Energy-efficient target tracking with a sensorless robot
and a network of unreliable one-bit proximity sensors
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Abstract— Existing target tracking algorithms require the
tracker to have access to information-rich sensors, and may
have difficulty recovering when the target is out of the tracker’s
sensing range. In this paper, we present a target tracking
algorithm that combines an extremely simple mobile robot
with a networked collection of wireless sensor nodes, each of
which is equipped with an unreliable, limited-range boolean
sensor for detecting the target. The tracker maintains close
proximity to the target using only information sensed by the
network, and can effectively recover from temporarily losing
track of the target. Our approach combines a protocol for
the sensor network that conserves energy by dynamically
adjusting the time-to-live for packets it transmits with a reactive
strategy for the tracker based on its information state. We
present an implementation along with experimen_tal results. Our Fig. 1. An example tracking problem, in which a tracker (triendeft
experimental results show that our system achieves both good jqe) seeks to find and maintain close proximity to a targetigimight
tracking precision and low energy consumption. side). A wireless sensor network deployed in the environmpenxides the

tracker with information about the target’s whereabouts.
. INTRODUCTION

Tracking problems for mobile robots have received subn this paper, we propose a tracking technique that resolves
stantial attention in recent years. Informally, a robracker these limitations by allowing the robot to utilize a wiredes
seeks to maintain close proximity to an unpredictdblget  sensor network to assist in the tracking task. The tracking
Effective target tracking algorithms have many importantask can be divided into two parts: sensing the target and
applications, including monitoring and security. Alghrits  following its movements. As such, we decouple these parts
have been proposed to solve this problem with mobile robod delegate the sensing task to a stationary sensor network
under various constraints and sensor models [3], [23],{25]This is, once deployed, the location of each sensor node
[27]. However, these existing methods for robotic trackings fixed). The mobile tracker then follows the target using
are hampered by two primary limitations. only the observations made by these sensor nodes. This

1) Locality. Existing tracking methods generally rely arrangement eliminates the need for complex sensors on the

on sensors onboard the robot, which by nature onlffacker, and also provides an efficient means for delivering
provide information about the target's location whernonlocal information to the tracker.

the target is nearby. This limitation is particularly To further simplify the proposed system, we assume the
problematic in cases where (a) the tracker starts wittensors node are equipped with binary proximity sensors
little or no knowledge of the target’s location or (b)that cannot sense the accurate location of the targetalhste
the tracker loses contact with the target during it¢he sensors report only whether the target is within a given
execution. To recover from these situations using onlgensing range. Furthermore, we assume that these sensor
local information is a challenging problem, requiringexperience frequent false negative errors. To utilize this
extensive search in the worst case [12], [17]. coarse location information, our approach makes extensive

2) Sensing complexityPrior work assumes that the robotuse of the concept afiformation state$22], which explicitly

has access to sensors that are (in spite of their locahcode the robot's uncertainty about the target position.
nature) relatively powerful and information-rich, suchSpecifically, the tracking robot uses information collecte
as visual or range sensors. Such sensing capabilititsem the network to synthesize a setissible stateghen

add additional cost and complexity to the robot. It isnakes greedy motions intended to reduce the size of this set.
desirable to design and deploy simpler robots with less A wide range of wireless sensor networks have been
sophisticated sensing hardware. Moreover, trackingeployed to monitor wildlife, sense pollution readings in
with limited sensing is of independent interest for cul-ecologically sensitive environments, track wildfire, ardes
tivating understanding of the information requirementsasks. Despite this variety, sensor networks are character
of the target tracking task. ized by limited energy and communication resources. Only
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dominates the energy consumption [37]. Thus, to exterldy having a mobile tracker follow targets and collect the

network lifetime, the network protocols should limit théab information of the targets in their vicinity.

number of messages required. The idea of combining WSNs with mobile robots has
In summary, the contribution of this paper is to proposéeen investigated by Sukhatme et al. [4], [5], [20]. In

and evaluate a tracking technique for a robot cooperatingarticular, mobile robots are introduced to WSNs to fad#ita

with a sensor network with the following features. sensor network deployment with the goal of achieving good

« Nothing other than a maximum speed is known aboli€Nsor coverage [4], [5]. Our work complements theirs in
the target's motion. the sense that we focus on the tracking application after

« The tracking robot has no sensors that directly providd'® deployment is done. WSNs are also proposed to assist
information about the target. mobile robots to track targets [20], using the sensors that c

« The sensor nodes detect only when the target is near _,pply pre_cises _Iocation infqrmation to th_e robot. We take a
but do not provide any precise location information, an ifferent viewpoint: we design the tracking algorithms by

are subject to frequent, unpredictable failures. considering issues associated with both sensor networks an
. Each sensor node has a limited energy budget fépobile robots; and thus, achieve good tracing performance
making transmissions. at reasonable operational cost for the network while using

The remainder of this paper has the following structure. ngmple sensor dewpes and robots. : o
. e : . The use of mobile sensor networks, in which individual
begin the paper by reviewing related work in Section Il

We next formalize the tracking problem in Section Ill. InnOOIes have both sensing and motion capability, has been

Section IV, we present our approach, including the protoccﬂrpposed as a means to track moving targets [29], [39]. The

; . rimary concern in this area is to track the targets while
to deliver sensing data to the tracker, and the strategqy . . ° . - .
; . aintaining the network connectivity. We propose a différe
for controlling the tracker. In Section V, we present our,

o ) i architecture where the connectivity problem and mobility
validation effort and discuss experimental results. Wepwra .

T . . . management issues are decoupled.
up the paper by providing concluding remarks in Section VI.

IIl. PROBLEM STATEMENT
II. RELATED WORK

) ) This section formalizes the tracking problem we consider.
Target tracking problems for mobile robots have beefhe system is illustrated in Figure 1.

studied for some time. The objective for these problems is o noint target moves unpredictably, but with maximum
generally to maintain visibility between the target and th%peedstgt, in a closed, bounded, polygonal, planar environ-
tracker. Algorithms are known for planning the tracker's-moment 7. The environment need not be simply connected.
tions using dynamic programming [23], sampling-based,[27Eyecution begins at time= 0 and ends at some final time
and reactive approaches [25]. Others have considered the 1 | gt q(t) denote the position of the target at time
problem of stealth tracking, in which the tracker seeks to p point robot called the tracker also movesfih At time
maintain visibility of the target, while remaining near the; ihe position of the tracker is denotedt). The tracker
boundgry of the tqrget’s visibility polygon to'a'void poégib can choose its velocity vectar(t), so that g/dt = u. The
detection [3].. Still gnother approaph explicitly consudgr velocity is constrained by a maximum speed,. We assume
the target's privacy in the formulation [28]. Our work is ihat the tracker is perfectly localized withi, using either
also related to robotics approaches for pursuit-evasidithw - giangard sensor-based localization methods [7], [8], o GP
cqngders the_ problem of locating adversarial mobile &q:]enf31]_ Thereforep(t) is always known. The tracker has no
within an environment [13], [18], [24], [35]. ~ sensors that directly report on the position of the tardet; i
Other approaches for tracking have employed wirele§gstead must rely solely on the communications from the
sensor networks (WSNs). WSNs have been deployed to tragkiywork, as described below. Tistate z(¢) = (p(t), q(t))
the positions of humans [6], [33], moving vehicles [10],J14 comprises the target and tracker positions.
[38], and other moving targets [1], [9], [21], [32]. Those g gassist the tracker, a network &fstationary wireless
surveillance systems leverage stationary sensor network&snsor nodes is distributed througtat positionsuy, . . . , ny..
where each node collects measurement using on-board mage nodes localize themselves using one of the well-known
netic, acoustic, visual, or infrared motion sensors anOmep gensor network localization schemes [2], [15], [30]. To
the measurements to a data center via multi-hop routingympjify the notation, we assume that the nodes are identica

Then, the data center tracks the positions of moving targejsin a fixed sensing range, and a fixed communication
by analyzing the measurements. Alternatively, to keemra(‘rangerc.l Specifically, each node; can:

of locations of targets, sensors are attached to the moving .
. —nll <

targets, such as zebras [19]. Whether stationary or attachea1 ) fos_ﬂ?ig g:rt]e;rt] thii tt?é%?;avr:lh?:eyhﬁe[(ts)enszzch& the
to targets, sensor nodes passively collect measuremeahts an n;de KNOWS onlg whether or'not the target has been
rely on multi-hop communication to deliver data for further y . . 19 S

; o detected, but no other information. This detection is
analysis. As a result, the communication can become expen-
sive when .the network Size 1S |arge' The tracklng_ arqhngctu 1To allow heterogeneous nodes would not require any significaanges
proposed in this work addresses such communication issueur approach.



also unreliable, in the sense that failing to detect the
target does not imply thatg(t) —n,|| > rs. Such false
negatives, which can occur as a result of unmodeled
occlusions in the environment, noise, or other factors,
are assumed to be extremely common.
2) Broadcast messages to all nodgsfor which ||n; —
nj|| < r.. Although we assume that time required
for each transmission is negligible, these broadcashig- 2.‘ A target posi_ti_on is consisten_t with a set of_messafgm?re exists
. . . . . a starting target position and a feasible target trajectoag pass through
are subject to intermittent communication failures. Irleach message’s circle at the appropriate times reachingattugt tposition.
our approach, the content of these messages is a de-
scription of a circle known to contain the target, along Formally, if the tracker has received messages
with a timestamp indicating when that information was
collected. Specifically, the content of message is an {ler, 1), (ems tm)}, (3)
ordered pair(c, t), listing the center of the circle along as of timet;, then a target positio’ is consistent with
with its timestamp. The circles described by thes¢éhose messages if and only if there exists a continuous
messages all have radius. Each node can initiate trajectoryq : [0,t;] — E such that ¢/dt < s, for all
new messages and forward messages it has received: (0,¢,), andq(t;) = ¢'. Figure 2 illustrates this definition.
This forwarding is done by broadcast. That is, a singl®lote the implicit assumption that the tracker starts with no
transmission is sufficient to send the message to all diformation about the target’s location.
a node’s neighbors. The tracker always knows its own position, so the infor-
In addition, the tracker is equipped with network commumation state (that is, the set of possible states) at tinse
nication hardware, so that it can receive messages that are .
broadcast by nodes within. of p(¢). Finally, we assume n(t) = {p(t)} x Q). “)
that the tracker also uses this hardware to transmit a simglet Z denote the space of all such information states. Because
beacon signal, informing wireless sensor nodes of its pre#ie information state is a complete picture of the knowledge
ence. This beacon is detected by the nodeatvhenever available to the tracker, we can describe the tracker'sestya
lIp(t) — ngl| < re. as a function mapping information states to velocities:

q(0)

A. Goal conditions 7T — {u € R?* | ||ul| < sern}- (5)

The tracker’s primary objective is to minimize the averag&ve discuss methods to maintain a representation(f in

distance betweem(t) and ¢(¢) throughout the system’s Section IV-B, and propose a greedy strategiy Section IV-

execution: " C.

1
P= f/0 |lp(t) — q(t)||dt. 1) IV. ALGORITHM

Because the energy available to each wireless sensor nOd% ig— h|_sbszct.|onspret§entsl,lIou\r/\;razlflr_lg alt%orlthm for tt htg sys_t?m
often strongly limited, a secondary objective is to minieniz escribed in section 1. We divide the presentation 1nto

the average number of message broadcasts made in {H pe parts: (1) how o efficiently de_liver target location
network per unit time. LetC(i) denote the number of Information to the moving tracker (Section IV-A), (2) how to

broadcasts made by the nodexabetweert — 0 andt — T compute the information state of the target based on this in-
We seek to minimize " formation (Section IV-B), and (3) how to use the information

state to choose motions for the tracker (Section IV-C).

1 . .
C=x > c(i). (2) A. Sensing and Data Delivery
i=1 As discussed in Section lll, we consider network fof
We discuss experiments that explore the tradeoff betweennodes spread throughout. Whenever a node detects the
andC in Section V. target it generates a message containing its own coordinate

and the circle center and the current timestamp. This te&ia
the message delivery process.

Since the current state(¢) is not necessarily known to  The design of the message delivery protocol is compli-
the tracker, the primary difficulties for the tracker aretfirscated by two factors. First, the location of the intended
to efficiently represent its knowledge, and second to useceiver, the tracker, is unknown in general to the network
this representation to choose motions for the tracker. Omodes. Most of the existing routing protocols for sensor
approach is based on the idea of computing the trackerstworks, such as direct diffusion [16] and spanning tree
information states In this context, the information state based routing [36], are composed of a routing discovery
is the set of possible states that are consistent with thhase and data delivery phase. Such protocols work well
information the tracker has received. The tracker computegth stationary sinks, but are unsuitable for a mobile rezei
its information state, then uses it to choose its motions. Thus, we choose broadcast as our message delivery protocol.

B. Uncertainty and information states



Algorithm: Adj ust _TTL

if trackerSeen(pr not targetSeen(then
‘ messageTTL— M N.TTL

timeoutCount— 0
else

timeoutCount— timeoutCount+1
if timeoutCount> TTL_TI MEQUT then
timeoutCount— 0
‘ messageTTL— 2 - messageTTL

end

SensorNode B> Tracker end

Fig. 4. The TTL adjustment algorithm.
Fig. 3. A illustration of TTL-based broadcast. 9 ] 9

Second, the sensor nodes operate on batteries, so the , )
broadcast protocol must be sensitive to this energy cdnstra " from the target, we dynamically adjust tidL so that
Energy consumption by radio transmissions generally efhe message will reach tracker without flooding the entire

ceeds energy consumption for both sensing and processiigiworks. In order to adjustTL, we need to know whether

by wide margins [37]. Therefore to extend network Iifetime,the tracker is in the proximity of the target. One observatio
5 that when the tracker follows the target closely, the gsens

it is necessary to limit the total number of messages broat®

casted. To accomplish this, we pretend to each messagé‘%pes that sense the target are within the vicinity of the
header containing a globally unigsequence numbemd a tracker as well. These nodes should receive the beacorl signa

nonnegative integeime-to-live(TTL). We use these headers Sent by the tracker. When the tracker is far from the target,
in two ways: these nodes will only observe the target, not the tracker.

1) A node will onlv f q h . Based on these observations, we propose Tihe ad-
) A node will only forward each message once, usmﬂlsting algorithm shown in Figure 4, which is inspired by

the sequence number to track which messages it h?r’?‘e TCP congestion control algorithm. Each node executes

forwar(_jed already. . . Adj ust _TTL() at small, fixed time intervals. If the node
2) Each tlmeamessag.e is forwarded T IS decreased senses the target and the tracker, Ma\.TTL value is

by 1. Message_s_ WIthrTL = 0 are dlscarqled. AS sed. Otherwise, the node will double WSTL after not

a re_sult, the initial TTL for a node determines the hearing from the tracker fofF TL_TI MEQUT number of time

maximum number of hops the message can travel Uices. We present experiments evaluating various chéices

the network. _ _ TTL_TI MEQUT in Section V.
Each node forwards every message it receives as long asthe overall effect of this algorithm is that, when a node
neither of these drop conditions is met. detects the target for a period of time without also detegctin

Figure 3 depicts an example of sensor nodes along withe tracker, th@ TL for messages from that node is gradually
the tracker. Suppose that node detects the presence ofincreased in an attempt to ensure that that the trackevescei
the target. Node* generates a message WL = 2, a  the messages. When the tracker arrives or the target departs,
new sequence number, and its location, and sends out #p@ TTL is reset.
message. Its neighbdr receives the message, decreases the . ) .

TTL by 1 and broadcasts it. Similarly, nodé receives the B- Computing the information state

message, decreas&3L, but will not forward the message The previous section described the operation of the sensor
since TTL = 0. In this example, the tracker is within network, intended to deliver messages to the tracker descri
the radio range of nod@/, so it successfully receives theing circular regions that contain the target. It remains to
message frond. describe how the robot can use this information to minimize

How can we choose th&TL value for a new message?its distance from the target.

Ideally, we want to set th@ TL to the minimum hop count  First, recall the definition of the information statgt),
needed for messages to reach the tracker. Unfortunatelyhich is the set of possible states at titeNotice that the

with the precise location of the tracker unknown to thelefinition of,(t) contains an existential quantifier over target
sensor nodes, this value is not available. Lafige. can trajectories, preventing the definition from being dirgctse-
guarantee the delivery of the message at the cost of hidi for computing the information states. Instead we perfor
energy consumption, whereas smllL requires less energy iterative updates, maintaining the current informatioatest
consumption, at the risk that messages may never reagfd updating it when time passes and when new messages
the tracker. The small TL is especially harmful when the are received. We start with the initial information state
tracker starts its execution with no knowledge of the tasget?(0) = {p(0)} x E. Then two kinds of updates are performed

position, or when it loses track of the target. throughout the execution:

To address the issue of choosiigL, we propose to 1) When time fromt; to ¢, passes without any messages
dynamically adjust thel'TL value. In the steady state, the being received, we compute(tz) from n(t1). To
tracker should be within the vicinity of the target. Thus, accomplish this we replacg(t,) with p(t2), perform

we use a smallfTL value by default. When the tracker is a Minkowski sum of Q(¢;) with a disc of radius
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Fig. 5. Computing the information state. (a) An initial infortioa State.
(b) Expansion to account for the passage of time, and intéosewith
received message circles and the environment. (c) The mgulfpdated
information state.

Fig. 6. A sample execution of our algorithm inside a “cindeydi’ shaped
environment. The information state is shaded.

(t2 —t1)s+4¢, and intersect the resulting region with
The resulting region is retained @{¢2). Note that this
approach may slightly overestimate the information
state when; — ¢ is large and the boundary @& has
sharp non-convex corners. This effect, which is similal
to the sampling issues that arise in collision detectio
for path segments, can be reduced or eliminated b
partitioning the time period from; to ¢5 into smaller
segments.

2) When a messagéc,t) is received, the existing in-
formation state is updated to the corregtt) by
performing an intersection with a disk with center
and radiusr,.

Figure 5 illustrates each of these updates. Our implement
tion approximates the curved boundaries of the informatio
states as polygonal regions, and uses the GPC Geneff
Polygon Clipper Library [34] to perform both types of
updates.

Fig. 7. [top] An initial condition with large uncertainty fahe tracker.
C. Tracker strategy [bottom] The network provides information about the targeiation from

. . far across the environment.
Finally, we describe how the tracker moves. Recall that the

tracker’s chosen velocity(¢) is a function of its information Computing this motion takes time linear in the complexity of
staten(t) = (p(t), Q(t)). Notice that, aside from knowing its Q(t), for both the centroid and shortest path elements [11].
own position and a set of possibiliti€g(¢) for the target's

position, the tracker cannot draw any additional conchsio
about the state. Given this uncertainty, the ideal positiofl- Example executions

for that tracker, that minimizes average the distance to the We have implemented this algorithm in simulation. Fig-
target across all its possible positions is by definition there 6 illustrates its operation in a rectangular environtmen
centroidQ(t). Note, however, that the centroid 6f(t) may  with two large obstacles. Several snapshots of the exetutio
not be insideE. Based on these observations, we proposgre shown, starting from an initial condition in which the

V. IMPLEMENTATION AND EVALUATION

the following strategy for the tracker: tracker and the target are near each other.
Move with speeds;,, along the shortest path in Figure 7 shows a slightly more complex situation, in which
E from p(t) to the closest point iQ(t) to the the tracker and the target are initially separated by a large

centroid ofQ(t). distance. In this example, the tracker and the target are
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separated by approximately 60 hops in the network. As a 0 . e s

result, no messages reach the tracker until at least one node TTL Timeout interval (TTL_TTEOUT)

has experienced 6 timeouts. Note that during this time,én th Fig- 9. Algorithm performance for varying values ®TL_TI MEQUT.
absence of additional information, the tracker moves tdwar

the centroid ofE. P C
Flooding 2.32| 279.74
B. Experimental evaluation Dynamic TTL | 2.92 7.95
First, to evaluate the influence of tHETL_TI MEOUT Static TTL | 5.57] 2.06

parameter, we performed a series of quantitative expetsnen_. . . . :
. . Fig. 10. Results comparing our dynamic TTL technique to twosenai

We varied theTTL_TI MEQUT from 1_t0 20 t"_ne _steps and network schemes. Our algorithm achieves tracking accurpg¢mparable

measured botlP and C, the evaluation metrics introduced to flooding and energy efficiency’) comparable to static TTL.

in Section Ill-A. For each value off TL_TI MEQUT, we |n this experiment we useBTL_TI MEOUT = 5 for dynamic
executed 5 trials in the environment shown in Figure 8rT|_ The results, which appear in Figure 10, are based on
using random placements d&f = 150 nodes. Each trial the same conditions as the previous experiment, and likewis
lasted T = 500 time steps, with the sensors collectingare averaged across five trials for each network scheme. The

information once per time step. Sensor failures were modelgesy|ts demonstrate that our dynafiitL approach achieves,
probabilistically. We set each sensor’s failure rate sé0td,  in some sense, something close to “the best of both worlds”

which means sensor fails to detect the presence of the targetyajancing tracking precision and energy efficiency.
50% of time.

We plot the average distanéeand the average number of VI. CONCLUSION
message broadcastétwith different TTL_TI MEQUT values We presented a target tracking algorithm that uses a

in Figure 9. This experiment demonstrates the expectedhaporation between a sensorless robot and a network
tradeoff between tracking performance and energy-efficie nreliable sensor nodes. Experiments demonstrate that

network operation. For instance, largefL_TI MEQUT indi-  his algorithm has good performance in balancing energy
cates thaffTL will be increased less frequently, leading toefficiency with tracking accuracy. However, a number of
longer delay for the tracker to recover from loss track of th'r‘hteresting questions remain unanswered.

target, but smalle€'. Luckily, under these conditi_ons_, values One important avenue for potential improvement is to
of TTL_TI MEQUT lower than 5 generate excessive Increaseéxploit the message content to improve the system’s perfor-

in energy consumption in exchange for only modestimproveqance even more. In particular, each node can maintain its
ments tracking accuracy. Thus, we chdseL_TI MEQUT = o information state, reflecting the information avaitabl

5 for the rest of our experiments. to it from both its own observations and messages it has
Finally, to evaluate the effectiveness of our dynaMid-  ¢,nyarded. Then each node can make more efficient routing
algorithm we compared it to two naive network schemes: yecisions and reduce the overall communication require-
1) Flooding in which every message is forwarded to evments by combining multiple messages using geometric in-
ery node in the network. This approach delivers everyersection. This idea can be extended even more by allowing
message to the tracker and generates very accuraiédes to send messages describing the position of the tracke
tracking but also very large energy consumption. instead of only target-related messages.
2) StaticTTL, in which every message is broadcast with
a fixedTTL. This approach is very energy efficient, but

leads to poor tracking performance because messa ther O’Kane assisted with preparing the experimentalteesT his work
Is partially supported by a grant from the University of So@arolina,
are forwarded only locally. Office of Research and Health Sciences Research Fundingaftog
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