
Energy-efficient target tracking with a sensorless robot
and a network of unreliable one-bit proximity sensors

Jason M. O’Kane and Wenyuan Xu

Abstract— Existing target tracking algorithms require the
tracker to have access to information-rich sensors, and may
have difficulty recovering when the target is out of the tracker’s
sensing range. In this paper, we present a target tracking
algorithm that combines an extremely simple mobile robot
with a networked collection of wireless sensor nodes, each of
which is equipped with an unreliable, limited-range boolean
sensor for detecting the target. The tracker maintains close
proximity to the target using only information sensed by the
network, and can effectively recover from temporarily losing
track of the target. Our approach combines a protocol for
the sensor network that conserves energy by dynamically
adjusting the time-to-live for packets it transmits with a reactive
strategy for the tracker based on its information state. We
present an implementation along with experimental results. Our
experimental results show that our system achieves both good
tracking precision and low energy consumption.

I. I NTRODUCTION

Tracking problems for mobile robots have received sub-
stantial attention in recent years. Informally, a robottracker
seeks to maintain close proximity to an unpredictabletarget.
Effective target tracking algorithms have many important
applications, including monitoring and security. Algorithms
have been proposed to solve this problem with mobile robots
under various constraints and sensor models [3], [23], [25]–
[27]. However, these existing methods for robotic tracking
are hampered by two primary limitations.

1) Locality. Existing tracking methods generally rely
on sensors onboard the robot, which by nature only
provide information about the target’s location when
the target is nearby. This limitation is particularly
problematic in cases where (a) the tracker starts with
little or no knowledge of the target’s location or (b)
the tracker loses contact with the target during its
execution. To recover from these situations using only
local information is a challenging problem, requiring
extensive search in the worst case [12], [17].

2) Sensing complexity.Prior work assumes that the robot
has access to sensors that are (in spite of their local
nature) relatively powerful and information-rich, such
as visual or range sensors. Such sensing capabilities
add additional cost and complexity to the robot. It is
desirable to design and deploy simpler robots with less
sophisticated sensing hardware. Moreover, tracking
with limited sensing is of independent interest for cul-
tivating understanding of the information requirements
of the target tracking task.
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Fig. 1. An example tracking problem, in which a tracker (triangle, left
side) seeks to find and maintain close proximity to a target (circle, right
side). A wireless sensor network deployed in the environmentprovides the
tracker with information about the target’s whereabouts.

In this paper, we propose a tracking technique that resolves
these limitations by allowing the robot to utilize a wireless
sensor network to assist in the tracking task. The tracking
task can be divided into two parts: sensing the target and
following its movements. As such, we decouple these parts
and delegate the sensing task to a stationary sensor network
(This is, once deployed, the location of each sensor node
is fixed). The mobile tracker then follows the target using
only the observations made by these sensor nodes. This
arrangement eliminates the need for complex sensors on the
tracker, and also provides an efficient means for delivering
nonlocal information to the tracker.

To further simplify the proposed system, we assume the
sensors node are equipped with binary proximity sensors
that cannot sense the accurate location of the target. Instead,
the sensors report only whether the target is within a given
sensing range. Furthermore, we assume that these sensor
experience frequent false negative errors. To utilize this
coarse location information, our approach makes extensive
use of the concept ofinformation states[22], which explicitly
encode the robot’s uncertainty about the target position.
Specifically, the tracking robot uses information collected
from the network to synthesize a set ofpossible states, then
makes greedy motions intended to reduce the size of this set.

A wide range of wireless sensor networks have been
deployed to monitor wildlife, sense pollution readings in
ecologically sensitive environments, track wildfire, and other
tasks. Despite this variety, sensor networks are character-
ized by limited energy and communication resources. Only
lightweight, energy-efficient protocols are feasible in sensor
networks. Generally, among the three main components of a
sensor node (e.g., sensor(s), processor, and radio), the radio



dominates the energy consumption [37]. Thus, to extend
network lifetime, the network protocols should limit the total
number of messages required.

In summary, the contribution of this paper is to propose
and evaluate a tracking technique for a robot cooperating
with a sensor network with the following features.

• Nothing other than a maximum speed is known about
the target’s motion.

• The tracking robot has no sensors that directly provide
information about the target.

• The sensor nodes detect only when the target is nearby,
but do not provide any precise location information, and
are subject to frequent, unpredictable failures.

• Each sensor node has a limited energy budget for
making transmissions.

The remainder of this paper has the following structure. We
begin the paper by reviewing related work in Section II.
We next formalize the tracking problem in Section III. In
Section IV, we present our approach, including the protocol
to deliver sensing data to the tracker, and the strategy
for controlling the tracker. In Section V, we present our
validation effort and discuss experimental results. We wrap
up the paper by providing concluding remarks in Section VI.

II. RELATED WORK

Target tracking problems for mobile robots have been
studied for some time. The objective for these problems is
generally to maintain visibility between the target and the
tracker. Algorithms are known for planning the tracker’s mo-
tions using dynamic programming [23], sampling-based [27],
and reactive approaches [25]. Others have considered the
problem of stealth tracking, in which the tracker seeks to
maintain visibility of the target, while remaining near the
boundary of the target’s visibility polygon to avoid possible
detection [3]. Still another approach explicitly considers
the target’s privacy in the formulation [28]. Our work is
also related to robotics approaches for pursuit-evasion, which
considers the problem of locating adversarial mobile agents
within an environment [13], [18], [24], [35].

Other approaches for tracking have employed wireless
sensor networks (WSNs). WSNs have been deployed to track
the positions of humans [6], [33], moving vehicles [10], [14],
[38], and other moving targets [1], [9], [21], [32]. Those
surveillance systems leverage stationary sensor networks
where each node collects measurement using on-board mag-
netic, acoustic, visual, or infrared motion sensors and reports
the measurements to a data center via multi-hop routing.
Then, the data center tracks the positions of moving targets
by analyzing the measurements. Alternatively, to keep track
of locations of targets, sensors are attached to the moving
targets, such as zebras [19]. Whether stationary or attached
to targets, sensor nodes passively collect measurements and
rely on multi-hop communication to deliver data for further
analysis. As a result, the communication can become expen-
sive when the network size is large. The tracking architecture
proposed in this work addresses such communication issues

by having a mobile tracker follow targets and collect the
information of the targets in their vicinity.

The idea of combining WSNs with mobile robots has
been investigated by Sukhatme et al. [4], [5], [20]. In
particular, mobile robots are introduced to WSNs to facilitate
sensor network deployment with the goal of achieving good
sensor coverage [4], [5]. Our work complements theirs in
the sense that we focus on the tracking application after
the deployment is done. WSNs are also proposed to assist
mobile robots to track targets [20], using the sensors that can
supply precises location information to the robot. We take a
different viewpoint: we design the tracking algorithms by
considering issues associated with both sensor networks and
mobile robots; and thus, achieve good tracing performance
at reasonable operational cost for the network while using
simple sensor devices and robots.

The use of mobile sensor networks, in which individual
nodes have both sensing and motion capability, has been
proposed as a means to track moving targets [29], [39]. The
primary concern in this area is to track the targets while
maintaining the network connectivity. We propose a different
architecture where the connectivity problem and mobility
management issues are decoupled.

III. PROBLEM STATEMENT

This section formalizes the tracking problem we consider.
The system is illustrated in Figure 1.

A point target moves unpredictably, but with maximum
speedstgt, in a closed, bounded, polygonal, planar environ-
ment E. The environment need not be simply connected.
Execution begins at timet = 0 and ends at some final time
t = T . Let q(t) denote the position of the target at timet.

A point robot called the tracker also moves inE. At time
t, the position of the tracker is denotedp(t). The tracker
can choose its velocity vectoru(t), so that dp/dt = u. The
velocity is constrained by a maximum speedstrk. We assume
that the tracker is perfectly localized withinE, using either
standard sensor-based localization methods [7], [8], or GPS
[31]. Thereforep(t) is always known. The tracker has no
sensors that directly report on the position of the target; it
instead must rely solely on the communications from the
network, as described below. Thestatex(t) = (p(t), q(t))
comprises the target and tracker positions.

To assist the tracker, a network ofk stationary wireless
sensor nodes is distributed throughE at positionsn1, . . . , nk.
The nodes localize themselves using one of the well-known
sensor network localization schemes [2], [15], [30]. To
simplify the notation, we assume that the nodes are identical,
with a fixed sensing rangers and a fixed communication
rangerc.1 Specifically, each nodeni can:

1) Possibly detect the target whenever||q(t) − ni|| ≤
rs. This sensing is boolean, in the sense that the
node knows only whether or not the target has been
detected, but no other information. This detection is

1To allow heterogeneous nodes would not require any significant changes
to our approach.



also unreliable, in the sense that failing to detect the
target does not imply that||q(t)−ni|| > rs. Such false
negatives, which can occur as a result of unmodeled
occlusions in the environment, noise, or other factors,
are assumed to be extremely common.

2) Broadcast messages to all nodesnj for which ||ni −
nj || ≤ rc. Although we assume that time required
for each transmission is negligible, these broadcasts
are subject to intermittent communication failures. In
our approach, the content of these messages is a de-
scription of a circle known to contain the target, along
with a timestamp indicating when that information was
collected. Specifically, the content of message is an
ordered pair(c, t), listing the center of the circle along
with its timestamp. The circles described by these
messages all have radiusrs. Each node can initiate
new messages and forward messages it has received.
This forwarding is done by broadcast. That is, a single
transmission is sufficient to send the message to all of
a node’s neighbors.

In addition, the tracker is equipped with network commu-
nication hardware, so that it can receive messages that are
broadcast by nodes withinrc of p(t). Finally, we assume
that the tracker also uses this hardware to transmit a simple
beacon signal, informing wireless sensor nodes of its pres-
ence. This beacon is detected by the node atni whenever
||p(t) − ni|| ≤ rc.

A. Goal conditions

The tracker’s primary objective is to minimize the average
distance betweenp(t) and q(t) throughout the system’s
execution:

P =
1

T

∫ T

0

||p(t) − q(t)||dt. (1)

Because the energy available to each wireless sensor node is
often strongly limited, a secondary objective is to minimize
the average number of message broadcasts made in the
network per unit time. LetC(i) denote the number of
broadcasts made by the node atni betweent = 0 andt = T .
We seek to minimize

C =
1

T

k∑
i=1

C(i). (2)

We discuss experiments that explore the tradeoff betweenP
andC in Section V.

B. Uncertainty and information states

Since the current statex(t) is not necessarily known to
the tracker, the primary difficulties for the tracker are first
to efficiently represent its knowledge, and second to use
this representation to choose motions for the tracker. Our
approach is based on the idea of computing the tracker’s
information states. In this context, the information state
is the set of possible states that are consistent with the
information the tracker has received. The tracker computes
its information state, then uses it to choose its motions.

q(t)

q(0)

Fig. 2. A target position is consistent with a set of messages if there exists
a starting target position and a feasible target trajectorythat pass through
each message’s circle at the appropriate times reaching that target position.

Formally, if the tracker has receivedm messages

{(c1, t1), . . . , (cm, tm)}, (3)

as of time t1, then a target positionq′ is consistent with
those messages if and only if there exists a continuous
trajectory q : [0, t1] → E such that dq/dt ≤ stgt for all
t ∈ (0, t1), andq(t1) = q′. Figure 2 illustrates this definition.
Note the implicit assumption that the tracker starts with no
information about the target’s location.

The tracker always knows its own position, so the infor-
mation state (that is, the set of possible states) at timet is

η(t) = {p(t)} × Q(t). (4)

Let I denote the space of all such information states. Because
the information state is a complete picture of the knowledge
available to the tracker, we can describe the tracker’s strategy
as a function mapping information states to velocities:

π : I → {u ∈ R
2 | ||u|| ≤ strk}. (5)

We discuss methods to maintain a representation ofη(t) in
Section IV-B, and propose a greedy strategyπ in Section IV-
C.

IV. A LGORITHM

This section presents our tracking algorithm for the system
described in Section III. We divide the presentation into
three parts: (1) how to efficiently deliver target location
information to the moving tracker (Section IV-A), (2) how to
compute the information state of the target based on this in-
formation (Section IV-B), and (3) how to use the information
state to choose motions for the tracker (Section IV-C).

A. Sensing and Data Delivery

As discussed in Section III, we consider network ofk
nodes spread throughoutE. Whenever a node detects the
target it generates a message containing its own coordinates
and the circle center and the current timestamp. This initiates
the message delivery process.

The design of the message delivery protocol is compli-
cated by two factors. First, the location of the intended
receiver, the tracker, is unknown in general to the network
nodes. Most of the existing routing protocols for sensor
networks, such as direct diffusion [16] and spanning tree
based routing [36], are composed of a routing discovery
phase and data delivery phase. Such protocols work well
with stationary sinks, but are unsuitable for a mobile receiver.
Thus, we choose broadcast as our message delivery protocol.
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Fig. 3. A illustration ofTTL-based broadcast.

Second, the sensor nodes operate on batteries, so the
broadcast protocol must be sensitive to this energy constraint.
Energy consumption by radio transmissions generally ex-
ceeds energy consumption for both sensing and processing
by wide margins [37]. Therefore to extend network lifetime,
it is necessary to limit the total number of messages broad-
casted. To accomplish this, we pretend to each message a
header containing a globally uniquesequence numberand a
nonnegative integertime-to-live(TTL). We use these headers
in two ways:

1) A node will only forward each message once, using
the sequence number to track which messages it has
forwarded already.

2) Each time a message is forwarded, itsTTL is decreased
by 1. Messages withTTL = 0 are discarded. As
a result, the initialTTL for a node determines the
maximum number of hops the message can travel on
the network.

Each node forwards every message it receives as long as
neither of these drop conditions is met.

Figure 3 depicts an example of sensor nodes along with
the tracker. Suppose that nodeG detects the presence of
the target. NodeG generates a message withTTL = 2, a
new sequence number, and its location, and sends out the
message. Its neighborM receives the message, decreases the
TTL by 1 and broadcasts it. Similarly, nodeN receives the
message, decreasesTTL, but will not forward the message
since TTL = 0. In this example, the tracker is within
the radio range of nodeM , so it successfully receives the
message fromG.

How can we choose theTTL value for a new message?
Ideally, we want to set theTTL to the minimum hop count
needed for messages to reach the tracker. Unfortunately,
with the precise location of the tracker unknown to the
sensor nodes, this value is not available. LargeTTL can
guarantee the delivery of the message at the cost of high
energy consumption, whereas smallTTL requires less energy
consumption, at the risk that messages may never reach
the tracker. The smallTTL is especially harmful when the
tracker starts its execution with no knowledge of the target’s
position, or when it loses track of the target.

To address the issue of choosingTTL, we propose to
dynamically adjust theTTL value. In the steady state, the
tracker should be within the vicinity of the target. Thus,
we use a smallTTL value by default. When the tracker is

Algorithm: Adjust TTL
if trackerSeen()or not targetSeen()then

messageTTL← MIN TTL
timeoutCount← 0

else
timeoutCount← timeoutCount+1

if timeoutCount≥ TTL TIMEOUT then
timeoutCount← 0

messageTTL← 2 · messageTTL
end

end

Fig. 4. The TTL adjustment algorithm.

far from the target, we dynamically adjust theTTL so that
the message will reach tracker without flooding the entire
networks. In order to adjustTTL, we need to know whether
the tracker is in the proximity of the target. One observation
is that when the tracker follows the target closely, the sensor
nodes that sense the target are within the vicinity of the
tracker as well. These nodes should receive the beacon signal
sent by the tracker. When the tracker is far from the target,
these nodes will only observe the target, not the tracker.

Based on these observations, we propose theTTL ad-
justing algorithm shown in Figure 4, which is inspired by
the TCP congestion control algorithm. Each node executes
Adjust TTL() at small, fixed time intervals. If the node
senses the target and the tracker, theMIN TTL value is
used. Otherwise, the node will double itsTTL after not
hearing from the tracker forTTL TIMEOUT number of time
slices. We present experiments evaluating various choicesfor
TTL TIMEOUT in Section V.

The overall effect of this algorithm is that, when a node
detects the target for a period of time without also detecting
the tracker, theTTL for messages from that node is gradually
increased in an attempt to ensure that that the tracker receives
the messages. When the tracker arrives or the target departs,
the TTL is reset.

B. Computing the information state

The previous section described the operation of the sensor
network, intended to deliver messages to the tracker describ-
ing circular regions that contain the target. It remains to
describe how the robot can use this information to minimize
its distance from the target.

First, recall the definition of the information stateη(t),
which is the set of possible states at timet. Notice that the
definition ofη(t) contains an existential quantifier over target
trajectories, preventing the definition from being directly use-
ful for computing the information states. Instead we perform
iterative updates, maintaining the current information state
and updating it when time passes and when new messages
are received. We start with the initial information state
η(0) = {p(0)}×E. Then two kinds of updates are performed
throughout the execution:

1) When time fromt1 to t2 passes without any messages
being received, we computeη(t2) from η(t1). To
accomplish this we replacep(t1) with p(t2), perform
a Minkowski sum of Q(t1) with a disc of radius



(a) (b) (c)

Fig. 5. Computing the information state. (a) An initial information state.
(b) Expansion to account for the passage of time, and intersection with
received message circles and the environment. (c) The resulting updated
information state.

Fig. 6. A sample execution of our algorithm inside a “cinder block” shaped
environment. The information state is shaded.

(t2− t1)stgt, and intersect the resulting region withE.
The resulting region is retained atQ(t2). Note that this
approach may slightly overestimate the information
state whent2 − t1 is large and the boundary ofE has
sharp non-convex corners. This effect, which is similar
to the sampling issues that arise in collision detection
for path segments, can be reduced or eliminated by
partitioning the time period fromt1 to t2 into smaller
segments.

2) When a message(c, t) is received, the existing in-
formation state is updated to the correctη(t) by
performing an intersection with a disk with centerc
and radiusrs.

Figure 5 illustrates each of these updates. Our implementa-
tion approximates the curved boundaries of the information
states as polygonal regions, and uses the GPC General
Polygon Clipper Library [34] to perform both types of
updates.

C. Tracker strategy

Finally, we describe how the tracker moves. Recall that the
tracker’s chosen velocityu(t) is a function of its information
stateη(t) = (p(t), Q(t)). Notice that, aside from knowing its
own position and a set of possibilitiesQ(t) for the target’s
position, the tracker cannot draw any additional conclusions
about the state. Given this uncertainty, the ideal position
for that tracker, that minimizes average the distance to the
target across all its possible positions is by definition the
centroidQ(t). Note, however, that the centroid ofQ(t) may
not be insideE. Based on these observations, we propose
the following strategy for the tracker:

Move with speedstrk along the shortest path in
E from p(t) to the closest point inQ(t) to the
centroid ofQ(t).

Fig. 7. [top] An initial condition with large uncertainty for the tracker.
[bottom] The network provides information about the target location from
far across the environment.

Computing this motion takes time linear in the complexity of
Q(t), for both the centroid and shortest path elements [11].

V. I MPLEMENTATION AND EVALUATION

A. Example executions

We have implemented this algorithm in simulation. Fig-
ure 6 illustrates its operation in a rectangular environment
with two large obstacles. Several snapshots of the execution
are shown, starting from an initial condition in which the
tracker and the target are near each other.

Figure 7 shows a slightly more complex situation, in which
the tracker and the target are initially separated by a large
distance. In this example, the tracker and the target are



Fig. 8. The randomly-generated environment used in our quantitative
experiments.

separated by approximately 60 hops in the network. As a
result, no messages reach the tracker until at least one node
has experienced 6 timeouts. Note that during this time, in the
absence of additional information, the tracker moves toward
the centroid ofE.

B. Experimental evaluation

First, to evaluate the influence of theTTL TIMEOUT
parameter, we performed a series of quantitative experiments.
We varied theTTL TIMEOUT from 1 to 20 time steps and
measured bothP and C, the evaluation metrics introduced
in Section III-A. For each value ofTTL TIMEOUT, we
executed 5 trials in the environment shown in Figure 8,
using random placements ofk = 150 nodes. Each trial
lasted T = 500 time steps, with the sensors collecting
information once per time step. Sensor failures were modeled
probabilistically. We set each sensor’s failure rate set to50%,
which means sensor fails to detect the presence of the target
50% of time.

We plot the average distanceP and the average number of
message broadcastedC with differentTTL TIMEOUT values
in Figure 9. This experiment demonstrates the expected
tradeoff between tracking performance and energy-efficient
network operation. For instance, largerTTL TIMEOUT indi-
cates thatTTL will be increased less frequently, leading to
longer delay for the tracker to recover from loss track of the
target, but smallerC. Luckily, under these conditions, values
of TTL TIMEOUT lower than 5 generate excessive increases
in energy consumption in exchange for only modest improve-
ments tracking accuracy. Thus, we choseTTL TIMEOUT =
5 for the rest of our experiments.

Finally, to evaluate the effectiveness of our dynamicTTL
algorithm we compared it to two naive network schemes:

1) Flooding, in which every message is forwarded to ev-
ery node in the network. This approach delivers every
message to the tracker and generates very accurate
tracking but also very large energy consumption.

2) StaticTTL, in which every message is broadcast with
a fixedTTL. This approach is very energy efficient, but
leads to poor tracking performance because messages
are forwarded only locally.
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Fig. 9. Algorithm performance for varying values ofTTL TIMEOUT.

P C
Flooding 2.32 279.74

Dynamic TTL 2.92 7.95
Static TTL 5.57 2.06

Fig. 10. Results comparing our dynamic TTL technique to two naive
network schemes. Our algorithm achieves tracking accuracy (P ) comparable
to flooding and energy efficiency (C) comparable to static TTL.

In this experiment we usedTTL TIMEOUT = 5 for dynamic
TTL. The results, which appear in Figure 10, are based on
the same conditions as the previous experiment, and likewise
are averaged across five trials for each network scheme. The
results demonstrate that our dynamicTTL approach achieves,
in some sense, something close to “the best of both worlds”
in balancing tracking precision and energy efficiency.

VI. CONCLUSION

We presented a target tracking algorithm that uses a
collaboration between a sensorless robot and a network
of unreliable sensor nodes. Experiments demonstrate that
this algorithm has good performance in balancing energy
efficiency with tracking accuracy. However, a number of
interesting questions remain unanswered.

One important avenue for potential improvement is to
exploit the message content to improve the system’s perfor-
mance even more. In particular, each node can maintain its
own information state, reflecting the information available
to it from both its own observations and messages it has
forwarded. Then each node can make more efficient routing
decisions and reduce the overall communication require-
ments by combining multiple messages using geometric in-
tersection. This idea can be extended even more by allowing
nodes to send messages describing the position of the tracker,
instead of only target-related messages.

ACKNOWLEDGMENTS

Heather O’Kane assisted with preparing the experimental results. This work
is partially supported by a grant from the University of South Carolina,
Office of Research and Health Sciences Research Funding Program.



REFERENCES

[1] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko,and D. Rus,
“Tracking a moving object with a binary sensor network,” inSenSys
’03: Proceedings of the 1st international conference on Embedded
networked sensor systems. New York, NY, USA: ACM, 2003, pp.
150–161.

[2] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-
based user location and tracking system,” inProceedings of IEEE
INFOCOM’00, 2000.

[3] T. Bandyopadhyay, Y. Li, M. H. A. Jr., and D. Hsu, “Stealthtracking
of an unpredictable target among obstacles,” inProc. Workshop on the
Algorithmic Foundations of Robotics, 2004, pp. 43–58.

[4] M. Batalin and G. S. Sukhatme, “Sensor coverage using mobile robots
and stationary nodes,” inSPIE Conference on Scalability and Traffic
Control in IP Networks II (Disaster Recovery Networks), vol. 4868,
Aug 2002, pp. 269–276.

[5] ——, “The analysis of an effiient algorithm for robot coverage and
exploration based on sensor network deployment,” inIEEE Interna-
tional Conference on Robotics and Automation, Barcelona, Spain, Apr
2005, pp. 3489–3496.

[6] P. Chen, S. Oh, M. Manzo, B. Sinopoli, C. Sharp, K. Whitehouse,
O. Tolle, J. Jeong, P. Dutta, J. Hui, S. Schaffert, K. Sukun, J. Taneja,
B. Zhu, T. Roosta, M. Howard, D. Culler, and S. Sastry, “Instrumenting
wireless sensor networks for real-time surveillance,” inProceedings
2006 IEEE International Conference on Robotics and Automation,
2006, pp. 3128–3133.

[7] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo local-
ization for mobile robots,” inProc. IEEE International Conference on
Robotics and Automation, 1999.

[8] D. Fox, S. Thrun, W. Burgard, and F. Dallaert, “Particle filters for
mobile robot localization,” inSequential Monte Carlo Methods in
Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds. Berlin:
Springer-Verlag, 2001, pp. 401–428.

[9] C. Gui and P. Mohapatra, “Power conservation and qualityof surveil-
lance in target tracking sensor networks,” inMobiCom ’04: Proceed-
ings of the 10th annual international conference on Mobile computing
and networking. New York, NY, USA: ACM, 2004, pp. 129–143.

[10] L. Guibas, “Sensing, tracking, and reasoning with relations,” IEEE
Signal Processing Magazine, vol. 19, no. 2, pp. 72–85, 2002.

[11] L. J. Guibas and J. Hershberger, “Optimal shortest path queries in a
simple polygon,”Journal of Computer and Systems Sciences, vol. 39,
no. 2, pp. 126–152, 1989.

[12] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani,
“Visibility-based pursuit-evasion in a polygonal environment,” Inter-
national Journal of Computational Geometry and Applications, vol. 9,
no. 5, pp. 471–494, 1999.

[13] L. Guilamo, B. Tovar, and S. M. LaValle, “Pursuit-evasion in an
unkown environment using gap navigation trees,” inProc. IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2004.

[14] T. He, S. Krishnamurthy, J. Stankovic, T. Abdelzaher, L.Luo,
R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh, “Energy-efficient
surveillance system using wireless sensor networks,” inMobiSys ’04:
Proceedings of the 2nd international conference on Mobile systems,
applications, and services. New York, NY, USA: ACM, 2004, pp.
270–283.

[15] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher,
“Range-free localization schemes for large scale sensor networks,” in
MobiCom ’03: Proceedings of the 9th annual international conference
on Mobile computing and networking. New York, NY, USA: ACM,
2003, pp. 81–95.

[16] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a
scalable and robust communication paradigm for sensor networks,” in
MobiCom ’00: Proceedings of the 6th annual international conference
on Mobile computing and networking. New York, NY, USA: ACM,
2000, pp. 56–67.

[17] V. Isler, S. Kannan, and S. Khanna, “Locating and capturing an evader
in a polygonal environment,” inProc. Workshop on the Algorithmic
Foundations of Robotics, 2004.

[18] V. Isler, D. Sun, and S. Sastry, “Roadmap based pursuit-evasion and
collision avoidance,” inProc. Robotics: Science and Systems, 2005.

[19] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: design tradeoffs
and early experiences with zebranet,” inASPLOS-X: Proceedings
of the 10th international conference on Architectural support for

programming languages and operating systems. New York, NY, USA:
ACM, 2002, pp. 96–107.

[20] B. Jung and G. S. Sukhatme, “Cooperative multi-robot target track-
ing,” in Proceedings of the International Symposium on Distributed
Autonomous Robotic Systems, Minneapolis, Minnesota, Jul 2006, pp.
81–90.

[21] W. Kim, K. Mechitov, J. Choi, and S. Ham, “On target tracking
with binary proximity sensors,” inIPSN ’05: Proceedings of the
4th international symposium on Information processing in sensor
networks. Piscataway, NJ, USA: IEEE Press, 2005, p. 40.

[22] S. M. LaValle,Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[23] S. M. LaValle, H. H. Gonźalez-Bãnos, C. Becker, and J.-C. Latombe,
“Motion strategies for maintaining visibility of a moving target,” in
Proc. IEEE International Conference on Robotics and Automation,
1997, pp. 731–736.

[24] S. M. LaValle, B. Simov, and G. Slutzki, “An algorithm forsearching
a polygonal region with a flashlight,”International Journal of Com-
putational Geometry and Applications, vol. 12, no. 1-2, pp. 87–113,
2002.

[25] R. Murrieta, A. Sarmiento, S. Bhattacharya, and S. A. Hutchinson,
“Maintaining visibility of a moving target at a fixed distance: The case
of observer bounded speed,” inProc. IEEE International Conference
on Robotics and Automation, 2004.

[26] R. Murrieta-Cid, H. H. Gonzalez-Banos, and B. Tovar, “Areactive
motion planner to maintain visibility of unpredictable targets,” in Proc.
IEEE International Conference on Robotics and Automation, 2002.

[27] R. Murrieta-Cid, B. Tovar, and S. Hutchinson, “A sampling-based
motion planning approach to maintain visibility of unpredictable
targets,”Autonomous Robots, pp. 285–300, 2005.

[28] J. M. O’Kane, “On the value of ignorance: Balancing tracking and
privacy using a two-bit sensor,” inProc. Workshop on the Algorithmic
Foundations of Robotics, 2008, to appear.

[29] R. Olfati-Saber, “Distributed tracking for mobile sensor networks with
information-driven mobility,” inACC’07: American Control Confer-
ence, 2007, pp. 4606–4612.

[30] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket
location-support system,” inMobiCom ’00: Proceedings of the 6th
annual international conference on Mobile computing and networking,
2000, pp. 32–43.

[31] G. Reina, A. Vargas, K. Nagatani, and K. Yoshida, “Adaptive kalman
filtering for gps-based mobile robot localization,” inProc. IEEE
International Workshop on Safety, Security and Rescue Robotics, 2007.

[32] N. Shrivastava, R. M. U. Madhow, and S. Suri, “Target tracking with
binary proximity sensors: fundamental limits, minimal descriptions,
and algorithms,” inSenSys ’06: Proceedings of the 4th international
conference on Embedded networked sensor systems. New York, NY,
USA: ACM, 2006, pp. 251–264.
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