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Abstract— We address the problem of deciding what informa-
tion a robot should transmit to the outside world, by exploring
a setting where some information (e.g., current status of the
task) must be shared in order for the robot to be useful, but
where, simultaneously, we wish to impose limits which ensure
certain information is never divulged. These sorts of conditions
arise in several circumstances of increasing relevance: robots
that can provide some guarantee of privacy to their users,
controllers which safely use untrusted “cloud” services or
smart-space infrastructure, or robots that act as inspection
devices in information-sensitive contexts (e.g., factories, nuclear
plants, etc.) We introduce an algorithm which takes as input an
arbitrary combinatorial filter, expressed as a transition graph,
and a set of constraints, constituting both upper and lower
bounds, that specify the desired informational properties. The
algorithm produces a coarser version of the input filter which
possesses the desired informational properties, if and only if
such a filter exists. We show that determining whether it is
possible to satisfy both the distinguishablity and indistinguish-
ablity constraints is NP-hard. The hardness result helps justify
the worst-case running time of the algorithm. We describe an
implementation of the algorithm along with empirical results
showing that, beyond some minimum problem complexity, the
algorithm is faster than naı̈ve filter enumeration, albeit with
greater memory requirements.

I. INTRODUCTION

Every robot designer faces the problem of deciding how

the information from sensors should be processed and stored

by their robot. Any robot that responds to its environmental

conditions inevitably discloses some information about its in-

ternal state or its estimates of the world’s state; indeed, doing

so often comprises a large part of the robot’s purpose. As

information is accumulated and integrated, this information is

communicated via its choice of actions, status displays (e.g.,

lights blinking, or interfaces with visualizations of internal

variables), or data logs that are written. But disclosure of

such information has the potential to be detrimental. It may,

for example, violate the privacy of individuals who have been

interacting with the robot. In fact, guaranteeing that certain

information will not be divulged may be a vital requirement

for the robot. A nuclear inspection robot may be barred from

entry to site by authorities if it leaks sensitive or proprietary

information deemed to be unrelated to its arms control duties.

This paper is concerned with rigorously treating questions

regarding the sharing of information available to the robot.

To illustrate the general class of problems we address,

Figure 1 depicts a somewhat whimsical scenario where a

robot has constraints on what information it can divulge.
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Fig. 1: [Top] A mobility impaired user is assisted by a robot escort. We wish
to ensure that the robot never divulges information that could distinguish
activities conducted in the master bedroom and guest bedrooms, respectively.
However, the robot should make information available about the status of
the rose garden. [Bottom left] This coloring of the robot’s filter graph
describes information that disambiguates states (and possibly belief states)
which satisfy the information disclosure criteria. [Bottom right] If the
northern patio door is locked and the east patio door unlocked, the coloring
no longer serves its purpose. In fact, no controller satisfies the information
criteria under those circumstances.

In the example, a helpful robot escort assists its mobility

impaired user, horticultural enthusiast seedy John, around the

home and garden. To be useful the robot localizes itself and

keeps track of the room it occupies at all times. John waters

his roses whenever he has opportunity to pass by them so, in

order to avoid grievous over-watering, the robot notifies his

(intermittent) garden service of the fact that the rosebushes

have already been watered that day. It does this by publishing

information about John’s movement through the front yard.

However, care must be taken to ensure that the robot does not

divulge information that violates the privacy of the user when

communicating with other entities (e.g., caretakers, remote

technical support). To protect John’s propriety, we guarantee

that his nocturnal habits remain confidential by requiring that

time spent in one bedroom be indistinguishable from time

spent in the other. This miniature example, although twee,

captures the essence of information sharing constraints and

one may readily scale the description up to larger and more

realistic problems.

The lower-left graph in Figure 1 shows the information

maintained by the robot (a topological representation where

transitions occur as the robot crosses a door/gate threshold).



The information constraints in this problem are satisfied —

perhaps rather obviously— by divulging only the colors

associated with the graph vertices. However, the existence of

a suitable filter is not always so straightforward to determine.

Constraints that dictate certain information should not be

divulged do not merely imply that those states must have

the same color; an astute adversary may disambiguate states

in the original filter by examining sequences of colors.

Moreover, seemingly minor modifications to the situation

can have important consequences. Suppose, in the example,

that the East patio door is unlocked (shown with purple the

padlock), and the North patio door is sealed (shown with the

blue padlock, see also the lower-right graph). Under these

apparently innocuous changes, no suitable coloring exists.

We present an algorithm that accepts an input combinato-

rial filter (a discrete structure that encodes the information

available to a robot) and a constraint graph specifying

states within that filter which should be distinguishable and

indistinguishable from one another. The algorithm outputs

a coarser version of the original filter which satisfies the

constraints, if only if such a filter exists. The approach works

by constructing a graph representing what an adversary could

soundly infer on the basis of observations of the filter’s

outputs. Then this observer graph is pruned to ensure the

information constraints are met. Next, a coloring of the

original filter is found by constructing a Boolean formula

that must be satisfiable precisely when such a coloring exists.

Any information transmitted —or actions selected— solely

on information in the coloring will not expose knowledge

that violates the given constraints. We also show that the

problem this algorithm solves is NP-hard, somewhat excus-

ing its inefficiency and, thereby, making use of a Boolean

SAT solver defensible.

After reviewing related work in Section II, this paper first

defines the constrained filtering problem in Section III in

a general way. Then Section IV examines how an eaves-

dropping adversary can infer information and makes this

notion precise. Sections V and VI prove the hardness result

and detail the proposed algorithm, representing the main

contributions of the paper, respectively. Section VII describes

quantitative experiments that measure the performance of our

algorithm, and the final section of the paper concludes by

outlining some directions for future work.

II. RELATED WORK

The objects of study in this paper are combinatorial filters

and information-state graphs that are used for representing

uncertainty and its evolution under a sequence of observa-

tions and actions. These representations go back a long way

in robotics, at least to Erdmann and Mason [2], and Gold-

berg [3] who consider them for manipulation tasks. These

filters were formalized in a general way by LaValle [8], [9].

Recent works that use combinatorial filters consider a wide

a range of tasks, including target tracking [17], mobile robot

navigation [10], [16], and manipulation [7].

Prior work by the authors has begun to explore algorithmic

questions where combinatorial filters are treated as first-

class entities. We tackle a related problem of filter reduction

in [14] where, given an arbitrary filter, we seek an equivalent

filter which uses the fewest information states to complete

the same filtering task. In [15] we examine the active variant

of the problem, proceeding along similar lines, in seeking

the most compact plan able to perform a task. Unfortunately,

merely minimizing the size of filter (or plan) does not result

in one which preserves privacy. Exploring the outputs of

these algorithms suggests that, rather than obfuscating state

information, usually the algorithms help clarify underlying

structure.

This work falls within the broader class of correct-by-

design approaches wherein a formal specification of the con-

troller requirements are provided beforehand and synthesis

techniques, or verification techniques, or both are employed

to guarantee the specifications are met (cf. e.g., [5], [6]).

Finally, earlier work by one of the authors [13] examines

a related case where, in a specific geometric context, a

robot may choose actions to increase its ignorance because

everything the robot is aware of can potentially be divulged.

In a sense, that work has every state colored uniquely, but

the robot chooses its actions to maintain some property (of

ambiguity) on those states. This paper considers only the

passive case, but there is space to explore the combination

of these ideas in future work by having some coloring of

the filter that satisfies the distinguishablity constraints and

almost satisfies the constraints, and then having the robot

choose actions to maximize indistinguishablity.

III. PROBLEM STATEMENT

This section formalizes our information disclosure con-

strained filter coloring problem.

A. I-state graphs and filters

We consider systems in which a robot interacts in discrete

time with its environment by executing actions and receiving

observations from its sensors. We assume that the robot uses

the history of these actions and observations to form some

representation of its knowledge about its current state and

use the term local information state (local I-state) to denote

that representation.1

In this paper, we are concerned only with changes to the

local I-state. Notice that both actions that the robot takes and

observations that it collects have the same impact, namely

to induce a transition from one local I-state to another.

Therefore, we adopt the generic term event to denote either

an action or an observation. Each event corresponds to a

discrete unit of information that becomes available to the

robot during its execution. The robot experiences a sequence

of events in discrete time, all drawn from an event space Y

of finite size. Formally, we can model such a system as a

directed graph [14].

1The term “I-state,” used in this very general sense, was introduced by
LaValle [8]. We use the modifier “local” to distinguish these from the
observer I-states introduced below.



Definition 1: An I-state graph G is a edge-labelled di-

rected graph supplemented with a starting vertex, i.e., G ,

(V ,E , l : E → Y , v0), in which

1) the finite set V contains vertices which we call “I-

states”,

2) the set E consists of ordered pairs of vertices termed

directed edges,

3) each edge is labelled with an event via the function l ,

and

4) the starting I-state is identified as v0 ∈ V .

In addition, no two edges originating from the same vertex

may have the same label.

Under this kind of model, the set of edges outgoing from

each local I-state corresponds to the set of events that can

plausibly occur when the robot is in that I-state. Depending

on the structure of the underlying problem, some events may

never occur from some I-states. As a result, the vertices of

an I-state graph may have out-degree less than |Y |.

Definition 2: An event sequence y0, . . . , yn is plausible in

an I-state graph G if there exists a path of n edges through

G, starting from v0 and crossing edges labelled with those

events in order.

We assume that, at each time step, the robot divulges a

single symbol, chosen without loss of generality from the

set N+ of natural numbers and uniquely determined by the

current local I-state. Following the tradition of graph theory,

we informally refer to these symbols as colors.

Definition 3: A filter F is an I-state graph supplemented

with an assignment of colors to its vertices. That is, F ,

(G, c : V → N
+), in which G is an I-state graph and the

function c assigns a natural number to each I-state.

We refer to the color assigned the current I-state as the

output of the filter. At each time step, the robot divulges this

output using an untrusted channel, visible to both trusted and

untrusted agents alike.

B. Constraints positive and negative

The definition of a filter does not provide any guidance on

how the coloring should be selected. Informally, the robot

should choose a coloring that simultaneously ensures that

its friends receive the information they need to coordinate

appropriately, without divulging sensitive information to ad-

versaries that may be observing that same channel. The next

definitions formalize this requirement.

Definition 4: A constraint on an I-state graph G =
(V ,E , l : E → Y , v0) is an unordered pair of distinct

vertices {v, w} ⊂ V .

Definition 5: A coloring c of G satisfies a constraint

positively if, for every plausible event sequence y0, . . . , yn
leading to v, there does not exist any other plausible event

sequence y′0, . . . , y
′
n that leads to w, and has the same colors

at each step. That is, there exists no y′ sequence leading to

w such that c(yi) = c(y′i) for all i ≤ n.

The intuition is that a positive constraint (v, w) requires

that an observer who sees the sequence of colors output by

the filter should never be confused about whether the robot’s

local I-state is v or w. Informally, a positive constraint can

be viewed as a lower bound on the informative value of the

filter’s output.

Conversely, we can describe upper bounds on the infor-

mation that can be inferred from the filter’s output using

negative constraints.

Definition 6: A coloring c of G satisfies a constraint

negatively if, for every plausible event sequence y0, . . . , yn
leading to v, there exists another plausible event sequence

y′0, . . . , y
′
n that leads to w, and has the same colors at each

step. That is, there exists a y′ sequence leading to w such

that c(yi) = c(y′i) for all i ≤ n.

A negative constraint requires a coloring that causes an

observer never to be sure that the state is v but not w

or vice versa. Put another way, every sequence of filter

outputs that indicates that the robot may be at local I-state

v also indicates that the robot may be at local I-state w.

Informally, a negative constraint is a upper bound on the

information communicated by the filter; it is a requirement

that the resulting filter remain discreet about certain pieces

of information.

C. A Basic Example

Next, we give a minimal example as a concrete illustration

of the definitions. Suppose that we have a robot that inhabits

a 2×2 grid world, capable of moving “Up”, “Down,” “Left,”

and “Right” and always fully aware of which grid cell it

occupies. The I-state graph which describes the robot’s state

information is shown in the left subfigure of Figure 2. The

start state s models an initial condition in which any of the

four grid cells might be the robot’s true start state. Assume

that the robot wishes to communicate the column that it

currently occupies but never to disclose information which

can distinguish the correct row. This can be captured with

constraints like the positive constraint {01, 10} indicating

that 01 is never to be mistaken with 10. Six constraints

are needed in all and they are shown in graphical form on

the right subfigure of Figure 2 where we denote a positive

constraint with a solid edge between the two states involved.

Similarly, a negative constraint is represented with a broken

edge connecting both states.

This particular problem has a coloring with two colors that

is a solution: both 00 and 01 are colored one color; 10 and

11 are colored the other; and s is colored arbitrarily.

D. Goals

With these definitions in place, we can finally state the

problem that we address in the balance of the paper.
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Fig. 2: A minimal example of robot living in a tiny grid world. [Left] An
I-State graph describing the robot’s position, the initial state “S” encodes
uncertainty about its pose initially. [Right] A specification of information
constraints on the robot’s communication is neatly summarized via a
constraint graph.

Problem: Constrained Filter Coloring (CFC)

Input: An I-state graph G, a set of positive

constraints C+ = {(v+1 , w
+
1 ), . . . , (v

+
n+ , w

+
n+)}

and a set of negative constraints

C− = {(v−1 , w
−
1 ), . . . , (v

−
n−

, w−
n−

)}.

Output: A coloring of vertices of G that satisfies those

constraints, or a statement that no such coloring

exists.

IV. OBSERVER I-STATE GRAPHS

Definitions 5 and 6 directly describe the properties of

the filters in which we are interested. However, because

those definitions depend on the infinite set of all possible

event sequences, it is not immediately clear how to design

algorithms for CFC that satisfy those kinds of constraints. In

this section, we describe an I-state graph called the observer

I-state graph of a given filter, and provide alternatives to

Definitions 5 and 6 that can be directly and efficiently

verified in the observer I-state graph.

Definition 7: For a filter F = (G, c), the observer I-state

graph I is defined as follows.

1) The vertex set is VI = 2V − {∅}. Each element of

this set, called an observer I-state, corresponds to a

non-empty set of local I-states.

2) For each observer I-state η1 ∈ VI and each color k

in the range of c, the observer I-state graph contains

an edge η1
k

−→ η2, in which η2 is the observer I-state

corresponding to the set
⋃

v∈η1

{w | F has an edge v −→ w and c(w) = k},

if that set is not empty. If that set is empty, then η1 has

no out-edge with label k.

3) The initial observer I-state is the vertex corresponding

to the singleton set {v0}.

The intuition is that observers who see the output of F can

treat those outputs as the events in an I-state graph of their

own. For a given sequence of outputs from F, the resulting

observer I-state in I corresponds to the set of possible local I-

states that are consistent with that output sequence. This form

of worst-case reasoning about possible states is described in

more detail in Chapter 11 of LaValle’s book [8].

{ s }

{ 1 0 , 1 1 }
2

{ 0 0 , 0 1 }

1

2

1
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Fig. 3: The observer I-state graph for the example in Figure 2, under a
coloring for which c(00) = c(01) = 1 and c(10) = c(11) = c(s) = 2.

Notice that every event sequence y0, . . . , yn in F leading

to some local I-state v corresponds, by construction of I, to

a path in I crossing edges labeled c(y0), . . . , c(yn) that leads

to an observer I-state containing v. Likewise, every plausible

color sequence in I corresponds to one or more paths in F

whose output matches those colors. Informally, this means

that the observer I-state graph accurately tracks the sets of

possible local I-states that match the observed outputs of F.

More directly, we can say that the observer I-state graph

shows the sound inferences about the local I-state that can

be made by observing the outputs of the filter.

These observations lead directly to the following connec-

tion between the observer I-state graph and positive and

negative constraints in CFC problems.

Lemma 1: For an I-state graph G and coloring c of G:

1) Any positive constraint {v, w} is satisfied if and only

if no reachable observer I-state contains both v and

w.

2) Any negative constraint {v, w} is satisfied if and only

if every reachable observer I-state contains neither v

nor w, or both v and w.

Both the hardness proof in the next section and the algorithm

in Section VI rely heavily on this alternative view of the

constraints.

Figure 3 shows an example observer I-state graph for the

grid example described in Section III-C, under the constraint-

satisfying 2-coloring described there.

V. CONSTRAINED FILTER COLORING IS NP-HARD

In this section, we show that the CFC problem introduced

in Section III-D is NP-hard. We proceed using the common

approach of reduction from a known NP-complete problem,

in this case a standard graph coloring problem:

Decision Problem: Graph 3-Coloring (GRAPH-3C)

Input: An undirected graph G.

Output: True if there exists coloring of G using exactly

3 colors, such that no pair of adjacent vertices

shares the same color; False otherwise.

This problem is known to be NP-complete [1]. Therefore,

it suffices to show a polynomial time reduction from GRAPH-

3C to CFC.

Given an undirected graph G1 , (V1 ,E1 ) as an instance

of GRAPH-3C, we construct an instance of CFC with I-state

graph G2 , (V2 ,E2 , l , s) and constraint sets C+ and C−}
as follows:

1) Create a start vertex in V2 called s.
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Fig. 4: [Top] An illustrative 4 vertex example instance of GRAPH-3C.
[Bottom left] The CFC input graph for the corresponding problem instance.
[Bottom right] The constraints for the corresponding instance of CFC form
three separate graphs.

2) Add additional vertices x and y to V2 .

3) For each vertex in V1 , create a corresponding vertex

in V2 . For each such vertex v, add edges s −→ v and

v −→ x to E2 .

4) Create additional vertices in V2 called {R,G,B}. For

each v ∈ {R,G,B}, add edges s −→ v and v −→ y

to E2 .

5) Arbitrarily assign a unique label l(e) to each e ∈ E2 .

6) Define C+ = {(R,G), (G,B), (B,R)} ∪ E1 for the

positive constraints and C− = {(x, y)} for the neg-

ative ones.

An example of this construction is shown in Figure 4.

The intuition is to use the information constraints to induce

an observer I-state graph of special form, shown in Figure 5.

The resulting graph has initial vertex {s}, followed by a fan-

out to an intermediate (or “middle”) set of vertices, which

then fan back in to a single vertex {x, y}. The intermediate

vertices encode the original coloring problem with positive

constraints as follows. The {R,G,B} vertices represent

colors (intended as “red,” “green,” and “blue,” respectively)

associated with the graph G1; positive constraints ensure

that R, G, and B are always kept separate from one another

in the observer I-state graph. The vertices in G1 fall within

this intermediate region, and are forced apart in the observer

I-state graph by positive constraints that are added for each

of edge in the original graph. The negative constraint ensures

that each vertex the middle layer of the observer I-state graph

contains at least one vertex of G1 and at least one of the

{R,G,B} vertices. Taken together, these constraints ensure

that any constraint-satisfying coloring induces an observer I-

state graph with exactly three vertices reachable in one step

from the start.

We now formalize this idea, showing that the construction

correctly produces an instance of CFC that is equivalent to

{ s }

{ a, d, R }

{ b, G }

{ c, B }

{ x, y }

1
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Fig. 5: The observer I-state graph for the problem in Figure 4.

the original GRAPH-3C instance.

Lemma 2: For any instance G1 , (V1 ,E1 ) of GRAPH-

3C for which the correct output is “True,” the correct output

for the CFC instance as described above is a coloring of the

vertices of G2 satisfying C+ and C−.

Proof: Suppose the contrary that G1 is 3-

colorable with coloring c1 : V1 → {0, 1, 2},

but that CFC of G2 determines that no coloring ex-

ists. Then consider the following coloring of V2 :

Let c2 : v 7→ 0 for v ∈ {s, x, y}, c2 : R 7→ 0, c2 : G 7→ 1,

c2 : B 7→ 2, and c2 : v 7→ c(v), ∀v ∈ V1. Now examine the

observer I-state graph I2 constructed from (G2, c2 ). The

initial state of I2 is {s}, with edges labeled {0, 1, 2} lead-

ing to three vertices labelled {R} ∪ {v ∈ V1 | c(v) = 0},

{G} ∪ {v ∈ V1 | c(v) = 1}, and {B} ∪ {v ∈ V1 | c(v) = 2}
respectively. Those “middle” three vertices each have an

outgoing edge labelled 0 which connects to a vertex {x, y}.

Lemma 1 permits examination of the vertices of I2 to

verify that the constraints hold for c2 . The constraints in

C+ involve only vertices in the “middle” of I2 and each is

satisfied either by construction for {R,G,B} or because c2

collected vertices not connected by edges in E1 by inheriting

the coloring of c1 . The constraint in C− is satisfied because

x and y only appear together in {x, y}. This leads to a

contradiction, completing the proof.

Lemma 3: For any instance G1 , (V1 ,E1 ) of GRAPH-

3C for which the correct output is “False,” the correct output

for the CFC instance as described above is that no satisfying

coloring exists.

Proof: Again suppose the contrary, that G1 is not 3-

colorable but that a satisfying coloring for G2 is provided,

say c2 : V2 → Y ⊂ N
+. Examining the observer I-

state graph I2 constructed from (G2, c2 ), we observe that

it must be of the following form: the initial state of I2

is {s}, connecting via edges labelled with y ∈ Y to “middle”

vertices v ∈ (2{R,G,B}∪V1 − {∅}). These vertices all have an

edge to a vertex {x, y}. The construction of I2 and Lemma 1

require that x and y appear together if C− is to be satisfied.

The constraints on {R,G,B} in C+ (and Lemma 1) imply

that there must exist at least three distinct “middle” vertices,

one for each of R, G, and B. In fact, there must be exactly

three “middle” vertices because if there is some other vertex

it must be of the form v′ ∈ (2V1 − {∅}). Then a sequence

of observations y0, y1, y2 with y1 = c2 (w) for some w ∈ v′

will distinguish x from y, hence violating C−. Now construct

coloring c1 of G1 as follows:



c1 : v 7→ 0 for v ∈ {u ∈ V | c2 (u) = c2 (R)}
c1 : v 7→ 1 for v ∈ {u ∈ V | c2 (u) = c2 (G)}
c1 : v 7→ 2 for v ∈ {u ∈ V | c2 (u) = c2 (B)}

Since c2 satisfies C+, no two u, v ∈ V1 with (u, v) ∈ E1

have c1 (u) = c1 (v). Thus, G1 is 3-colored by c1 , yielding

the contradiction.

Finally, we must show that the reduction is time-efficient.

Lemma 4: The reduction from GRAPH-3C to CFC de-

scribed about takes time polynomial in the size of G1.

Proof: The size of G2 is linear in the size of G1, and

each element of G2 can trivially be constructed in constant

time. Likewise, the size of C+ is linear in the number of

edges of G1, and each constraint is trivial to construct.

Finally, C− is constant.

Importantly, the construction imposes structure that en-

sures the observer I-state graph is structured as desired, but

the construction never forms the observer I-state graph—

which may have size exponential in the size of G2—directly.

We now have all of the constituent parts needed to state

our hardness result.

Theorem 1: CFC is NP-hard.

Proof: Combine Lemmas 2, 3, and 4.

Note that, while this result shows that CFC is NP-

hard, whether CFC is in NP—and, therefore, NP-complete—

remains unproven. Indeed, it is not immediately clear that,

given an instance of CFC and a coloring for the I-state graph,

one can verify the correctness of that coloring in polynomial

time, since the most direct way of performing that verifica-

tion requires construction of the potentially exponential-size

observer I-state graph.

VI. ALGORITHM DESCRIPTION

This section describes an algorithm for CFC. Although

its worst-case runtime is exponential in the size of the

input graph—as it likely must be, in light of Theorem 1—

the algorithm always produces the correct output, and does

so much faster than direct brute force for many problem

instances.

Two main ideas underlie the algorithm’s operation. First,

we use a “universal” observer I-state graph containing every

I-state transition that the observer might make, across all

colorings of the input graph. We then view the problem of

satisfying the given constraints as a problem of selecting a

coloring that removes enough edges from this graph to ensure

that no path exists from the start to any observer I-state that

violates any of the constraints. Section VI-A describes this

graph in detail.

Second, to find a coloring of the filter that cuts the

universal observer I-state graph in this way (or to show

that no such coloring exists), our algorithm forms a Boolean

formula that has a satisfying assignment if and only if the

original filter has a coloring that satisfies the constraints.

Moreover, filter coloring can be extracted directly from a

satisfying assignment for this formula. After constructing

this formula, our algorithm uses a highly optimized complete

SAT solver to search for a solution. Details about this process

appear in Section VI-B.

Fig. 6: [Left] The universal observer I-state graph for the I-state graph
in Figure 2. Vertex labels are omitted due to space limitations. The start
vertex is shown as a square (�); all other vertices are shown as circles (©).
[Right] The optimized universal observer I-state graph actually computed
by our algorithm. It omits outgoing edges from observer I-states that violate
the constraints.

A. The universal observer I-state graph

The first step of our algorithm is to construct a graph that

contains all I-state transitions that an observer might make,

across all colorings of the input filter.

Definition 8: For a given I-state graph G = (V,E, l, v0),
the universal observer I-state graph U is an unlabeled

directed graph.

1) Every distinct subset of the vertices of G corresponds

to a vertex η of I. We write V (η) for the vertex set

associated with η.

2) An edge η1 −→ η2 exists if and only if there exists

some coloring of G, under which an observer that

knows the robot is in a state in V (η1) could receive

some color as the filter output, and conclude that the

robot might be in some state in V (η2) at the next step.

3) The start vertex η0 of U corresponds to the singleton

set {v0}.

Informally, we can think of U as a graph that collects all

of the edges from all potential observer I-state graphs. The

left portion of Figure 6 shows the universal observer I-state

graph for the example of Section III-C.

1) Generating edges in U: To find the out-edges of

a given I-state η—without iterating over the exponentially

many colorings of G—we first compute the successor set of

η:

S(η) =
⋃

v∈V (η)

{w | F has an edge v −→ w},

We then generate an edge in U from η to the vertex

corresponding to each element in 2S(η). This process follows

directly from the definition of U; each edge η1 −→ η2
generated in this way exists precisely when all of the vertices

in V (η2) share a color amongst themselves, but they do not

share a color with any other vertex in S(η1).
2) Separating η0 from constraint-violating I-states: The

value of U to our algorithm is that we can view the selection

of a particular coloring of G as a deletion of the edges of



U that are not consistent with that coloring (and a labeling

of each remaining edge the appropriate color). In addition,

it is easy to identify the vertices that violate the given set

of positive and negative constraints, by applying Lemma 1.

These two facts, taken together, allow us to recast the original

problem in the following way.

Choose a coloring of G that deletes enough edges

from U to ensure that no path exists in U from its

start vertex to any I-state that violates any positive

or negative constraints.

3) Optimizing U: The universal observer I-state graph

introduced in Definition 8 is sufficient for our algorithm,

but it may contain some elements that are readily identified

as useless to our algorithm. Therefore, the algorithm applies

two simplifications as it constructs U:

1) Since our algorithm is concerned only with paths in U

starting from η0, we construct only the portion of U

that is reachable from η0. That is, we use a forward

search from η0, instead of enumerating the powerset

of V . This reduces the number of vertices in U.

2) Since our algorithm is concerned only with paths

that reach some observer I-state η that violates the

constraints, we omit out-edges from any such observer

I-state. This reduces that number of edges in U.

The right portion of Figure 6 shows an example of the

simplified U resulting from these optimizations.

B. Reduction to SAT

In the previous section, we argued that CFC can be solved

by selecting a coloring that deletes at least one edge in

U from every path between η0 and any constraint-violating

observer I-state. In this section, we show how to construct

a Boolean expression f that is equivalent to this problem.

Specifically, there exist Boolean values for the variables in

f under which f evaluates to True, if and only if there exists

a coloring of G that satisfies all of the positive and negative

constraints of the problem instance.

We construct f from two distinct types of variables.

• For each pair (vi, vj) of distinct vertices in G, we

introduce a same-color variable cij . This variable is

intended to have the value True if and only if vi and

vj share the same color in the final filter.

• For each edge η1 → η2 in U, we introduce an edge-

exists variable eη1η2
. This variable is intended have the

value True if and only if the coloring defined by the

same-color variables generates an observer I-state graph

in which this edge exists.

Based on these variables, our algorithm constructs f as a

conjunction of three different kinds of subexpressions.

• First, we generate subexpressions that force the same-

color variables to represent a legitimate coloring.

Specifically, they must encode an equivalence relation

on V . To force this relation to be symmetric, we include

subexpressions for each vertex pair vi, vj of this form:

cij = cji

To force the same-color relation to be transitive, we

include subexpressions of this form for every trio of

distinct vertices:

cij and cjk → cik

Finally, an equivalence relation must also be reflexive,

so for each vertex vi of F, we include a subexpression

cii = True

• Next, we generate subexpressions that establish the

connection between the same-color variables and the

edge-exists variables. Recall from Section VI-A.1 that

an edge η1 −→ η2 exists in the observer I-state graph

when all of the vertices in V (η2) share the same color,

and no other vertices in S(η1) share that same color. We

express that directly as a subexpression in f by choosing

an arbitrary element vi ∈ V (η2) and comparing its

colors to those of the other vertices in V (η2) and S(η1):

eη1η2
=











cij1 and · · · and cijm
︸ ︷︷ ︸

vj∈V (η2)

and

¬cij1 and · · · and ¬cijm
︸ ︷︷ ︸

vj∈S(η1)−V (η2)











• Finally, we add a collection of subexpressions that

require that least one edge from each path U between

η0 and a constraint-violating I-state to be removed. We

use a depth-first search on U to enumerate such paths.

For each path

η0 → η1 → · · · → ηm,

we generate a subexpression

¬eη0η1
or · · · or ¬eηm−1ηm

,

which evaluates to True if and only if that path loses

at least one if its edges.

After generating all of these subexpressions, our algorithm

combines them into a single Boolean expression f using

conjunctions, and solves the resulting instance of the Boolean

satisfiability problem.

Given an assignment that satisfies f , we can extract a

coloring for G in a straightforward way:

1) Select a vertex vI of G for which no color is assigned

yet. Assign the next unused color k to it.

2) Find all other vertices vj for which the variable cij is

True. Assign color k to each vj .

3) Repeat until every vertex of G has been colored.

If there is no assignment that satisfies f , then there is no

coloring of G that satisfies the constraints.

The decision to convert our problem instance to an in-

stance of SAT may appear, on the surface, rather coun-

terintuitive, since SAT is a well-known (and, indeed, was

the first known) NP-hard problem [1]. However, this also

represents an advantage: There has been extensive research

on fast solvers for the SAT problem, to the extent that many
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Fig. 7: A comparison of the running-times for the proposed SAT-based
algorithm and a naı̈ve enumeration method for a robot moving in grids of
various sizes. Data points with error-bars represent the mean and standard
deviations of 30 measurements, circles were (tedious) instances terminated
after a single measurement. The proposed algorithm is faster beyond some
minimum problem complexity but, nevertheless, computation time increases
significantly with problem instance size for both methods. Note that the
ordinate axis has a logarithmic scale.

problems—including, we believe, CFC—can often be solved

more rapidly by state-of-the-art SAT solvers than by domain

specific heuristics directly [4], [12].

VII. COMPARISON TO BRUTE FORCE ENUMERATION

We implemented the algorithm described in the preceding

section using python, making use of the bool2cnf utility

and zChaff implementation of the Chaff algorithm [11]

for the Boolean satisfiability elements. For purposes of

comparison, we also wrote a naı̈ve method that directly

enumerates all possible colorings of its input filter, generating

the associated observer I-state graph and testing whether

the constraints are satisfied for each. All executions in this

section were performed on a GNU/Linux laptop using a

single core of a 2.53GHz Intel Core 2 Duo processor.

We considered generalizations of the 2 × 2 scenario in

Figure 2 to an m × n case, where the constraints are

analogous, viz., positive constraints to divulge columns and

negative constraints to obscure rows. We varied both m and

n, measuring the run-time for both algorithms. Figure 7

summarizes the findings of the experiments. For all but the

smallest problem instances, the proposed algorithm is faster

than naı̈ve enumeration. It should be said, however, that the

primary limiting resource of the method we propose is its

memory use. This suggests that the practitioner can choose

to trade between time and space resources.

VIII. SUMMARY AND CONCLUSION

We address the question of how one might design a

robot controller subject to discreetness constraints on the

information it provides to the outside world. We introduce

a formulation of the problem based on combinatorial filters,

which are discrete structures for encoding the information

available to a robot. We allow the designer to specify both

the information needed to perform a task (i.e., the robot must

share information that distinguishes certain circumstances)

and information that may not be divulged (i.e., information

should never allow a nefarious agent to disambiguate two

states). If these requirements conflict, there may be no

suitable controller satisfies all constraints; this fact, however,

is not always immediately apparent.

We have shown that finding a filter which satisfies infor-

mational constraints is not likely to be efficiently solvable,

at least not exactly. The exact method we propose appears

to have a running time which is lower than straightforward

enumeration for all but the tiniest problem instances. Future

work should examine whether CFC is in NP. We speculate

that it is not. Work could also explore whether there are

meaningful approximations to the problem, ideally ones

which do not sacrifice guarantees on information that is not

to be divulged (i.e., negative constraints). As alluded to in

Section II, one direction is to consider active rather than

passive variants of the problem.
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