utilize a graph structure whose
vertices encode the pursuers pose information in addition to
the regions of the environment where the evader may be;
whereas edges indicate feasible pursuer motions within the
environment.

This paper builds on this line of sampling-based ap-
proaches by providing an augmented graph structure that
encodes the ‘robustness’ of the search (i.e. reasoning over
any possible pursuer failure). In response to this added layer
of complexity, a novel sampling method is introduced which
creates condensed sample sets that ensure capture of the
evader via a highly connected roadmap.

The remainder of the article begins with a review the
related literature in Section II. Next, a formal description of
the problem is provided in Section III. Section IV outlines the
algorithm utilized to generate robust joint motion strategies.
Simulation results, in which the algorithm was employed in
several different representative environments, are described
in Section V before the paper concludes with a summary and
look towards future work Section VI.

II. RELATED WORK

Pursuit-evasion problems have a rich history in the fields
of differential game theory [10], [11], graph theory [20], and
geometric settings [9], [26]. In the context of graph theory,
these problems are typically referred to as discrete pursuit-
evasion games. One possible scenario for such a game
requires the pursuer agent(s) to occupy the same vertex as
the evader. Parsons introduced this problem on finite graphs
[20]. Interest in graph theoretic pursuit-evasion problems
grew quickly, spanning a broad range of variations such as:
unrestricted evader movements [1] and infinite graphs [16].

Pursuit-evasion also has a rich history in the geomet-
ric/continuous domain [12], [21], [29]. The continuous nature
of geometric environments allows for several different types
of capture conditions, including those based on visibil-
ity [26]. The visibility-based pursuit-evasion game has been
studied in extensive detail for both the case of a single
pursuer as well as a team of several pursuers. For the single
pursuer case, results include: completeness [9], solvability
conditions [19], limited field of view [6], bounded evader
velocity [27], optimality [24] and robustness [25].

Contrary to what one might expect, the addition of extra
pursuer agents does not necessarily make the problem any
easier. As the number of pursuers increases, the dimen-
sionality of the problem increases creating a computational
challenge. This concern with dimensionality has parallels in
many areas of robotics. In path and motion planning, for ex-
ample, sampling-based approaches have proven remarkably
useful [13], [14]. This approach has also emerged in multi-
robot pursuit-evasion problems, where sampling [18], [22]
was able to successfully combat the complexity of a complete
algorithm [23]. Other research in multi-robot pursuit-evasion
includes the lack of environmental knowledge [15] and
heuristics for the worst-case [8].

Fault tolerance and recovery is an active research thread
in the robotics community as well [3], [5], [28], but less
so in the context of pursuit-evasion. The authors previously
introduced a scheme to handle complete and catastrophic
failures [17]. The novelty of this paper is to address the
situation where one of the pursuers is assumed to be faulty,
without the need to detect the fault nor replan on the fly. In
particular, we consider malfunctions such as complete failure
with and without indication, potential erroneous information
reporting, whether it be malicious or accidental and possible
physical limitations leaving the robot immobilized for the
remainder of the search.

III. PROBLEM STATEMENT

A. The Environment, Pursuers and Evaders

The environment, F , is a closed, bounded and polygonal
subset of R2. A team of n pursuers move continuously
in F at a bounded speed. Given locations w1, . . . , wn for
each of the n pursuers, we call the vector 〈w1, . . . , wn〉 a
joint pursuer configuration (JPC). We denote the location
of the ith pursuer at time t by the continuous function
fi(t) : [0,∞)→ F . We call each such function fi a motion
strategy. Each pursuer is equipped with an omnidirectional
sensor which extends to the nearest point on the boundary
of the environment. For a pursuer located at q ∈ F , the
visibility polygon, V (q), is the set of points r ∈ F such that
the line segment qr is contained in F .

Similar to pursuers, evaders move continuously throughout
F but differ in that they are capable of reaching arbitrarily
high speeds. Since the objective of the pursuers is to locate
the evaders regardless of the trajectories taken by the evaders,
we can assume, without loss of generality, there exists a
single evader. We denote the location of this evader at time t
by the continuous function e(t) : [0,∞)→ F . The pursuers’
objective is to guarantee to locate the evader, as formalized
in the next definition.

Definition A collection of motion strategies
X = 〈f1, . . . , fn〉 is called a solution if, for any evader curve
e, there exists a time t ≥ 0 such that e(t) ∈

⋃
i≤n V (fi(t)).

Figure 2 exemplifies these definitions. We are interested in
solutions that can still guarantee the detection of the evader,
even if a single pursuer robot fails.

Definition Given a set of robots, A, where |A| > k, a
solution X is k-failure robust if it remains a solution utilizing
only the robots A \B, for any B ⊂ A with |B| ≤ k.

Notice that, according to these definitions, a solution is a 0-
failure robust solution. In this paper, we address the problem
of generating 1-failure robust solutions.

B. Shadows and Their Events

The ideas presented in the following two subsections,
which discuss the unseen regions of the environment, were
initially presented by Guibas, Latombe, LaValle, Lin, and
Motwani [9] in the context of a single-robot version of this
problem. Because our algorithm, specifically the rSG-PEG

f2(0)

f2(t)

f2(T)

f1(0) f1(t)

f1(T)
e(0)

e(t)

e(T)

Fig. 2: Two pursuers actively search for the evader for T
seconds. At time t, the pursuer moving along path f1 has
visibility of the evader.

data structure described in Section IV-A, uses these ideas in
important ways, we summarize them here; details appear in
the original paper.

1) Shadows: For a fixed time t, the shadow region is the
set S(t) = F \

⋃
i≤n V (fi(t)). The maximally connected

components of the shadow region are called shadows. Based
on the pursuers’ movement up until time t, it is either
possible or not for an evader to be in a certain shadow
while still undetected. In the case that a shadow could
contain an undetected evader, the status of the shadow is
contaminated, otherwise the shadow’s status is cleared. We
concisely summarize the status of each shadow at a given
time by the shadow label, a binary string of length equal
to the number of shadows. In a shadow label, a 1 bit
represents a contaminated shadow, while a 0 bit indicates
that the corresponding shadow is cleared. A shadow label
consisting of all zeroes indicates that all shadows have been
cleared, making it impossible for an undetected evader to
be anywhere within the environment, thus resulting in a
solution.

It will be useful to consider a notion of dominance
between shadow labels at the same JPC. For two shadow
labels ` = (a1a2 · · · am) and `′ = (b1b2 · · · bm), ` is said to
dominate `′ if ` 6= `′ and for each i = 1, . . . ,m, ai ≤ bi.
That is, if a shadow is contaminated in `, it must also be
contaminated in `′ and any cleared shadow in `′ must also
be cleared in `.

2) Shadow Events: As pursuers move within F , the
shadows will continually change shape and size. When the
number of shadows changes, these occurrences are called
shadow events, which can be classified into four types:
• Appear: A shadow can appear if a previously seen

subset of the environment falls out of the visibility
polygon of all of the pursuers. In this case, the newly
formed shadow is marked as clear.

• Disappear: If a pursuer gains vision of an entire shadow,
the shadow disappears. Here, the shadow is completely
removed from the shadow label.

• Merge: Two or more shadows merge if they become
a single connected component. When this occurs, the

newly merged shadow is given the cleared label if and
only if all of the merging are cleared.

• Split: If a pursuer’s visibility polygon disconnects an
existing shadow, we say the shadow was split. Both
post-split shadows are given the status of the pre-split
shadow.

IV. ALGORITHM OVERVIEW

This section describes an algorithm to generate a 1-failure
robust solution for a given environment and number of
pursuers.

The algorithm builds upon earlier sampling-based ap-
proaches to visibility-based pursuit-evasion [23]. The basic
idea in that prior work is to construct a roadmap data
structure that represents the pursuers’ ability to move through
the environment and to clear various collections of shadows.
As JPCs are sampled and inserted into the roadmap, the prior
algorithm tracks a set of reachable shadow labels attached to
each vertex. When the data structure determines that an all-
clear shadow label is reachable at some vertex, the algorithm
extracts that solution and terminates successfully.

The algorithm we propose here differs from that baseline
in three important ways, necessitated by the need to produce
robust solutions. First, the data structure is augmented to
track shadow labels not for all n robots, but instead for each
of the n distinct subsets of size n − 1. This ensures that,
if all of these shadow labels achieve an all clear status, the
resulting solution will be 1-failure robust. See Section IV-A.
Second, we introduce a geometric caching optimization to
the data structure, based on the observation that the number
of times shadow labels are propagated across each edge
is substantially higher than in prior settings. Section IV-B
describes this change. Finally, we introduce a new sampling
scheme tailored to the specific need for solutions in which
at least two robots clear each shadow (Section IV-C).

A. Robust Sample-Generated Pursuit-Evasion Graphs (rSG-
PEG)

Here, we describe how we enhanced the existing sample-
generated pursuit-evasion graph (SG-PEG) data struc-
ture [23] to generate 1-failure robust solutions. An rSG-PEG,
G, is a directed graph in which one vertex is designated as
the root. Each vertex of G is labeled with a JPC; a directed
edge u → w indicates that there exists a coordinate-wise
straight line, collision free movement between the JPCs of
u and w. For the sake of compactness, a vertex with JPC
w1, . . . , wn will be named w.

Each vertex is also associated with a collection of failure
shadow labels, each of which is an n-tuple L = (`1, . . . , `n),
where each `i is a single shadow label. The interpretation
is that the existence of failure shadow label (`1, . . . , `n) at
vertex w implies that there exists a path in G from the
root to w, such that for each 1 ≤ i ≤ n, the pursuers in
{1, . . . , n} \ {i} would reach shadow label `i by following
that path. Thus, reaching a vertex with a failure shadow label
in which all n sub-labels are all cleared results in a 1-failure
robust solution within G.

An rSG-PEG is constructed by repeated calls to its primary
operation, G.ADDSAMPLE(w), which performs the follow-
ing steps.

1) A vertex w is added to G.
2) An edge w → u is added between between w and each

other vertex u of G if the line segment wu is fully
contained in Fn. Similarly the twin edge u → w is
added to G.

3) During this process, each time an edge a → b is
created, for each failure shadow label L attached to a,
the algorithm computes a failure shadow label L′ for
b, computed by propagating each shadow label `i in L
across the edge a → b, as described below. If L′ is
not dominated by any other failure shadow label at b,
it is retained at b. Here, dominance of failure shadow
labels is defined by generalizing the idea of dominance
of shadow labels. This process continues recursively,
spreading new reachable failure shadow labels across
G as needed.

Adding a sequence of samples to an rSG-PEG is enough
to form a 1-failure robust solution. However, propagating
the shadow information along edges of the rSG-PEG is a
computationally expensive operation that occurs frequently
in the failure-robust scenarios considered here. The next
section describes how to eliminate redundant geometric
computations from this process.

B. Fast Label Propagation via Shadow Influence Caching

To accelerate the propagation of shadow labels across
edges of the rSG-PEG, we construct shadow influence re-
lations for each edge. For a given edge w → u and a given
pursuer index i, let Sw,i and Su,i denote the shadows at
w and u formed in the absence of pursuer i. The shadow
influence relation is a relation R ⊆ Sw,i × Su,i, in which
(sw, su) ∈ R if and only if there exists a trajectory for the
evader to travel undetected from sw to su as the pursuers
move from w to u. These shadow influence relations can
be computed according to the update rules described in
Section III-B.2 by discretizing the paths of the pursuers.
This is a time-consuming computational geometry operation,
but it must be performed only once for each edge-pursuer
pair. Once the relation R is computed, any future shadow
label can be propagated efficiently by setting each shadow
su at u to be contaminated if and only if there exists a
contaminated shadow sw in the source shadow label for
which (sw, su) ∈ R.

C. Method of Sampling

Armed with an rSG-PEG suitably enhanced to generate
robust solutions, it remains to devise a sampling strategy
tailored to place JPCs in locations likely to lead to a
solution quickly. Because of the computational expense of
maintaining the list of non-dominated failure shadow labels
at each vertex, it is of paramount importance that each
sample we add to the rSG-PEG captures crucial and unique
data. To do this, we rely on a method of scattering points
throughout F called webs. This method was previously

(a) Original web. (b) Sparse web.

Fig. 3: A visualization of the noise reduction in sparse
webs. The red points represent the initial points while the
intersection points are drawn in blue

introduced by Olsen et al. [18], and is enhanced below.
Using webs, we generate a sequence of samples with high
connectivity between successive samples and strong coverage
of the environment by multiple pursuers.

1) Sparse Webs: A sparse web, W = P ∪ Q, is the
union of two sets of points from the environment. The initial
points P are placed sequentially and uniformly at random
outside of the visibility polygon of any previously placed
initial points. This process continues until

⋃
p∈P V (p) = F .

Next, we construct the intersection points Q. For each unique
pair of points (pi, pj) ∈ P × P , we add to Q a uniformly
random point from V (pi)∩V (pj) if V (pi)∩V (pj) 6= ∅ and
Q ∩ V (pi) ∩ V (pj) = ∅. The final condition, which is the
alteration over the original form of webs, reduces the number
of points in W while maintaining coverage and connectivity.
See Figure 3. The initial points ensure that we have complete
visibility coverage of the environment while the intersection
points provide straight-line connectivity between the initial
points, allowing a pursuer to move freely about an entire
sparse web. Sparse webs generated in this way are used to
generate sample JPCs, as described next.

2) Robust cycle samples (RCS): We wish to generate
samples in a way that is effective in finding a 1-failure robust
solution. To do this, we construct a graph H whose vertex
set is a sparse web W and whose edge set consists of all
unique pairs of points from W × W who can be joined
by a line segment contained within the environment. The
construction of webs ensures that H is, in essence, a visibility
roadmap of F . Once H is constructed, a random vertex h
is selected as the root node for a depth first search (DFS)
on H . Throughout the DFS, we construct an ordered list D
of vertices visited, both on their initial discovery and via
backtracking. We continue this process until each point of
H has been discovered and we successfully backtracked to
the root node. We do not add the root node to D during the
final stage of the DFS backtracking. This process produces
a list of points D = (D[0], . . . , D[d − 1]) which contains
every point from W at least once. The construction also
guarantees connectivity between any adjacent points in D,
giving a spanning walk, with repeats, around W . Since h is
the first element added to D, h = D[0].

(a) A sparse web. (b) To form the walk D, DFS is performed on the
sparse web starting at the star vertex. In this example,
the length the walk D is d = 20.

3

3

1

2

1

2

2

1

3

(c) The first three samples generated by RCS. Notice
that the 3 pursuers start dd/ne = 7 units apart from
each other on D.

Fig. 4: The stages of RCS.

To generate n-robot JPCs, we evenly space the n pursuers
along D and walk along the cycle generated by the DFS
on H . That is, we create the first sample JPC by choosing
D[(i − 1) · d/n] for each robot i = 1, . . . , n. Subsequent
sample JPCs are generated in a similar fashion. See Fig-
ure 4. To generate the kth subsequent sample, we select
D[((i−1)·d/n+k mod d)] for each robot i = 1, . . . , n and
for each k = 1, . . . , 2d/n. Having k range over 1, . . . , 2d/n
ensures that each point in D has been visited by at least two
pursuers. Thus, should a failure occur for any single pursuer,
that region of the environment has been seen by at least one
other pursuer.

V. EVALUATION

We implemented the algorithms described in Section IV
in C++. All of the experiments below were conducted on a
single core of a 6 core Intel i5-9600K CPU running 64-bit
Ubuntu 20.04 at 3.7 GHz with 16 GB of RAM. Figure 5
shows an example of a 1-failure robust solution computed
by this implementation, using both shadow influence caching
and RCS.

To evaluate the algorithm quantitatively, we compared
(a) the new shadow label updating system described in
Section IV-B against the original naive approach, and (b) the
RCS technique described in Section IV-C.2 to web sampling
(WS).

For (a) we executed the main algorithm, using RCS, to
find a 1-failure robust solution utilizing 3 pursuers in the
environment shown in Figure 3. We conducted 25 trials
using shadow influence caching and 25 trials using the naive
method that computes shadow influence anew each time.
All 50 trials successfully found 1-failure robust solutions.
The average computation time (in seconds) utilizing shadow
influence caching was 47.02 with a standard deviation of

15.12; without shadow influence caching, the average was
425.88 seconds, with a standard deviation of 512.64. The
results demonstrate an overwhelming benefit to the use
of shadow influence caching, which the authors, perhaps
counter-intuitively, did not observe in the standard (i.e. 0-
failure robust) setting.

For (b), we compared the efficiency of planning with RCS
in contrast with planning with WS, a sampling strategy orig-
inally presented by Olsen et al. [18]. To do so, we attempted
to find a 1-failure robust solution utilizing n = 3, 4, and
5 pursuers across the 3 environments found in Figures 2, 3
and 5. For each such scenario, we conducted 50 simulations.
Tables I, II and III encapsulate the results, showing the
mean (µ) and standard deviation (σ) of the planning time
(in seconds) as well as number of vertices and edges in the
rSG-PEG. Each such simulation was allotted a timeout of 10
minutes; if the corresponding simulation failed to produce a
1-failure robust solution in that time, it was deemed a failure.
The results for 3 robots (Table I) show that RCS is, at worst,
a marginal improvement over WS in all experiments. The
addition of another robot further separated the results of these
sampling methods. In particular, the standard deviation of the
planning time was significantly decreased, resulting in more
consistent run times. The highly connective nature of RCS
allows us to increase the number of robots without severely
suffering from the curse of dimensionality.

VI. CONCLUSION

This paper addressed the issue of potential single robot
failures in the multi-robot visibility-based pursuit-evasion
problem. We introduced a modification to an existing data
structure to ensure that each solution generated by our
algorithm remains a solution in the event of any single
robotic failure. The inclusion of shadow caching proved to

Table I: Simulation results (n = 3).
success planning time (s) Vertices Edges

rate µ σ µ σ µ σ

Figure 2
RCS 100% 131.86 64.67 50.86 19.77 63.58 29.68
WS 98% 151.10 50.98 59.76 16.75 73.92 26.58
Figure 3
RCS 100% 50.85 20.10 23.36 7.19 30.62 11.62
WS 100% 53.01 20.22 26.56 8.14 34.44 15.04
Figure 5
RCS 100% 89.84 47.37 47.30 18.09 72.32 39.65
WS 100% 109.00 57.44 50.02 18.24 77.70 41.80

Table II: Simulation results (n = 4).
success planning time (s) Vertices Edges

rate µ σ µ σ µ σ

Figure 2
RCS 100% 140.57 60.01 64.72 64.57 74.34 87.02
WS 100% 194.53 74.96 87.14 90.13 104.10 133.88
Figure 3
RCS 100% 58.21 21.82 23.26 24.01 28.34 40.63
WS 100% 75.40 30.11 26.56 9.21 28.54 10.95
Figure 5
RCS 100% 82.79 44.73 38.34 26.62 46.10 38.11
WS 100% 113.08 57.75 46.34 25.11 52.60 33.74

Table III: Simulation results (n = 5).
success planning time (s) Vertices Edges

rate µ σ µ σ µ σ

Figure 2
RCS 100% 182.10 69.91 251.26 305.28 304.30 425.75
WS 98% 255.51 128.64 237.27 605.98 367.49 1233.18
Figure 3
RCS 100% 84.93 46.79 88.48 238.54 258.76 1102.28
WS 100% 96.86 42.19 57.34 87.28 80.12 162.37
Figure 5
RCS 100% 86.71 47.72 65.56 95.32 90.30 183.12
WS 100% 129.01 70.41 78.50 95.09 93.82 149.29

be cardinal to combat the rapid data expansion in the rSG-
PEG. A new sampling method ensured that each region of the
environment was observed by two or more pursuers, which
allowed us to effectively spread out sampling points and
reduce the computation time compared to previous sampling
methods.

Future work may include the extension to k-failure robust
problems, in the case where k > 1. In the interest of
computation time —note that the most obvious extension
of the present work would require shadow labels of size
exponential in k— this general problem would likely require
a new data structure which considers some sort of subset
lattice structure where the elements represent sets of robots
that failed.

Fig. 5: A 1-failure robust solution. Notice each unique region
of the environment is examined by at least 2 pursuers.
The paths taken by the pursuers were slightly shifted for
illustrative purposes.

REFERENCES

[1] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and
B. Vöcking, “Randomized pursuit-evasion in graphs”,
in Automata, Languages and Programming, P. Wid-
mayer, S. Eidenbenz, F. Triguero, R. Morales, R.
Conejo, and M. Hennessy, Eds., 2002, pp. 901–912.

[2] R. Arnold, H. Yamaguchi, and T. Tanaka, “Search
and rescue with autonomous flying robots through
behavior-based cooperative intelligence”, Journal of
International Humanitarian Action, vol. 3, Dec. 2018.

[3] D. Crestani, K. Godary-Dejean, and L. Lapierre, “En-
hancing fault tolerance of autonomous mobile robots”,
Robotics and Autonomous Systems, vol. 68, pp. 140–
155, 2015.

[4] J. Dias, C. Paredes, I. Fonseca, H. Araujo, J. Batista,
and A. de Almeida, “Simulating pursuit with ma-
chines. experiments with robots and artificial vision”,
in Proceedings of 1995 IEEE International Confer-
ence on Robotics and Automation, 1995, pp. 472–477.

[5] B. R. Donald, “A geometric approach to error de-
tection and recovery for robot motion planning with
uncertainty”, Artificial Intelligence, vol. 37, no. 1,
pp. 223–271, 1988.

[6] B. P. Gerkey, S. Thrun, and G. Gordon, “Visibility-
based pursuit-evasion with limited field of view.”,
International Journal of Robotics Research, vol. 25,
no. 4, pp. 299–315, 2006.

[7] P. González-De-Santos, A. Ribeiro, C. Fernández-
Quintanilla, F. López-Granados, M. Brandstötter, S.
Tomic, S. Pedrazzi, A. Peruzzi, G. Pajares, G. Ka-
planis, M. Pérez-Ruiz, C. Valero, J. Cerro, M. Vieri,
G. Rabatel, and B. Debilde, “Fleets of robots for
environmentally-safe pest control in agriculture”, Pre-
cision Agriculture, vol. 18, pp. 574–614, 2016.

[8] L. Gregorin, S. Givigi, E. Freire, E. Carvalho, and
L. Molina, “Heuristics for the multi-robot worst-
case pursuit-evasion problem”, IEEE Access, vol. 5,
pp. 17 552–17 566, Aug. 2017.

[9] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin,
and R. Motwani, “Visibility-based pursuit-evasion in
a polygonal environment”, International Journal on
Computational Geometry and Applications, vol. 9,
no. 5, pp. 471–494, 1999.

[10] Y. C. Ho, A. Bryson, and S. Baron, “Differential
games and optimal pursuit-evasion strategies”, IEEE
Trans. Automatic Control, vol. 10, pp. 385–389, 1965.

[11] R. Isaacs, Differential Games. New York: Wiley, 1965.
[12] V. Isler, D. Sun, and S. Sastry, “Roadmap based

pursuit-evasion and collision avoidance”, in Proc.
Robotics: Science and Systems, 2005.

[13] S. Karaman and E. Frazzoli, “Sampling-based algo-
rithms for optimal motion planning”, International
Journal of Robotics Research, vol. 30, no. 7, pp. 846–
894, Jun. 2011.

[14] Z. Kingston, M. Moll, and L. Kavraki, “Sampling-
based methods for motion planning with constraints”,

Annual Review of Control, Robotics, and Autonomous
Systems, vol. 1, May 2018.

[15] A. Kolling and S. Carpin, “Multi-robot pursuit-evasion
without maps”, in Proc. IEEE International Confer-
ence on Robotics and Automation, 2010.

[16] F. Lehner, “Pursuit evasion on infinite graphs”, Theo-
retical Computer Science, vol. 655, pp. 30–40, 2016.

[17] T. Olsen, N. M. Stiffler, and J. M. O’Kane, “Rapid
recovery from robot failures in multi-robot visibility-
based pursuit-evasion”, in Proc. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
2021.

[18] T. Olsen, A. M. Tumlin, N. M. Stiffler, and J. M.
O’Kane, “A visibility roadmap sampling approach
for a multi-robot visibility-based pursuit-evasion prob-
lem”, in Proc. IEEE International Conference on
Robotics and Automation, 2021.

[19] S. Park, J. Lee, and K. Chwa, “Visibility-based
pursuit-evasion in a polygonal region by a searcher”,
in Proc. International Colloquium on Automata, Lan-
guages and Programming, 2001, pp. 281–290.

[20] T. D. Parsons, “Pursuit-evasion in a graph”, in Theory
and Application of Graphs, Y. Alavi and D. R. Lick,
Eds., Berlin: Springer-Verlag, 1976, pp. 426–441.

[21] F. Shkurti, N. Kakodkar, and G. Dudek, “Model-
based probabilistic pursuit via inverse reinforcement
learning”, in Proc. IEEE International Conference on
Robotics and Automation, 2018, pp. 7804–7811.

[22] N. M. Stiffler and J. M. O’Kane, “A complete algo-
rithm for visibility-based pursuit-evasion with multiple
pursuers”, in Proc. IEEE International Conference on
Robotics and Automation, 2014.

[23] N. M. Stiffler and J. M. O’Kane, “A sampling based
algorithm for multi-robot visibility-based pursuit-
evasion”, in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2014.

[24] N. M. Stiffler and J. M. O’Kane, “Complete and op-
timal visibility-based pursuit-evasion”, International
Journal of Robotics Research, vol. 36, pp. 923–946,
Jul. 2017.

[25] N. M. Stiffler and J. M. O’Kane, “Planning for robust
visibility-based pursuit-evasion”, in Proc. IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 2020.

[26] I. Suzuki and M. Yamashita, “Searching for a mobile
intruder in a polygonal region”, SIAM Journal on
Computing, vol. 21, no. 5, pp. 863–888, Oct. 1992.

[27] B. Tovar and S. M. LaValle, “Visibility-based pursuit-
evasion with bounded speed”, International Journal of
Robotics Research, vol. 27, pp. 1350–1360, 12 2008.

[28] M. Visinsky, J. Cavallaro, and I. Walker, “Robotic
fault detection and fault tolerance: A survey”, Reli-
ability Engineering & System Safety, vol. 46, no. 2,
pp. 139–158, 1994.

[29] R. Zou and S. Bhattacharya, “On optimal pursuit
trajectories for visibility-based target tracking game”,
IEEE Trans. Robotics, vol. 35(2), pp. 449–465, 2019.

