
Energy-efficient information routing in sensor networks
for robotic target tracking

Jason M. O’Kane • Wenyuan Xu

Published online: 20 June 2012

� Springer Science+Business Media, LLC 2012

Abstract Target tracking problems have been studied for

both robots and sensor networks. However, existing robotic

target tracking algorithms require the tracker to have access

to information-rich sensors, and may have difficulty

recovering when the target is out of the tracker’s sensing

range. In this paper, we present a target tracking algorithm

that combines an extremely simple mobile robot with a

networked collection of wireless sensor nodes, each of

which is equipped with an unreliable, limited-range,

boolean sensor for detecting the target. The tracker main-

tains close proximity to the target using only information

sensed by the network, and can effectively recover from

temporarily losing track of the target. We present two

algorithms that manage message delivery on this network.

The first, which is appropriate for memoryless sensor

nodes, is based on dynamic adjustments to the time-to-live

(TTL) of transmitted messages. The second, for more

capable sensor nodes, makes message delivery decisions

on-the-fly based on geometric considerations driven by the

messages’ content. We present an implementation along

with simulation results. The results show that our system

achieves both good tracking precision and low energy

consumption.

Keywords Sensor networks � Routing � Robotic target

tracking

1 Introduction

Tracking problems for mobile robots have received sub-

stantial attention in recent years [1–5]. In these problems, a

robot tracker seeks to maintain close proximity to an

unpredictable target. Effective target tracking algorithms

have many important applications, including monitoring

and security. Another potential application is that the

tracker needs to carry cargo for the target and has to ‘fol-

low’ the target in real time. We note that this type of

robotic tracking problems is different from the sensor

network target tracking problem in which the main goal is

to identify the moving trajectory of the target. In this paper,

we focus on the robotic tracking problem. Algorithms have

been proposed to solve this problem with mobile robots

under various constraints and sensor models [1–5]. How-

ever, these existing methods for robotic tracking are

hampered by two primary limitations.

1. Locality: Existing tracking methods generally rely on

sensors onboard the robot, which by nature only

provide information about the target’s location when

the target is nearby. This limitation is particularly

problematic in cases where (a) the tracker starts with

little or no knowledge of the target’s location or (b) the

tracker loses contact with the target during its execu-

tion. To recover from these situations using only local

information is a challenging problem, requiring exten-

sive search in the worst case [6].

2. Sensing complexity: Prior work assumes that the robot

has access to sensors that are (in spite of their local

nature) relatively powerful and information-rich, such

as visual or range sensors [1, 4, 5]. Such sensing

capabilities add additional cost and complexity to the

robot. It is desirable to design and deploy simpler

J. M. O’Kane � W. Xu (&)

Department of Computer Science and Engineering, University of

South Carolina Columbia, Columbia, SC 29208, USA

e-mail: wyxu@cse.sc.edu

J. M. O’Kane

e-mail: jokane@cse.sc.edu

123

Wireless Netw (2012) 18:713–733

DOI 10.1007/s11276-012-0471-y

robots with less sophisticated sensing hardware.

Moreover, tracking with limited sensing is of inde-

pendent interest for cultivating understanding of the

information requirements of the target tracking task.

In this paper, we propose a tracking framework that

resolves these limitations by allowing the robot to utilize a

wireless sensor network to assist in the tracking task. The

tracking task can be divided into two parts: sensing the

target and following its movements. As such, we decouple

these parts and delegate the sensing task to a stationary

sensor network. The mobile tracker then follows the target

using only the observations made by these sensor nodes.

Such an arrangement has several advantages. Firstly, it

eliminates the need for complex sensors on the tracker,

which relaxes the hardware requirements of the tracker and

simplifies the sensing data processing algorithm that is

needed to filter out the difference of consecutive readings

caused by the tracker’s movement [7] (e.g., laser or camera

readings). Secondly, it provides a means for delivering

nonlocal information to the tracker, which is critical to help

the tracker recover when it loses contact with the target, for

example.

To further simplify the proposed system, we assume the

sensor nodes are equipped with binary proximity sensors

that cannot sense the accurate location of the target.

Instead, the sensors report only whether the target is within

a given sensing range, and these sensors may experience

frequent errors, including both false positives and false

negatives. A variety of proximity sensors could be used.

For instance, it could be an inductive proximity sensor [8]

that can detect metal targets, or a photoelectric sensor [9]

for non-metal targets.

The coarse and unreliable measurements provided by

such sensors, combined with the sensor nodes’ resource-

constrained characteristics, impose new challenges in

designing a real-time tracking algorithm. In particular, the

tracking algorithm should address two sub-problems: How

to control the tracker utilizing coarse location information

provided by sensor nodes? How to deliver sensing data

from the sensor nodes to the tracker with high energy-

efficiency?

To control the tracker utilizing the coarse location

information, our approach makes extensive use of the

concept of information states [10], which explicitly encode

the robot’s uncertainty about the target position. Specifi-

cally, the tracking robot uses information collected from

the network to synthesize a set of possible states, then

makes greedy motions intended to reduce the size of this

set. With regard to designing a lightweight, energy-

efficient protocol, we focus on designing cross layer rout-

ing protocols that limit the total number of message

transmissions in spite of the high mobility of the tracker. In

particular, to eliminate the overhead of route discoveries

and route updates, our routing protocols leverage flooding,

but the scope of flooding is strictly controlled. In summary,

the contributions of this study include the following.

• We design a unique architecture for robotic tracking,

whereby a robot cooperates with a sensor network with

the following features: Nothing is known about the

target’s motion other than its maximum speed; The

tracking robot has no sensors that directly provide

information about the target; The sensor nodes detect

only when the target is nearby, but do not provide any

precise location information, and are subject to fre-

quent, unpredictable failures; and Each sensor node has

a limited energy budget for making transmissions.

Adopting such an architecture allows us to keep both

the robot and the sensor network lightweight and

enables us to understand the cooperation between

robots and sensor networks with regard to tracking

performance.

• We devise two energy-efficient, low-maintenance, and

robust routing protocols that can forward information

towards a mobile tracker. Both routing protocols

leverage cross layer information (i.e., tracking infor-

mation in the application layer) to reduce routing

overheads. Neither protocol requires periodic beacon

exchanges between neighbors, and both are robust to a

wide range of network dynamics, e.g, sensor nodes may

fail or even move. Furthermore, both of our protocols

maintain little information to support routing. The first

algorithm uses a TCP-style technique of controlled

flooding, in which each node maintains a TTL value to

be used for its next transmission, and the TTL value

roughly estimates the hop count between the tracker

and the target. In the second algorithm, each node keeps

track of a circular portion of the network field known to

contain the target and another circle known to contain

the target, and makes routing decisions based on

information about the shortest paths between these

circles.

• Through our extensive simulation study, we demon-

strate that for such systems, both tracking performance

and energy-efficient routing protocols can be achieved

simultaneously. We also demonstrate that the addition

of greater computing power and memory to the sensor

nodes enables smarter algorithms that improve the

performance even more in certain circumstances.

The remainder of this paper has the following structure.

We begin the paper by reviewing related work in Sect. 2.

We next formalize the tracking problem in Sect. 3. We

present our approach, including the strategy for controlling

the tracker (Sect. 4) and the two routing protocols to

deliver sensing data to the tracker (Sect. 5). In Sect. 6, we

714 Wireless Netw (2012) 18:713–733

123

present our validation effort and discuss experimental

results. Extensions that overcome false positive errors in

the sensors appear in Sect. 7. We end the paper by pro-

viding concluding remarks in Sect. 8. Early versions of

this work appeared at ICRA 2009 [11] and at IROS 2010

[12].

2 Related work

2.1 Robotic target tracking

Target tracking problems for mobile robots have been

studied for some time. The objective for these problems is

generally to maintain visibility between the target and the

tracker. Algorithms are known for planning the tracker’s

motions using dynamic programming [2], sampling-based

[5], and reactive approaches [3]. Others have considered

the problem of stealth tracking, in which the tracker seeks

to maintain visibility of the target, while remaining near the

boundary of the target’s visibility polygon to avoid possi-

ble detection [1]. Still another approach explicitly consid-

ers the target’s privacy in the formulation [13]. Our work is

also related to algorithms for pursuit-evasion, which con-

sider the problem of locating adversarial mobile agents

within an environment [14–17].

2.2 Sensor network target tracking

Wireless sensor networks (WSNs) have been deployed to

track the positions of humans [18, 19], moving vehicles

[20, 21], and other moving targets [22, 23, 24]. Those

surveillance systems leverage stationary sensor networks in

which each node collects measurements using on-board

sensors and reports the measurements to a central data

collection unit (that is, the sink) via multi-hop routing.

Alternatively, to keep track of locations of targets, sensors

are attached to the moving targets, such as zebras [25].

Whether stationary or attached to targets, sensor nodes

passively collect measurements and rely on multi-hop

communication to deliver data to the central data collection

unit for further analysis. As a result, the communication

can become expensive when the network size is large. The

tracking architecture proposed in this work addresses such

communication issues by having a mobile tracker follow a

target and collect the information from the target in its

vicinity. Utilizing a similar architecture, Tsai et al. [26] has

proposed to let the mobile tracker query the target location

by flooding the entire networks. Then, a ‘near-node’

responds after discovering a route to the tracker. Unlike

their work, our routing protocols can deliver information to

the mobile tracker without route discovery or neighbour

awareness.

The use of mobile sensor networks, in which individual

nodes have both sensing and motion capability, has also

been proposed as a means to track moving targets [27, 28].

The primary concern in this area is to track the targets

while maintaining the network connectivity. We propose a

different architecture in which the connectivity problem

and mobility management issues are decoupled.

The binary proximity sensors we use have been previ-

ously studied for other tasks including target counting

[29, 30] and pursuit-evasion [17]. Shrivastava, Mudumbia,

Madhow, and Suri consider the problem of reconstructing

the path of a target moving through a field of such sensors

[31]. Our work is complementary in the sense that we are

concerned with communication issues they do not address.

2.3 Routing in sensor networks and MANET

Routing has been studied extensively, since it is a basic

building block of networking. In the area of sensor net-

works, spanning tree based routing [32] builds a routing tree

rooted at the sink prior to data delivery. Such protocols

work well with stationary sinks, but are unsuitable for a

mobile receiver. In the area of wireless sensor networks

with mobile sinks, Kusy et al. [33] proposed to leverage

mobility prediction to compute fresh routes to a mobile sink

before old routes become useless. Ye et al. [34] designed a

two tier data dissemination model. Their networks are

formed in a grid structure and messages are first routed

between cells then flooded inside the cell that contains the

mobile sink. In our network, sensors are not required to

predict the mobility of the sink, nor to form a hierarchical

multi-tier structure.

Another category of routing in sensor networks is called

data-centric routing, where data is searched or stored based

on their name rather than the network addresses of nodes.

Essentially, the data-centric routing is a query problem,

whereby route discovery is initiated by queries, and then

data of interest will be collected via the discovered route.

To facilitate data searching, some of those routing algo-

rithms depend on flooding to propagate queries [35], some

cleverly store the data in a curve with which the query

messages are guaranteed to intersect [36], and some map

the keyword of the data to a deterministic location for

storing based on geographic hash functions [37]. In com-

parison, our robotic tracking problem does not involve

queries, but focuses on delivering messages to a mobile

tracker efficiently.

In the area of mobile ad hoc networks (MANET),

Ad hoc On-demand Distance Vector (AODV) [38] and

Optimized Link State Routing (OLSR) [39] are two well-

known routing protocols. AODV works reactively, and it

discovers routes only if they are needed, while OLSR pro-

actively maintains and updates path selection regardless of

Wireless Netw (2012) 18:713–733 715

123

being used or not. Those protocols either impose high latency

for the initial path setup or lead to a wasteful overhead of

routing traffic, and therefore are not suitable for a network

with a highly mobile receiver and battery-operated sensors.

Additionally, several routing algorithms exploiting

geographic information have been proposed. Those geo-

graphic routing algorithms [40, 41] refer to destinations by

their location, and forward messages greedily, when pos-

sible, towards the destination, e.g., to a node that is closest

to the destination. Such routing algorithms cannot be

applied to the robotic tracking problem directly, because

they require the precise location information of destina-

tions and focus on delivering messages to the destination

location. However, the goal of our routing algorithm is to

deliver messages to the mobile tracker instead of a specific

location.

2.4 Data aggregation in sensor networks

The goal of in-network data aggregation [42] in WSNs is to

reduce expensive transmission. Typically, the data aggre-

gation algorithm, such as TAG [42], routes the aggregated

values up towards the root of the routing tree with partial

data aggregated at internal tree nodes. That algorithm relies

on the routing tree that is established prior to the data

aggregation process. The smart network concept presented

in this paper is different in the sense that the in-network

state computation is used to assist route selection, so that

messages are delivered efficiently between the sensors near

the target and the ones near the tracker.

2.5 Cooperative robot-network systems

The idea of combining WSNs with mobile robots has been

investigated by Sukhatme et al. [7, 43–45]. In particular,

mobile robots are used for sensor network deployment with

the goal of achieving good sensor coverage [43, 44]. Our

work complements theirs in the sense that we focus on the

tracking application after the deployment is done. WSNs

are also proposed to assist mobile robots to track targets

[7], using the sensors that can supply precise location

information to the robot. We take a different viewpoint: we

design the tracking algorithms by considering issues

associated with both sensor networks and mobile robots;

and thus, achieve good tracking performance at reasonable

operational cost for the network while using simple sensor

devices and robots.

3 Problem statement

Before discussing the control algorithms for the robot

tracker and routing protocols for the sensor nodes in our

tracking framework, this section formalizes our target

tracking problem and the performance criteria we use to

measure the success of our algorithms.

3.1 System model

A point target moves unpredictably, but with maximum

speed stgt, in a closed, bounded, polygonal, planar envi-

ronment E � R
2: The environment need not be simply

connected. Time is modeled as a continuous progression

along the interval [0, T]. Let qðtÞ 2 E denote the position of

the target at time t 2 ½0; T �.
A point robot called the tracker also moves in E. At time

t, the position of the tracker is denoted p(t). The tracker can

choose its velocity vector u(t), so that d p / dt = u. The

velocity is constrained by a maximum speed strk. The

tracker knows its position p(t) within E, using either stan-

dard sensor-based localization methods [46, 47], or GPS

[48]. The tracker has no sensors that directly report on the

position of the target; it instead must rely solely on the

location information provided by the network, as described

below. The state x(t) = (p(t), q(t)) comprises the tracker

and target positions.

To assist the tracker, a network of k stationary wireless

sensor nodes is distributed through E at positions n1; . . .; nk:

The nodes localize themselves using one of the well-known

sensor network localization schemes [49–52]. To simplify

the notation, we assume that the nodes are identical, with a

fixed sensing range rs and a fixed communication range rc.

Each node ni can:

1. Possibly detect the target whenever ||q(t) - ni||

B rs, where || * || is the Euclidean distance. This

sensing is boolean: The node knows only whether or

not the target has been detected, but no other

information. This detection is also unreliable, in the

sense that failing to detect the target does not imply

that ||q(t) - ni|| [rs. Such false negatives, which can

occur as a result of unmodeled occlusions in the

environment, noise, or other factors, are assumed to be

extremely common. To simplify the discussion, we

assume for now that false positive errors—in which the

sensor reports incorrectly that the target is nearby—do

not occur. Section 7 lifts this assumption.

2. Broadcast a message to all nodes nj for which ||ni - nj||

B rc. We assume that the time required for each

transmission is negligible compared to the physical

speeds of the robots, and these broadcasts are subject to

intermittent communication failures. In our algorithm,

the content of these messages is a description of the

information the node has accumulated, along with a

timestamp indicating when that knowledge was col-

lected. Specifically, each message is an ordered pair

716 Wireless Netw (2012) 18:713–733

123

(g, t), in which g is a description of an information state

(I-state) and t 2 ½0; T � is a timestamp. Depending on the

message delivery scheme, g can be a circle known to

contain the target (as described in Sect. 4.1) or a disk-

based I-state describing both the tracker and the target

locations (Sect. 5.2).

In addition, the tracker is equipped with network com-

munication hardware, so that it can receive messages that

are broadcast by nodes within rc of p(t). The tracker also

uses this hardware to transmit a beacon that informs the

wireless sensor nodes of its presence. This beacon is

detected by the node at ni whenever ||p(t) - ni|| B rc. As

with the target detection sensors, receipt of this beacon

signal is subject to frequent communication failures.

3.2 Evaluation criteria

The execution of the proposed tracking framework can be

informally divided into two phases: (1) a startup phase,

during which the tracker works to reduce a relatively large

distance between itself and the target, and (2) a steady state

phase, during which the tracker has moved near the target

and works to maintain this proximity. To evaluate the

performance in both phases, we define the following

criteria.

3.2.1 Tracking performance P

Regardless of whether it is in the startup or steady state

phase, the tracker’s primary objective is to minimize the

average distance between p(t) and q(t) throughout the

system’s execution:

P ¼ 1

T

Z T

0

jjpðtÞ � qðtÞjjdt: ð1Þ

Besides the average distance between the target and the

tracker, the maximum distance between them over the

lifetime of the system’s execution is also an important

performance metric, since it may be difficult for the tracker

to re-acquire the target’s location. Thus, we define the

worst case performance as

Pmax ¼ max
t2½0;T �

jjpðtÞ � qðtÞjj: ð2Þ

3.2.2 Tracking startup time S

During the startup phase, the tracking framework naturally

performs worse than during the steady phase. The defini-

tion of P averages out the performance impact of the

startup phase as T increases. Therefore, we also consider

the capture time S, which measures the length of the

startup phase, and is defined by

S ¼ minft 2 ½0; T � j jjpðtÞ � qðtÞjj � �g; ð3Þ

in which � is a small positive constant.

3.2.3 Energy cost C

In both phases, because the energy available to each

wireless sensor node is generally limited by battery

capacity, a secondary objective is to minimize the average

number of message broadcasts made in the network per

unit time. Let C(i) denote the number of broadcasts made

by the node at ni between t = 0 and t = T. The system

seeks to keep

C ¼ 1

T

Xk

i¼1

CðiÞ ð4Þ

as small as possible. We note that the communication

energy cost includes both transmitting and receiving cost.

However, C(i) can be easily scaled up to reflect energy

consumed by receiving by multiplying a coefficient, since

on average each broadcast is received by a fixed number of

nodes that are evenly distributed.

These three performance criteria, P, S, and C, are at

least partially in conflict with one another: Intuition sug-

gests—and our experiments confirm—that decreases in

P or S generally require corresponding increases in C. This

tradeoff motivates our use of Pareto optimality concepts,

treating the problem as a multi-objective optimization

problem. Section 6 presents and discusses these results.

4 Controlling the tracker

This section describes the algorithms used by the tracker to

respond to the data it receives from the network.

Since the current state x(t) is not necessarily known, the

tracker faces two challenges: First, it must efficiently rep-

resent the limited knowledge it has about the target’s

position. Second, it must use this representation to plan its

motion toward the target. Our approach overcomes these

challenges using the the tracker’s information states

(I-states). In this context, the I-state is the set of possible

states that are consistent with the information the tracker

has received. The tracker computes its information state,

then chooses its motions as a function of this current

information state.

We first describe how to maintain the information state

(Sect. 4.1), then we present strategies used by the tracker to

utilize this information (Sect. 4.2). Note that we are con-

cerned here only with the control of the tracker; we defer to

Sect. 5 our discussion of approaches to efficiently deliver

target location information to that tracker.

Wireless Netw (2012) 18:713–733 717

123

4.1 Uncertainty and information states

4.1.1 Modeling the uncertainty

The primary challenge in this target tracking problem is the

uncertainty throughout the system. The tracker does not

know the target’s precise location, and instead must rely in

the history of messages it has received to direct its motions.

To overcome this uncertainty, we use the concept of

information states (I-states). Although the information

space framework is quite general and flexible,1 in this

paper we use only nondeterministic I-states. Informally, a

nondeterministic I-state is a set of ‘‘possible states’’ con-

sistent with observations of the tracking robot or a sensor

node. Let I denote the space of all such information states.

4.1.2 Computing the information state

Formally, suppose that tracker has received m messages

fðc1; t1Þ; . . .; ðcm; tmÞg; ð5Þ

as of some time tf, with each ci describing a circle known to

contain the target at time ti, and with 0\t1\. . .\tm\tf .

Each ci is either the sensing disk (in our Dynamic TTL

algorithm, Sect. 5.1) or a disk-based I-state (in our Smart

Local Routing algorithm, Sect. 5.2) of one sensor node.

Then a target position q0 is consistent with those messages

if and only if there exists a continuous trajectory q:[0,tf] ?
E such that ||d q / d t || B stgt for all t 2 ð0; tf Þ; and we have

||q(ti) - ci|| \ rs for 1 B i B m, with q(tf) = q0. Figure 2

illustrates this definition. Note the implicit assumption that

the tracker starts with no information about the target’s

location. We use the notation Q(t) for the set of target

positions consistent with the messages received by the

tracker up to time t. The tracker always knows its own

position, so the information state (that is, the set of possible

states) at time t is

gðtÞ ¼ fpðtÞg � QðtÞ: ð6Þ

Observe that, because of the definitions, we always have

xðtÞ 2 gðtÞ. However, because the definition of g(t) con-

tains an existential quantifier (‘‘there exists’’) over target

trajectories, it is not directly useful for computing the

information states. Instead we perform iterative updates,

maintaining the current information state and updating it

when time passes and when new messages are received.

We start with the initial information state g(0) = { p(0) }

9 E. Then two kinds of updates are performed throughout

the execution:

1. When time from t1 to t2 passes without any messages

being received, we compute g(t2) from g(t1). To

accomplish this we replace p(t1) with p(t2), perform a

Minkowski sum of Q(t1) with a disc of radius (t2 - t1)

stgt, and intersect the resulting region with E. The

resulting region is retained as Q(t2). Note that this

approach may slightly overestimate the information

state when t2 - t1 is large and the boundary of E has

sharp non-convex corners. This effect, which is similar

to the sampling issues that arise in collision detection

for path segments, can be reduced or eliminated by

partitioning the time period from t1 to t2 into smaller

segments.

2. When a message (c, t) is received, the existing

information state is updated to the correct g(t) by

performing an intersection with a disk with center

c and radius rs.

Figure 3 illustrates each of these updates. If the I-state is

represented as polygon with n vertices along its boundary

and the discs are approximated as regular polygons with

m vertices, then each of these operations takes time O(mn)

[53, 54]. Our implementation the GPC General Polygon

Clipper Library [55], with m = 125, to perform both types

of updates.

Fig. 1 An example tracking problem, in which a tracker (triangle,
left side) seeks to find and maintain close proximity to a target (circle,
right side). A wireless sensor network deployed in the environment

provides the tracker with information about the target’s whereabouts.

Edges connect nodes within communication range of one another

Fig. 2 A target position is consistent with a set of messages if there

exists a starting target position and a feasible target trajectory that

pass through each message’s circle at the appropriate times reaching

that target position

1 See, for example, Chapters 11 and 12 of LaValle’s book [10].

718 Wireless Netw (2012) 18:713–733

123

4.2 Tracker strategy

We now describe how the tracker moves. Because the

information state is a complete picture of the knowledge

available to the tracker, we describe the tracker’s strategy

as a function mapping information states to tracker

velocities:

p : I ! fu 2 R
2jjjujj � strkg: ð7Þ

Therefore, the tracker’s chosen velocity u(t) is a function

of its information state g(t) = (p(t), Q(t)). Notice that, aside

from knowing its own position and a set of possibilities

Q(t) for the target’s position, the tracker cannot draw any

additional conclusions about the state. Given this uncer-

tainty, the ideal position for that tracker, that minimizes the

average distance to the target across all its possible positions

is, by definition, the centroid of Q(t). Note, however, that the

centroid of Q(t) may not be inside E. Based on these

observations, we use the following strategy for the tracker:

Move with speed strk along the shortest path in E from

p(t) to the point in E that is closest to the centroid of

Q(t).

Computing this motion takes time linear in the com-

plexity of Q(t), for both the centroid and shortest path

elements [56]. Each time the I-state is updated, the track-

er’s motion plan is also recomputed accordingly.

5 Sensing and data delivery

As discussed in Sect. 3, we consider a network of k nodes

spread throughout E. Whenever a node detects the target, it

may generate a message and initiate an attempt to deliver

the message to the tracker. The design of the message

delivery protocol is complicated by two factors. First, the

location of the intended receiver, i.e., the tracker, is

unknown in general to the network nodes, which makes

protocols designed for stationary sensor networks inappli-

cable. Second, the sensor nodes have extremely con-

strained energy budget, so MANET routing protocols are

not suitable because of their high overhead in route dis-

coveries and route updates. As a result, instead of estab-

lishing routes ahead of time, our method leverages the

tracking information in the application layer to broadcast

messages in a strictly controlled way.

Instead of attempting to design a ‘‘one size fits all’’

protocol, we categorize sensors into two types and devise

differing routing algorithms for each type: (1) one for

sensors with almost no memory nor computation capability

(Sect. 5.1); and (2) one for sensors with memory and

moderate computation capability (Sect. 5.2)

5.1 Dynamic-TTL broadcasting for memoryless

sensors

The message delivery protocol for memoryless sensors

leverages the concept of time-to-live (TTL). Instead of

using intermediate sensors to remember the state or to

perform substantial computation, routing information is

stored in the message header. Each message header con-

tains a sequence number, the source node identifier, and a

nonnegative integer time-to-live (TTL). We use these

headers in two ways:

• A node will only forward each message once, using the

sequence number and the source node identifier to track

which messages it has forwarded already.

• Each time a message is forwarded, its TTL is decreased

by 1. Messages with TTL of 0 are discarded. As a

result, the initial TTL for a node determines the

maximum number of hops the message can travel on

the network.

Each node forwards every message it receives as long as

neither of these drop conditions is met.

Figure 4 depicts an example of sensor nodes along with

the tracker. Suppose that node G detects the presence of the

target. Node G generates a message with TTL =2, a new

sequence number, and its location, and sends out the

(a) (b) (c)

Fig. 3 Computing the information state. a An initial information

state. b Expansion to account for the passage of time, and intersection

with received message circles and the environment. c The resulting

updated information state

C

H K

PN

S TQ R

A B E

GF

L M

D

I J

O

TrackerSensor Node

Fig. 4 An illustration of TTL-based broadcast: The source sensor

node G (denoted in the solid circle) sent a message with TTL = 2 and

the message will be forwarded at most 2 hops from node G

Wireless Netw (2012) 18:713–733 719

123

message. Its neighbor M receives the message, decreases

the TTL by 1 and broadcasts it. Similarly, node N receives

the message, decreases TTL, but will not forward the

message since TTL = 0. In this example, the tracker is

within the radio range of node M, so it successfully

receives the message from G.

How can we choose the TTL value for a new message?

Ideally, we want to set the TTL to the minimum hop count

needed for messages to reach the tracker. Unfortunately,

because the precise location of the tracker is unknown to

the sensor nodes, this value is not available. Large TTL can

guarantee the delivery of the message at the cost of high

energy consumption, whereas small TTL requires less

energy consumption, at the risk that messages may never

reach the tracker. Small TTL values are especially harmful

when the tracker starts its execution with no knowledge of

the target’s position, or when it loses track of the target.

To address the issue of choosing TTL, we propose to

dynamically adjust the TTL value. In the steady state, the

tracker should be within the vicinity of the target. Thus, we

use a small TTL value by default. When the tracker is far

from the target, we dynamically adjust the TTL so that the

message will reach tracker without flooding the entire

network. In order to adjust TTL, we need to know whether

the tracker is in the proximity of the target. One observa-

tion is that when the tracker follows the target closely, the

sensor nodes that sense the target are within the vicinity of

the tracker as well. These nodes should receive the beacon

signal sent by the tracker. When the tracker is far from the

target, these nodes will only observe the target, not the

tracker.

Based on these observations, we propose the TTL

adjusting algorithm shown in Fig. 5, which is inspired by

the TCP congestion control algorithm [57]. Each node

executes Adjust_TTL() at small, fixed time intervals. If

the node senses the target and the tracker, the MIN_TTL

value is used. Otherwise, the node will double its TTL

every time a timeout occurs, e.g., not hearing from the

tracker for TTL_TIMEOUT number of time slices. We

present experiments evaluating various choices for

TTL_TIMEOUT in Sect. 6.

The overall effect of this algorithm is that, when a node

detects the target for a period of time without also detecting

the tracker, the TTL for messages from that node is grad-

ually increased in an attempt to ensure that the tracker

receives the messages. When the tracker arrives or the

target departs, the TTL is reset.

5.1.1 Comparison to additive TTL increase

The multiplicative increase of the TTL values described in

Fig. 5 is motivated by both the time needed for messages to

reach the tracker and by the energy required to do so.

Consider an idealized scenario in which the target

remains motionless and the tracker is h hops away from the

target, with no obstacles along the way. Let q denote the

average density of the network, measured in nodes per

square meter. In this scenario, when a sensor near the target

transmits a message with TTL equal to j, the area reached

by that message is proportional to p j2, so the total number

of messages transmitted is proportional to p j2 q.

As a result, a routing algorithm that additively increases

the TTL by one at each timeout, the number of messages

transmitted is
Ph

i¼1 pi2q 2 Oðh3Þ. In contrast, the multi-

plicative increase we propose would transmit onlyP lg hd e
i¼1 pð2iÞ2q 2 Oðh2Þ messages. Moreover, notice that an

algorithm using additive TTL increases would take roughly

h timeouts to get a message to the tracker, in contrast to the

lg hd e timeouts required using multiplicative increases.

5.1.2 Examples

Figure 6 illustrates the simulated operation of this algo-

rithm in a rectangular environment with two large obsta-

cles. Several snapshots of the execution are shown, starting

from an initial condition in which the tracker and the target

are near each other.

Figure 7 shows a slightly more complex situation, in

which the tracker and the target are initially separated by a

large distance. In this example, the tracker and the target

are separated by approximately 60 hops in the network. As

a result, no messages reach the tracker until at least one

node has experienced 6 timeouts. Note that during this

time, in the absence of additional information, the tracker

moves toward the centroid of E.

5.2 Smart local routing for smarter sensors

We now consider a network of sensors capable of storing

information and performing calculation. The key insight

behind these new techniques is the notion of Smart Local

Routing: We store partial information about the tracker and

target positions at each sensor node. Each node determinesFig. 5 The TTL adjustment algorithm

720 Wireless Netw (2012) 18:713–733

123

to route messages only if they provide useful information

to facilitate the target tracking.

We present the idea of Smart Local Routing with three

parts: (1) how to compute the information state at each

sensor; (2) when a sensor will initiate a message; and

(3) what information shall be sent.

5.2.1 Calculating Node I-States

In this method, each node maintains an I-state similar to

that used by the tracker. However, the computation power

and memory available to small scale sensors will, in gen-

eral, be much smaller than that available to a full-fledged

mobile robot. Therefore, we reduce the computational load

by using a provable overestimate of the precise I-state

called the disk-based I-state. The disk-based I-state can be

stored with a small constant amount of memory and

updated in constant time.

In particular, maintaining I-states for the sensor nodes

differs in two important ways from the method described in

Sect. 4.1 for the tracker’s I-state. First, we maintain only a

simple approximation of the ‘‘true’’ nondeterministic

I-state. Second, because the sensor nodes do not know the

tracker’s position, but could benefit from this information,

we maintain position information about both the tracker

and the target.

As time progresses, each sensor node ni maintains a pair

of disks Pi(t) and Qi(t), with the invariant that

pðtÞ 2 PiðtÞandqðtÞ 2 QiðtÞ: ð8Þ

These two disks constitute the node’s disk-based I-state.

As initial values, each node assigns both disk centers to its

own position, and assigns infinite radii to both disks:

Pið0Þ ¼ Bðni;1Þ ð9Þ
Qið0Þ ¼ Bðni;1Þ ð10Þ

From this initial I-state, four types of updates are

required in order to maintain the invariant.

1. Target detection. When the node detects the target, it

knows that the target is within distance rs of itself. In

this case, therefore, Qi(t) is replaced the smallest disk

containing Qi(t) \ B(ni, rs).

2. Tracker detection. When the node receives the

tracker’s beacon signal, it knows that the tracker is

within distance rc of itself. Similar to the previous

case, Pi(t) is replaced the smallest disk containing

Pi(t) \ B(ni, rc).
2.

3. Message receipt. When the node receives a message

from another node nj, that message will describe the

disk-based I-state of nj. Specifically, this message

contains the center coordinates and radius of both

Qj(t) and Pj(t). The node at ni uses this information to

refine its own knowledge, replacing Qi(t) with the

smallest disk enclosing Qi(t) \ Qj(t) and replacing

Pi(t) with the smallest disk enclosing Pi(t) \ Pj(t). In

this way, each node can refine its own knowledge

based on messages it receives from neighboring nodes.

This information sharing is the means by which

knowledge is propagated across the network.

4. Passage of time. When time Dt passes without any

of the previous three events occurring, then new disks

are computed with the same centers, and having

radiusðPðt þ DtÞÞ ¼ radiusðPðtÞÞ þ Dtstrk and radius

ðQðt þ DtÞÞ ¼ radiusðQðtÞÞ þ Dtstgt: As with the track-

er’s I-state, this expansion of the disks corresponds to

the unknown motions that tracker and target might

have made during this time.

Fig. 6 A sample execution of the dynamic TTL algorithm inside a

‘‘cinder block’’ shaped environment. In all cases, the information state

contains the location of the target and the tracker is able to keep close

proximity to the target. The information state is shaded. The tracker is

denoted by a triangle and the target is the grey circle

Fig. 7 A sample execution of the Smart Local Routing algorithm

inside a ‘‘lens-shaped’’ environment. The information state is shaded

left An initial condition with large uncertainty for the tracker right.
The network provides information about the target location from far

across the environment

2 Note that false positive sensing errors can be problematic for target

detection and tracker detection updates, because they may make the

I-state inaccurate or even empty. See Sect. 7.

Wireless Netw (2012) 18:713–733 721

123

These update operations depend on the ability to com-

pute the smallest disk enclosing the intersection of two

other disks. In general, given two disks D1 and D2, assume

without loss of generality that D1 is centered at the origin,

that D2 is centered at (b, 0), and that the radii of the disks

are r1 and r2, respectively. We must consider four cases:

• If r2 [r1 ? b, then D2 contains D1. The intersection

itself is D1 itself: D1 \ D2 = D1.

• If r1 [r2 ? b, then D1 contains D2, and the intersec-

tion itself is a D2 itself: D1 \ D2 = D2.

• If r1 ? r2 \ b, then D1 and D2 are disjoint, and there is

no solution. This case does not occur in our setting,

since D1 \ D2 must contain either p(t) or q(t).

• Otherwise, D1 and D2 intersect in a ‘‘lens-shaped’’

region, as shown in Fig. 8. Let c = (r1
2 ? r2

2 ? b2)/

(2b). This region has vertical extrema at ðc;þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 � c2
p

Þ and ðc;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 � c2
p

Þ and horizontal extrema

at (b - r2,0) and (r1,0). Any disk enclosing D1 and D2

must contain all four of these points. This occurs with

minimal radius when, choosing a = max(0, min(b, c)),

the disk is centered at (a,0) and has radiusffi
ða� cÞ2 þ r2

1 � c2

q
.

Note that this representation consumes O(1) space, and

that each of its updates can be performed in O(1) time. The

approach is, therefore, well-suited to simple sensor nodes

with limited computation power.

5.2.2 When to send a message?

The nodes’ strategy is based on the disk-based I-state that

each node maintains. Whenever a node receives new

information, either by detecting the tracker, detecting the

target, or receiving a message from another node, it must

decide whether to broadcast a message of its own to

propagate this information across the network. The intui-

tion is that a node will broadcast the message only if the

message provides useful information to facilitate the target

tracking. In particular, the node uses its I-state to identify a

number of situations in which it should not broadcast such

a message to its neighbors:

1. If the new information did not result in any change the

node’s disk-based I-state, then the node should not

broadcast its knowledge. This improves efficiency by

filtering redundant messages.

2. If the node received new information about the target’s

position, but has already broadcast a message triggered

by target information in the recent past, it should not

broadcast its knowledge. This rule facilitates data

aggregation, preventing the node from generating

frequent messages, of which each has only limited

informative value. The definition of ‘‘recent past’’ is

governed by a parameter s, such that no node will

generate two broadcasts triggered by tracker knowl-

edge within time s of each other.

3. Similarly, if the node received new information about

the tracker’s position, but has already broadcast a

message triggered by tracker information in the last

s units of time, it should not broadcast its knowledge.

This rate limiting is governed by the same parameter

s, but is controlled by separate timeout counter. These

‘‘dual timeouts’’ are crucial to facilitate free flow of

information in both directions—from the tracker

toward the target, and from the target toward the

tracker.

4. Finally, if the node can conclude, based on its disk-

based I-state, that it is not near the shortest path

between p(t) and q(t), then it should not broadcast its

knowledge. This condition prevents the wasting of

energy by transmitting data to remote portions of the

environment that are not active parts of the tracking

problem. Details about this condition appear below.

To implement the above constraint (4) in a precise,

formal way, the node must compute the geodesic hull of its

disk-based I-state. We define the geodesic hull of a pair of

point sets A and B as the union of all shortest paths in the

environment E from a point a 2 A to a point b 2 B: The

key insight is that if a node ni is not near the geodesic hull

formed by A = Pi(t) and B = Qi(t), then ni knows with

certainty that information flowing between the tracker and

target need not pass through ni. The node ni therefore

decides not to broadcast its knowledge. See Fig. 9.

Fig. 8 Computing the smallest disk enclosing the intersection of two

disks. The general case, in which the intersection in nonempty, but

neither disk fully contains the other

Fig. 9 The geodesic hull of two disks separated by triangular

obstacles. If a node is far from the geodesic hull formed by the two

disks in its disk-based I-state, it knows that information about the

target can reach the tracker without it

722 Wireless Netw (2012) 18:713–733

123

So far, the constraint has been expressed in terms of

‘‘nearness’’ to the geodesic hull. Formally, we define a

node to be ‘‘near’’ the geodesic hull if its distance to the

geodesic hull is smaller than a threshold /0. The criteria for

determining /0 are to guarantee that the number of nodes

near the geodesic hull is small, and those nodes should

form a path that can deliver messages from the source to

the intended destination, as shown in Fig. 10. Intuitively, if

the network density is relatively high, then we expect to be

able to use a relatively small threshold /0 for nearness in

condition (4), knowing that other nodes closer to the

shortest path are likely to receive the message and propa-

gate the information. Likewise, a relatively sparse network

suggests the need for a larger nearness threshold /0, as a

hedge against the possibility of a large empty space in the

network preventing information flow. Similarly, a larger rc

maps to a smaller /0, while a smaller rc requires larger /0.

In this paper, we select /0 = rc,
3 and we allow nodes to

broadcast messages when they, according to their disk-

based I-states, could possibly be within distance rc of the

shortest path between p(t) and q(t).

The result of this strategy is that every node broadcasts

its knowledge whenever it is within or near the geodesic

hull of its disk-based I-state. As a result, information col-

lected by nodes that see the target will propagate to the

tracker rapidly. Moreover, nodes that are not on or near the

shortest path between target and tracker will, after receiv-

ing one of these messages, know that they need not

broadcast any messages, and therefore remain silent. In this

way, after an initial, one-time flooding, the disk-based

I-states stored at each node enable the nodes to propagate

messages only in a tight corridor around the relevant parts

of the environment.

In practice, the true geodesic hull may be difficult to

compute because the points Pi(t) and Qi(t) may be con-

nected by paths in many different homotopy classes.

Therefore, our implementation approximates the geodesic

hull by a point set consisting of all points in E that meet at

least one of four criteria:

• Points in Pi(t) or Qi(t).

• Points within distance rc - d of the shortest path from

the center of Pi(t) to the center Qi(t),

• Points inside the trapezoid formed by the four common

tangent points of two particular circles. The first circle

is Pi(t). The second circle centered at the second vertex

of the shortest path between the disk-based I-state

centers and has radius rc - d.

• Points inside the trapezoid formed mutatis mutandis

from the penultimate vertex of the shortest path

between centers and Qi(t).

This simplification takes advantage of the fact the

information need only flow along some short path between

the tracker and target, and not necessarily the definitive

shortest path.

Note that this approach requires each node to have an

accurate environment map. Each sensor node must also

have sufficient computation power to compute shortest

paths in this environment. If the environment is convex

(or nearly so) a simpler constant-time approach that tests

whether ni is inside the convex hull of Pi(t) and Qi(t) can be

used instead.

5.2.3 What data to transmit

As mentioned previously, each time a node broadcasts a

message, it transmits its entire current disk-based I-state.

This design is motivated by a desire to maximize the

informative value of each message. This approach stands in

contrast to schemes that simply forward messages without

modification. The approach proposed here, in particular,

indirectly facilitates data aggregation, by allowing sensor

nodes to accumulate information in their disk-based

I-states for a short period of time (via the timeouts

described above) before generating a single message

encapsulating the combined information from each of the

messages it received.

5.2.4 Examples

Figure 11 depicts the algorithm’s simulated behavior in a

relatively simple environment, illustrating the motions of

both the tracker and the target.

In Fig. 12, we show several views of a single time step

of the algorithm in a more complex environment. We

observe that out of all the nodes that received the message

at this time step (Fig. 12(b)), only a portion of them will

broadcast the message (Fig. 12(c)), and we mark those

‘‘inner’’ nodes red (the darkest shade). The remaining

Fig. 10 The dashed line represents the shortest path between tracker

and target. Nodes located inside the shaded area will broadcast

messages since they are ‘near’ the shortest path

3 We note that the energy consumption C measured in our

experiments will be reduced if we selected a tighter bound for /0.

Wireless Netw (2012) 18:713–733 723

123

nodes (Fig. 12(e)) serve as ‘‘buffer’’, and decide not to

propagate the information any further since they know that

they are not sufficiently close to the shortest path. Note

especially Fig. 12(d), which shows that a large fraction of

the nodes cannot rule out being near the shortest path

between tracker and target. For some ‘‘inner’’ nodes

(denoted by red or the darkest shade), this is because they

are in fact near the shortest path. For other ‘‘outer’’ nodes

(denoted by blue or light shade), this is because they are far

from the shortest path, and they haven’t received any data.

As a result, their disk-based I-states have grown into large

regions, making them unable to rule out the possibility of

being near the shortest path. However, this limitation will

not affect the energy efficiency of our algorithm for two rea-

sons. First, a collection of ‘‘buffer’’ nodes (Fig. 12(e) denoted

by green or intermediate shade) around the shortest path which

do not forward the message acts as ‘‘buffer zone.’’ Second,

even if such a message did reach a node with very large radii in

its disk-based I-state, that node would immediately update its

disk-based I-state, and realize that it is far away from the

shortest path. This behavior is typical for our algorithm, and

shows how our Smart Local Routing prevents messages from

spreading to irrelevant parts of the environment.

5.3 Comparison between algorithms

We now compare our two algorithms in terms of ‘‘steady

state’’ phase and ‘‘startup’’ phase. In the steady state phase,

the tracker and the target are near one another. However, in

the startup phase, the tracker and the target are separated by

many hops in the network.

5.3.1 Steady state phase

The Dynamic TTL algorithm utilizes a timeout-based

approach to limit the flooding region. Its biggest advantage

is its simplicity and it works especially well in steady state

scenarios: if the target and tracker are near one another,

sending messages for a few hops (controlled by a small

TTL value) is enough to maintain this proximity. In com-

parison, although the Smart Local Routing algorithm also

works well in this state, it requires each node to maintain

the disk-based I-state locally, thus, imposing higher

requirements on the sensors’ hardware and the software.

5.3.2 Startup phase

The drawback of the Dynamic TTL algorithms is that its

performance in the ‘‘startup phase’’ suffers from the fol-

lowing issues.

• Prolonged delay. By default, a small TTL value is used

to limit the energy spent on message transmission. The

TTL value doubles every time a timeout occurs. In the

startup phase, it may take many timeouts before TTL

grows large enough for a message to reach the tracker,

Fig. 11 Time-lapse view of the Smart Local Routing algorithm in a

simple environment. The tracker (triangle) starts in the lower left

corner and the target (circle) starts in the upper right corner. This

example shows that once the tracker managed to get close to the

target, it maintains its proximity to the target

(a)

(b) (c)

(d) (e)

Fig. 12 Execution snapshots the Smart Local Routing algorithm

showing the behavior of the network nodes at one time step. a The

complete network. The tracker’s I-state is shaded. b Nodes that

received a message at this time step. c Nodes that sent a message at

this time step. d Nodes that are near the simplified geodesic hulls of

their disk-based I-states. e Nodes that are not near their simplified

geodesic hulls. These nodes know that they are not along the path

from tracker to target, and therefore do not spend any energy sending

messages

724 Wireless Netw (2012) 18:713–733

123

causing long delay. If the target moves too rapidly,

these timeouts may never occur because no single node

will be able to observe the target long enough.

• Unnecessary message delivery. After information about

the target’s position has reached the tracker, the

network will continue to flood updates with very high

TTL values across large portions of the sensor network.

These messages are unnecessary because, when the

tracker is still far away from the target, slightly updated

information about the target’s position effects only

small changes changes to the tracker’s motion.

• Irrelevant message delivery. The Dynamic TTL

approach wastes significant quantities of energy trans-

mitting messages in portions of the environment that

are not helpful for communicating target information to

the tracker, as depicted in Fig. 12(a). In that example,

only the branches containing the target and the tracker,

along with the portion of the center corridor that

connects those two branches, are relevant for commu-

nicating information about the target to the tracker.

The Smart Local Routing algorithm overcomes these

limitations. By storing partial information about the tracker

and target positions at each sensor node, each node can

decide to route messages only if they provide useful

information to facilitate the target tracking.

In summary, the Dynamic TTL algorithm is simple to

implement and provides nice tracking performance in a

steady state, whereas the smart local algorithm reaches this

steady state faster, and works well in complex, highly

nonconvex environments.

6 Implementation and evaluation

We have implemented both the dynamic TTL approach and

Smart Local Routing in a customized simulator that is

programmed in C??. In this section, we first present a

quantitative evaluation of their performance in comparison

to each other in two representative environments. Then, we

compare their performance with other naive routing pro-

tocols and studied the impact of the node density on them.

In all experiments, we selected rs = 2m and rc = 2m.

6.1 Performance comparison in two environments

One main factor that affects the performance of the

Dynamic TTL approach and Smart Local Routing is the

average hop counts between any pair of network nodes.

Thus, we examined both approaches in two representative

environments with distinguishingly different distributions

of hop counts: an open environment and a maze-like

environment, as shown in Fig. 13. The open environment

(Fig. 13(a)) is populated by a collection of randomly-

placed obstacles in an open square, where the majority of

the hop counts are about 9 hops, as shown in Fig. 14. In

comparison, the maze-like environment (Fig. 13(b)) is a

larger, more complex environment with several branches,

where the hop counts varies from 1 hops up to 50 hops, as

shown in Fig. 14.

6.1.1 In an open environment

Using the environment shown in Fig. 13(a), we performed

a series of 10 trials in which the starting positions of the

tracker and target and the placements of the sensor nodes

were selected randomly. For each trial, we simulated the

startup performance of both tracking algorithms, with 5

different parameter settings each:

• five using the Dynamic TTL approach, with

TTL_TIMEOUT set to 5,8,11,14, and 17, and

• five using the Smart Local Routing approach, with the

minimum time interval between two successive broad-

casts s set to 3,6,9,12 and 15.

(a) (b)

Fig. 13 Experiment environments: a An open environment

(20 m-by-20 m) used in the experiment of Sect. 6.1.1. The obstacles

are generated randomly. b A maze-like environment (21 m-by-17 m),

used in the experiment of Sect. 6.1.2

Fig. 14 Histogram of hop counts between all pairs of nodes in two

representative environments, which are depicted in Fig. 13. Unsur-

prisingly, the majority of hop counts in the maze-like environment is

larger than the ones in the open environment, which makes the startup

phase longer

Wireless Netw (2012) 18:713–733 725

123

The performance of each algorithm, averaged over all

trials, is shown in Fig. 15. Because the start-up phase of

our tracking problem has two optimality criteria, each

dimension of the plot measures one of the optimality cri-

teria. Note that the origin of the plot represents the

(unachievable) ideal of perfect tracking with no energy

cost. Each data point, therefore, dominates—in the sense of

faring better in both performance criteria—any other data

points that are both above it and to its right.

These results confirm our prediction that the Smart

Local Routing is superior to the Dynamic TTL algorithm in

the startup phase, regardless of the parameter value s in the

range that we tested.

To evaluate the performance of our algorithms in the

steady-state phase of tracking, we performed ten additional

trials in which the tracker and target are started near one

another. We used T = 1000, and averaged the results over

all ten trials. Figure 16 depicts the results of this experi-

ment, showing that the Dynamic TTL method maintained

slightly better tracking performance at the cost of higher

energy consumption.

Note that the energy cost of Smart Local Routing

algorithm does not necessary decrease when s increases,

while the tracking performance decreases most of the time.

We note the point of s = 15 in Fig. 15 is counterintuitive.

Our hypothesis is that a larger s forces the sensor to send

messages at larger intervals, and gives the network less

freedom to determine the best time to send messages. Such

freedom is beneficial, since it helps to improve the tracking

performance most of the time.

6.1.2 In a maze-like environment

Using the environment shown in Fig. 13(b), we performed

10 trials with randomly selected initial conditions, with the

same 10 tracking schemes as above, for both steady-state

and startup scenarios. The results appear in Figs. 17 and

18.

As with the simple environment, these results demon-

strate that the Smart Local Routing approach dominates the

Dynamic TTL approach in the startup phase, and this

superiority is independent of the parameter value s in

the range that we tested. Compared with the results in the

simple environment, the improvement of the Smart Local

Routing approach over the Dynamic TTL approach is more

pronounced. This can be explained by the following: the

tracker and the target are separated by a larger number of

hops in the maze-like environment; thus, it takes larger

number of timeouts before TTL grows large enough to

deliver the message, resulting in large capture time. The

Smart Local Routing algorithm is not affected, because

message delivery to the tracker begins immediately.

Similar to the result in the simple environment, in the

steady-state phase of tracking, the Dynamic TTL approach

Fig. 15 Start-up performance: Energy cost C versus capture time

S for the environment depicted in Fig. 13(a). Smart Local Routing

requires less amount of time to start up than the Dynamic TTL

algorithm at smaller energy costs. Note a stands for TTL_TIMEOUT

Fig. 16 Steady-state performance for the environment in Fig. 13(a),

showing Dynamic TTL method maintained slightly better tracking

performance at the cost of higher energy consumption. Note a stands

for TTL_TIMEOUT

Fig. 17 Start-up performance: Energy cost C versus capture time

S for the environment depicted in Fig. 13(b), showing that the Smart

Local Routing is superior to the Dynamic TTL algorithm in the

startup phase. Note a stands for TTL_TIMEOUT

726 Wireless Netw (2012) 18:713–733

123

can achieve better tracking performance at the cost of extra

energy consumption.

6.1.3 Worst case performance

In both environments we measured the worst case perfor-

mance Pmax in the same set of simulation runs. Table 1

summarizes Pmax for both approaches. For the Dynamic

TTL approach, a smaller TTL_TIMEOUT results in a

smaller Pmax. Similarly, for Smart Local Routing approach,

adopting a smaller s (the minimum time interval between

two successive broadcasts) creates a smaller Pmax. Even

though the Pmax was several times greater than P for large

TTL_TIMEOUT or s, both algorithms always managed to

recover from it quickly and to maintain a low P.

6.2 Impact of node density

To study the impact of node density on our approaches, we

evaluated the steady-state performance and the normalized

energy costs while varying the node density in the envi-

ronment depicted in Fig. 11. When the total number of

nodes is less than 75, the network is usually not connected,

and thus the performance of our algorithms suffers. Once

the network is fully connected (more than approximately

75 nodes), the performance becomes promising, as shown

in Fig. 19(b). Figure 19(a) shows the average energy cost

for each node, e.g., the average number of messages

transmitted by each node in a unit time. We observe that

the Smart Local Routing scales gracefully as the network

density increases. That is, the normalized energy cost for

the Smart Local Routing remains constant, while the

energy cost for the Dynamic TTL approach scales linearly

with the total number of nodes. This is because the Smart

Local Routing algorithm aggregates its data and suppresses

the redundant messages well. Another nice feature of the

Smart Local Routing approach is that it can achieve good

performance as long as the network is connected, and in

Fig. 18 Steady-state performance for the environment in Fig. 13(b),

showing the Dynamic TTL approach can achieve better tracking

performance at the cost of extra energy consumption. Note a stands

for TTL_TIMEOUT

Table 1 The maximum distance between the tracker and the target

during the steady-state phase. Pmax ¼ maxt2½0;T� jjpðtÞ � qðtÞjj: Both

algorithms always managed to recover from it quickly and to maintain

a low P

Dynamic TTL Smart local routing

a Pmax s Pmax

Maze 5 2.06 3 4.17

8 2.34 6 8.05

11 3.03 9 14.26

14 3.03 12 15.94

17 3.03 15 16.25

Open 5 4.57 3 3.90

8 6.20 6 4.51

11 10.31 9 5.14

14 11.17 12 6.26

17 11.17 15 6.65

(a)

(b)

Fig. 19 The impact of node density on the steady-state performance

and energy costs for the environment in Fig. 11. We observe that the

Smart Local Routing scales gracefully as the network density

increases, while the energy cost for the Dynamic TTL approach

scales linearly with the total number of nodes. a stands for

TTL_TIMEOUT. We used TTL_TIMEOUT =3 and s = 5

Wireless Netw (2012) 18:713–733 727

123

fact its performance does not benefit significantly from an

over-dense network.

6.3 Impact of speed differences

We also performed an experiment to determine the effect

of speed differences between the tracker and target on our

algorithms’ performance. Using the environment depicted

in Fig. 11, we held the target speed constant at stgt = 0.2

m/s and varied the tracker speed strk between 0.01 m/s and

0.8 m/s, increments of 0.01 m/s. For each tracker speed, we

performed 10 trials for each algorithm, and measured both

the energy cost and steady-state tracking performance. The

results appear in Fig. 20. As predicted, when the tracker

travels slower than the target, it cannot keep up with the

target. When the tracker travels faster than the target, both

algorithms suffice to assist the tracker to keep close prox-

imity with the target.

6.4 Comparison to existing algorithms

Finally, to ensure that our approach compares favorably to

known methods, we performed a final experiment testing

its performance against two basic protocols:

1. Flooding, in which every message is forwarded to every

node in the network. This approach delivers every

message to the tracker and generates very accurate

tracking but also very large energy consumption.

2. Static TTL, in which every message is broadcast with a

fixed TTL of 1. This approach is very energy efficient,

but leads to poor tracking performance because

messages are forwarded only locally.

We selected these two baseline algorithms because the

represent two extremes in the tradeoff between tracking

performance and energy efficiency. This experiment used

the environment shown in Fig. 13(a). The final results,

which are averaged across ten trials for startup perfor-

mance and ten trials for steady-state performance, appear

in Table 2. The results demonstrate that both Dynamic

TTL approach and smart routing protocol achieve some-

thing close to ‘‘the best of both worlds’’ in balancing

tracking precision and energy efficiency.

7 Overcoming sensing errors

A malfunction sensor node can either produce false nega-

tive errors or false positive errors. False negative errors

occur when a node fails to detect the tracker (or target)

when the tracker (or target) is indeed within its sensing

range. False positive errors happen when a node mistakenly

claims to detect the tracker (or target) when the tracker (or

target) is not present within its sensing range.

So far our algorithm are robust against false negative

errors, but the preceding discussion assumed that the sensor

nodes do not experience false positive errors. In this sec-

tion, we describe modifications to our basic approach that

allow a relaxation of this assumption, i.e. false positive

errors are possible.

Dealing with false positive errors is challenging for at

least two reasons. First, we do not have any predictive

(a)

(b)

Fig. 20 The impact of tracker speed on the steady-state performance

and energy costs for the environment in Fig. 11. We used

TTL_TIMEOUT = 3 and s = 5

Table 2 Comparison to existing message delivery schemes

Startup Steady state

S C P C

Flooding 28.1 1,064.0 1.2 1,232.3

Static TTL 59.5 21.7 1.8 25.6

Dynamic TTL 30.4 69.6 1.3 32.2

Smart local routing 36.8 13.8 2.6 5.8

Static TTL used a TTL value of 1. Dynamic TTL used a

TTL_TIMEOUT of 5. Smart local routing used s = 9. The results

demonstrate that both Dynamic TTL approach and smart routing

protocol achieve something close to ‘‘the best of both worlds’’ in

balancing tracking precision and energy efficiency

728 Wireless Netw (2012) 18:713–733

123

model for the target’s motion. As a result, traditional

probabilistic inference methods such as Hidden Markov

Models do not apply, because the transition matrix is

unknown. Second, because of the limitations of our energy

budget, filtering decisions must be made locally, and can-

not benefit from a globally consistent view.

To overcome these challenges, two basic changes are

needed. First, we must ensure that both the tracker and the

sensor nodes have nonempty I-states at all times. To

accomplish this, we modify the I-state update process to

discard any observation or message that would lead to an

empty I-state. Note that this change implies that, depending

on the order in which messages arrive, the information

state may not necessarily contain the true state. Second, we

require a means to detect and discard false positive errors

at their source, to prevent those errors from degrading the

quality of the I-states used throughout the system. The

remainder of this section is concerned with filtering algo-

rithms that implement this second change. Without loss of

generality, we describe these modifications in terms of

target detections. In practice, each node maintains two

parallel copies of the filter: one for the target and one for

the tracker.

We consider two distinct sources of false positive errors:

Short-term errors resulting from sensor noise, and persis-

tent errors resulting from hardware failures or misclassifi-

cation of environment features. For the former case, we

use a temporal filtering algorithm in which each node

maintains a short-term history of its own observations

(Sect. 7.1). For the latter case, we use a spatial filtering

approach, in which each node compares its observation to

those of its immediate neighbors (Sect. 7.2)

7.1 Temporal filtering

For false positive errors attributable to sensor noise, we use

a temporal filtering scheme. Each node remembers a short-

term history of its own observations, and uses this infor-

mation in an attempt to detect and eliminate the false

positives.

We choose a time interval Dt; representing the length of

history considered by the filter. For a fixed time t, let

y1; . . .; yk denote the sensor readings obtained in the pre-

ceding Dt units of time, so that yi = 1 if the sensor detected

the target at time t - i and yi = 0 otherwise. Let R denote

the disk in the plane within which the sensor can detect the

target.

We assume that the sensors exhibit errors according to

known a false positive rate

PFP ¼ Pðyi ¼ 1 j qðtiÞ 62 RÞ ð11Þ

and a known false negative rate

PFN ¼ Pðyi ¼ 0 j qðtiÞ 2 RÞ; ð12Þ

and that each sensor reading is independent of the others.

Moreover, we make the simplifying assumption that the

target neither enters nor leaves the region sensed by the

node between time t � Dt and t. Although, strictly speak-

ing, the target’s motion may violate this assumption, it can

be a reasonable simplification when Dt is small compared

to stgt.

Under these assumptions, we can construct a straight-

forward Bayesian filter to determine the probability that the

target is within the sensor’s range, given the node’s recent

history of observations. Using Bayes’ rule and assuming

uniform priors, we can express the probability that the

target is within the sensor’s range in terms of PFP and PFN

as

PðqðtiÞ 2 R j y1; y2; . . .; ykÞ

¼ Pðy1. . .ykjqðtiÞ 2 RÞPðqðtiÞ 2 RÞ
Pðy1; . . .; ykÞ

¼
Q

i¼1;...;k PðyijqðtiÞ 2 RÞ
2Pðy1; . . .; ykÞ

¼ P
#fyi¼0g
FN ð1� PFPÞ#fyi¼1g

2Pðy1; . . .; ykÞ
¼ aP

#fyi¼0g
FN ð1� PFPÞ#fyi¼1g;

in which a ¼ 1=ð2Pðy1; . . .; ykÞÞ is a scaling factor, and the

exponents are the numbers of observations in the filter’s

history with the corresponding value for yi. Similarly, we

can express the probability that the target is not within the

sensor’s range as

PðqðtiÞ 62 R j y1; y2; . . .; ykÞ
¼ að1� PFPÞ#fyi¼0gP

#fyi¼1g
FP :

Taken in combination, these two equations enable us to

determine the value of a for which the total probability

sums to 1. A more detailed exposition of this kind of

Bayesian filtering appears in [58].

Finally, the sensor treats a positive sensor reading as

accurate if PðqðtiÞ 2 Rjy1; y2; . . .; ykÞ exceeds some thresh-

old b 2 ð0; 1Þ: Although 0.5, which is equivalent to a direct

comparison of the two probabilities derived above, might

appear to be a natural choice for b, in fact this parameter

encodes a tradeoff. If b is large, the filtering is more strict,

ensuring that fewer false positives are incorrectly accepted.

If b is smaller, the filtering is more relaxed, reducing the

number of true positives incorrectly rejected.

We tested the effectiveness of this filter for varying

values of k and b with in the environment of Fig. 6. As a

representative example of our tracking algorithms, we used

the Dynamic TTL method with TTL_TIMEOUT = 5. For

Wireless Netw (2012) 18:713–733 729

123

these simulation runs, we used PFP = PFN = 0.05. We

conducted ten trials for each run. Table 3 shows the results.

For comparison, we also show the performance of our

filterless algorithm running the same trials in the absence of

sensor errors. Notice that, according to the evaluation cri-

teria set forth in Sect. 3.2, filter makes a substantial

improvement in all three performance criteria, in a way that

is not substantially sensitive to our choice of parameters

k and b.

7.2 Spatial filtering

Another possibility is that the sensor nodes may experience

errors that persist over longer periods of time. Such errors

may arise, for example, from temporary or permanent

hardware failures. In this case, the temporal filter described

above is clearly not helpful, because the erroneous sensor

readings will repeat, potentially for much longer than the

time interval considered by the filter.

For this case, we instead use a spatial filtering approach.

Each node compares its own sensor reading to those of its

neighbors. If few or none of those neighboring nodes have

detected the target, the sensor node rejects its own sensor

reading as erroneous. Specifically, we chose a tunable

parameter c 2 ð0; 1Þ and reject the sensor reading if the

fraction of the node’s immediate neighbors that also detect

the tracker is less than c. This approach is based on the idea

that, as long as the network is sufficiently dense, the

sensing regions of neighboring nodes will have some

overlap. Therefore, if the target is truly within sensing

range, we can expect one or more of the neighboring nodes

to be able to corroborate this fact. This method introduces

some additional energy cost, because the local voting

process requires each node to transmit a beacon message

each time it detects the target. However, our experiments

suggest that this extra energy cost is effectively offset by

the benefits of rejecting the false positive errors.

To determine the effectiveness of the filter, we per-

formed a series of tests, again using the straightforward

environment shown in Fig. 6. For each node, we simulated

persistent errors that last between 25 and 50 time steps. On

average, each node was in a failure state approximately 8%

of the time. Several values for c were tested, and the results

were averaged across 10 trials. The network used the

Dynamic TTL protocol with TTL_TIMEOUT = 5.

Table 4 shows the results of this simulation. The results

show that the filter is effective at mitigating performance

drops resulting from false positive sensor errors, especially

when c is small. These results are consistent with the

intuition that (unless false positive errors are extremely

common), if both a node and one or two of its neighbors

independently detect the target, those mutually-reinforcing

readings are likely to be correct. More generally, it is likely

that c will require tuning based on the density, communi-

cation range, sensing range, and error rates of an individual

system.

8 Conclusion

We presented a target tracking algorithm that uses a col-

laboration between a sensorless robot and a network of

unreliable sensor nodes. Simulations demonstrate that this

algorithm has good performance in balancing energy effi-

ciency with tracking accuracy, even in the presence of false

positive sensor errors. However, a number of interesting

questions remain unanswered.

One important avenue for future research is to consider

how our system can be used to allow multiple robots to

Table 3 Performance results for temporal filtering. The results show

that the filter makes a substantial improvement in all three performance

criteria

Startup Steady state

S C P C

b = 0.5

No filtering 383.8 74.2 6.9 73.4

k = 3 63.5 28.1 1.6 22.6

k = 5 59.7 24.5 1.7 21.6

k = 7 53.8 21.1 1.9 20.9

k = 9 61.7 18.0 2.0 20.1

No errors 40.4 60.2 1.3 26.3

b = 0.95

No filtering 383.8 74.2 6.9 73.4

k = 3 52.9 17.9 1.7 15.9

k = 5 51.4 18.8 1.7 17.8

k = 7 56.0 16.6 1.8 18.0

k = 9 54.1 14.7 2.0 17.4

No errors 40.4 60.2 1.3 26.3

Table 4 Performance results for spatial filtering, which shows that

the filter is effective at mitigating performance drops resulting from

false positive sensor errors, especially when c is small

Startup Steady state

S C P C

No filtering 125.6 177.9 4.2 253.5

c = 0.1 55.8 51.5 1.8 41.1

c = 0.2 58.4 28.8 2.4 29.8

c = 0.3 67.7 20.4 4.2 23.2

c = 0.4 94.7 16.5 5.1 20.0

c = 0.5 96.1 15.4 5.2 18.9

No errors 40.4 60.2 1.3 26.3

730 Wireless Netw (2012) 18:713–733

123

track multiple targets. In scenarios in which the sensors can

distinguish targets from one another, the individual track-

ing problems are orthogonal and we can run several

instances of our algorithms in parallel. The more general

case, in which the targets are not distinguishable, presents

difficult challenges in data association and task assignment

[59].

Another important avenue for further research is to

design filtering algorithms that are effective at identifying

sensor errors that are both persistent in time and wide-

spread in a local region of space. Such errors are chal-

lenging because, from an individual node’s local

perspective, they are indistinguishable from true positive

sensor readings. We plan to explore means by which the

nodes can resolve these errors by constructing a global

viewpoint as needed, without sacrificing the overall energy

efficiency of the system.

Acknowledgments O’Kane is supported by NSF (CAREER award

IIS-0953503) and DARPA (N10AP20015). Xu is supported by NSF

(CAREER award 0845671).

References

1. Bandyopadhyay, T., Li, Y. P., Ang, M. H., & Hsu, D. (2004).

Stealth tracking of an unpredictable target among obstacles.

In Proceedings of workshop on the algorithmic foundations of
robotics (pp. 43–58).

2. LaValle, S. M., González-Baños, H. H., Becker, C., & Latombe,

J.-C. (1997). Motion strategies for maintaining visibility of a

moving target. In Proceedings of the IEEE international con-
ference on robotics and automation (pp. 731–736).

3. Murrieta, R., Sarmiento, A., Bhattacharya, S., & Hutchinson, S.

A. (2004). Maintaining visibility of a moving target at a fixed

distance: The case of observer bounded speed. In Proceedings of
the IEEE international conference on robotics and automation.

4. Murrieta-Cid, R., Gonzalez-Banos, H. H., & Tovar, B. (2002).

A reactive motion planner to maintain visibility of unpredictable

targets. In Proceedings of the IEEE international conference on
robotics and automation.

5. Murrieta-Cid, R., Tovar, B., & Hutchinson, S. (2005). A sam-

pling-based motion planning approach to maintain visibility of

unpredictable targets. Autonomous Robots, 19(3), 285–300.

6. Guibas, L. J., Latombe, J.-C., LaValle, S. M., Lin, D., &

Motwani, R. (1999). Visibility-based pursuit-evasion in a

polygonal environment. International Journal on Computational
Geometry and Applications, 9(5), 471–494.

7. Jung, B., & Sukhatme, G. S. (2006). Cooperative multi-robot

target tracking. In Proceedings of the international symposium on
distributed autonomous robotic systems (pp. 81–90). Minneapo-

lis, Minnesota.

8. Balluff. Inductive proximity sensors. http://www.balluff.com/.

9. Fargo Controls. Photoelectric proximity sensors. http://www.fargo

controls.com/sensors/photoelectric.html.

10. LaValle, S. M. (2006). Planning algorithms. Cambridge

University Press, Cambridge. Available at http://planning.cs.

uiuc.edu/.

11. O’Kane, J. M., & Xu, W. (2009). Energy-efficient target tracking

with a sensorless robot and a network of unreliable one-bit

proximity sensors. In Proceedings of the IEEE international
conference on robotics and automation.

12. O’Kane, J. M., & Xu, W. (2010). Network-assisted target track-

ing via smart local routing. In Proceedings of the IEEE/RSJ
international conference on intelligent robots and systems.

13. O’Kane, J. M. (2008). On the value of ignorance: Balancing

tracking and privacy using a two-bit sensor. In Proceedings of the
workshop on the algorithmic foundations of robotics.

14. Guilamo, L., Tovar, B., & LaValle, S. M. (2004). Pursuit-evasion

in an unkown environment using gap navigation trees. In Pro-
ceedings of the IEEE/RSJ international conference on intelligent
robots and systems.

15. Isler, V., Sun, D., & Sastry, S. (2005). Roadmap based pursuit-

evasion and collision avoidance. In Proceedings of the robotics:
Science and systems.

16. Vidal, R., Shakernia, O., Kim, H. J., Shim, D. H., & Sastry, S.

(2002). Probabilistic pursuit-evasion games: Theory, implemen-

tation, and experimental evaluation. IEEE Transactions on
Robotics and Automation.

17. Vieira, M. A., Govindan, R., & Sukhatme, G. S. (2009). Scalable

and practical pursuit-evasion with networked robots. Intelligent
Service Robotics, 2(4), 247–263.

18. Chen, P., Oh, S., Manzo, M., Sinopoli, B., Sharp, C., &

Whitehouse, K., et al. (2006). Instrumenting wireless sensor net-

works for real-time surveillance. In Proceedings of IEEE interna-
tional conference on robotics and automation (pp. 3128–3133).

19. Simon, G., Maróti, M., Lédeczi, Á., Balogh, G., Kusy, B., &

Nádas, A., et al. (2004). Sensor network-based countersniper

system. In SenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems (pp. 1–12).

20. He, T., Krishnamurthy, S., Stankovic, J., Abdelzaher, T., Luo, L., &

Stoleru, R., et al. (2004). Jonathan Hui, and Bruce Krogh. Energy-

efficient surveillance system using wireless sensor networks. In

MobiSys ’04: Proceedings of the 2nd international conference on
mobile systems, applications, and services (pp. 270–283).

21. Zhao, F., Shin, J., & Reich, J. (2002). Information-driven

dynamic sensor collaboration. IEEE Signal Processing Magazine,

19(2):61–72.

22. Aslam, J., Butler, Z., Constantin, F., Crespi, V., Cybenko, G., &

Rus D. (2003). Tracking a moving object with a binary sensor

network. In SenSys ’03: Proceedings of the 1st international
conference on embedded networked sensor systems (pp 150–161).

ACM: New York, NY

23. Gui, C. & Mohapatra, P. (2004). Power conservation and quality

of surveillance in target tracking sensor networks. In MobiCom
’04: Proceedings of the 10th annual international conference on
mobile computing and networking (pp. 129–143).

24. Shrivastava, N., Mudumbai, R., Madhow, U., Suri, S. (2006).

Target tracking with binary proximity sensors: fundamental

limits, minimal descriptions, and algorithms. In Proceedings of
the International conference on embedded networked sensor
systems (pp. 251–264).

25. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., Rubenstein D.

(2002). Energy-efficient computing for wildlife tracking: design

tradeoffs and early experiences with zebranet. In ASPLOS-X: Pro-
ceedings of the 10th international conference on Architectural support
for programming languages and operating systems, (pp. 96–107).

26. Chu, C. P., Tsai, H. W., Chen, T. -S. (2007). Mobile object

tracking in wireless sensor networks. Computer Communications
30, 1811–1825.

27. Olfati-Saber, R. (2007). Distributed tracking for mobile sensor

networks with information-driven mobility. In American control
conference (pp. 4606–4612).

28. Zou Y., & Chakrabarty K. (2007) Distributed mobility manage-

ment for target tracking in mobile sensor networks. IEEE
Transactions on Mobile Computing, 6(8), 872–887.

Wireless Netw (2012) 18:713–733 731

123

http://www.balluff.com/
http://www.fargocontrols.com/sensors/photoelectric.html
http://www.fargocontrols.com/sensors/photoelectric.html
http://planning.cs.uiuc.edu/
http://planning.cs.uiuc.edu/

29. Baryshnikov, Y., & Ghrist R. (2008). Target enumeration via

integration over planar sensor networks. In Proceedings of
robotics: Science and systems.

30. Singh, J., Madhow, U., Kumar, R., Suri, S., & Cagley, R. (2007).

Tracking multiple targets using binary proximity sensors. In

Proceedings of the information processing in sensor networks
(pp. 529–538).

31. Shrivastava, N., Mudumbai, R., Madhow, U., & Suri, S. (2006).

Target tracking with binary proximity sensors: Fundamental

limits, minimal descriptions, and algorithms. In Proceedings of
the international conference on embedded networked sensor
systems (pp. 251–264).

32. Woo, A., Tong, T., & Culler, D. (2003). Taming the underlying

challenges of reliable multihop routing in sensor networks. In

SenSys ’03: Proceedings of the 1st international conference on
embedded networked sensor systems (pp. 14–27).

33. Kusy, B., Lee, H. J., Wicke, M., Milosavljevic, N., & Guibas, L.

(2009). Predictive qos routing to mobile sinks in wireless sensor

networks. In Proceedings of the 2009 international conference on
information processing in sensor networks, IPSN ’09 (pp.

109–120). Washington, DC. IEEE Computer Society.

34. Luo, H., Ye, F., Cheng, J., Lu, S, & Zhang, L. (2003). Ttdd:

A two-tier data dissemination model for large-scale wireless

sensor networks. In Proceedings of international conference on
mobile computing and networking (MobiCom.

35. Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed

diffusion: a scalable and robust communication paradigm for

sensor networks. In Proceedings of the international conference
on mobile computing and networking (pp. 56–67).

36. Sarkar, R., Zhu, X., & Gao, J. (2006). Double rulings for infor-

mation brokerage in sensor networks. In Proceedings of the
conference on mobile computing and networking, MobiCom ’06
(pp. 286–297).

37. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R.,

et al. (2002). GHT: a geographic hash table for data-centric

storage. In Proceedings of the workshop on Wireless sensor
networks and applications (pp. 78–87).

38. Perkins, C., & Royer, E. (1997) Ad-hoc on-demand distance

vector routing. In Proceedings of the 2nd IEEE workshop on
mobile computing systems and applications (pp. 90–100).

39. Clausen, T., & Jacquet, P. (2003). RFC-3626 optimized link state
routing protocol (OLSR).

40. Karp, B. & Kung, H. T. (2000). Gpsr: greedy perimeter stateless

routing for wireless networks. In Proceedings of conference on
mobile computing and networking, MobiCom ’00 (pp. 243–254).

41. Li, J., Jannotti, J., De Couto, D. S. J., Karger, D. R., Morris, R.

(2000). A scalable location service for geographic ad hoc routing.

In Proceedings of conference on mobile computing and net-
working, MobiCom ’00 (pp. 120–130).

42. Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W.

(2002). Tag: a tiny aggregation service for ad-hoc sensor net-

works. SIGOPS Operating System Review 36(SI), 131–146.

43. Batalin, M., & Sukhatme, G. S. (2002). Sensor coverage using

mobile robots and stationary nodes. In SPIE conference on sca-
lability and traffic control in IP networks II (Disaster Recovery
Networks) (pp. 269–276).

44. Batalin, M. & Sukhatme, G. S. (2005). The analysis of an effi-

cient algorithm for robot coverage and exploration based on

sensor network deployment. In IEEE international conference on
robotics and automation (pp. 3489–3496). Barcelona, Spain.

45. Dantu, K., & Sukhatme, G. S. (2009). Connectivity vs. control:

Using directional and positional cues to stabilize routing in robot

networks. In International conference on robot communication
and coordination.

46. Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte

Carlo localization for mobile robots. In Proceedings of IEEE
international conference on robotics and automation.

47. Fox, D., Thrun, S., Burgard, W., & Dallaert, F. (2001) Particle

filters for mobile robot localization. In A. Doucet, N. de Freitas,

N. Gordon (Eds.), Sequential Monte Carlo methods in practice

(pp 401–428). Berlin: Springer.

48. Reina, G., Vargas, A., Nagatani, K., & Yoshida, K. (2007).

Adaptive kalman filtering for gps-based mobile robot localiza-

tion. In Proceedings of the IEEE international workshop on
safety, security and rescue robotics.

49. Bahl, P., & Padmanabhan, V. N. (2000). RADAR: An in-building

RF-based user location and tracking system. In Proceedings of
IEEE INFOCOM’00.

50. Bulusu, N., Heidemann, J., & Estrin, D. (2000). Gps-less low-cost

outdoor localization for very small devices. IEEE Personal
Communications Magazine, 7, 28–34.

51. He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher,

T. (2003). Range-free localization schemes for large scale sensor

networks. In MobiCom ’03: Proceedings of the 9th annual
international conference on Mobile computing and networking
(pp. 81–95). ACM: New York.

52. Priyantha, N. B., Chakraborty, A., & Balakrishnan, H. (2000).

The cricket location-support system. In MobiCom ’00: Pro-
ceedings of the 6th annual international conference on Mobile
computing and networking (pp. 32–43).

53. Greiner, G., & Hormann, K. (1998). Efcient clipping of arbitrary

polygons. ACM Transactions on Graphics 17(2), 71–83.

54. Wein, R. (2006). Exact and efficient construction of planar min-

kowski sums using the convolution method. In European sympo-
sium on algorithms.

55. Vatti, B. R. (1992). A generic solution to polygon clipping.

Communications of the ACM, 35(7), 56–63.

56. Guibas, L. J., & Hershberger, J. (1989). Optimal shortest path

queries in a simple polygon. Journal of Computer and Systems
Sciences 39(2), 126–152.

57. Allman, M., Paxson, V., & Stevens, W. (1999). Tcp congestion control.

58. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics.

MIT Press:Cambridge, MA.

59. O’Kane, J. M. (2011). Decentralized tracking of indistinguishable

targets using low-resolution sensors. In Proceedings of the IEEE
international conference on robotics and automation.

Author Biographies

Jason M. O’Kane earned the

B.S. degree in computer science

from Taylor University in

Upland, Indiana in 2001, and

M.S. and Ph.D. degrees in

computer science from the

University of Illinois at Urbana-

Champaign in 2005 and 2007,

respectively. He is currently an

Assistant Professor in the

Department of Computer Sci-

ence and Engineering at the

University of South Carolina.

His research interests include

algorithms for robotics, plan-

ning under uncertainty, artificial intelligence, computational geome-

try, and motion planning.

732 Wireless Netw (2012) 18:713–733

123

Wenyuan Xu received her Ph.D.

degree in electrical and computer

engineering from Rutgers Uni-

versity in 2007. She is currently an

assistant professor in the Depart-

ment of Computer Science and

Engineering, University of South

Carolina. Her research interests

include wireless networking, net-

work security and privacy. Dr. Xu

is a co-author of the book Securing

Emerging Wireless Systems:

Lower-layer Approaches,

Springer, 2009. She received the

NSF Career Award in 2009.

Wireless Netw (2012) 18:713–733 733

123

	Energy-efficient information routing in sensor networks for robotic target tracking
	Abstract
	Introduction
	Related work
	Robotic target tracking
	Sensor network target tracking
	Routing in sensor networks and MANET
	Data aggregation in sensor networks
	Cooperative robot-network systems

	Problem statement
	System model
	Evaluation criteria
	Tracking performance P
	Tracking startup time S
	Energy cost C

	Controlling the tracker
	Uncertainty and information states
	Modeling the uncertainty
	Computing the information state

	Tracker strategy

	Sensing and data delivery
	Dynamic-TTL broadcasting for memoryless sensors
	Comparison to additive TTL increase
	Examples

	Smart local routing for smarter sensors
	Calculating Node I-States
	When to send a message?
	What data to transmit
	Examples

	Comparison between algorithms
	Steady state phase
	Startup phase

	Implementation and evaluation
	Performance comparison in two environments
	In an open environment
	In a maze-like environment
	Worst case performance

	Impact of node density
	Impact of speed differences
	Comparison to existing algorithms

	Overcoming sensing errors
	Temporal filtering
	Spatial filtering

	Conclusion
	Acknowledgments
	References

