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Abstract— This paper addresses the problem of generating
the simplest plans that solve robotic planning problems. Most
robotic planning algorithms are concerned with producing
plans that minimize execution cost, or generalizations of such
costs. Motivated by circumstances with severe computational
resource limits (e.g., memory or communication constrained
settings), we instead address the problem of producingconcise
plans. In this work, conciseness is a measure of plan size that re-
flects the complexity of representing the plan explicitly. We seek
a plan with minimal representational size, subject to correctness
and completeness. We introduce a planning algorithm that
generates concise plans for planning problem that may involve
both non-determinism and partial observability, and also show
that finding the most concise plan is an NP-hard problem,
excusing the possible sub-optimality of our algorithm’s output.
We describe an implementation of the algorithm, along with
empirical results on the run time and solution quality for both
manipulation and navigation problem domains.

I. I NTRODUCTION

Broadly speaking, autonomous task-oriented behavior re-
quires robots to select and execute actions on the basis of
the limited information available to them. This information
includes the history of what has been sensed, the history of
actions executed in the past, and any prior knowledge that
might be available. The overwhelming majority of existing
work in robotic planning seeks plans that optimize some
measure (such as time, energy consumption, or safety) of
a plan’s execution cost. This paper considers an orthogonal
view of the planning process, in which the objective is to
optimize expression complexityof the generated plans. The
underlying question is “What is the most concise plan the
solves a given planning problem?”

At least three factors motivate a search for concise plans:

1) In situations where robots have severe memory limi-
tations (such as those stemming from extremely small
space, weight, or energy budgets), finding a concise
plan may be more imperative than finding one whose
execution cost is low.

2) Plan size is also important when the plan is being
relayed over a noisy channel. This case may be familiar
to anyone who has communicated driving directions
to another human: A common strategy is to provide
instructions that minimize the number of turns, in lieu
of instructions that follow a faster but more complex
route.

3) Finally, understanding the size and structure of concise
plans for a given family of problems may provide
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Fig. 1: [left] A planning problem in which a robot with a goal detector
moves from S to G. [middle] A plan graph for this problem that minimizes
execution time. [right] A plan graph for this problem of minimalsize.

valuable insights into those problems. As a simple
example, one might assess the value of a particular
sensing or actuation primitive by comparing the size
of the most concise plans that respectively use or omit
that capability.

An illustrative example of this concept, in the context of
an idealized robot moving on a grid and in possession of
a goal detection sensor, is shown in Figure 1. The robot’s
goal is to travel from its starting location (marked ‘S’) either
of the two goals (marked ‘G’). In this case, the plan with
the smallest execution time travels directly to the lower
goal. However this plan—informally, “Down, left, down,
down, right, stop”—is more complex than the alternative that
travels to the upper goal using a plan informally expressed as
“Alternate up and right until reaching the goal.” The objective
of this paper is formalize this idea, and to investigate methods
for generating concise plans that solve a very general class
of robotic planning problems.

After reviewing related work (Section II) and formally
defining the concise planning problem (Section III), this
paper makes two major contributions. First, we prove in
Section IV that that the problem of finding thesmallestplan
that solves a given problem is NP-hard. The proof, which
uses a reduction from the problem of 3-coloring a graph,
extends and generalizes the authors’ earlier result on filter
minimization [12].

Second, we present in Section V an algorithm that rapidly
generates concise plans, albeit without any guarantee of
optimality. Our approach involves two pieces: (i) reduction
of a given plan to express it as concisely as possible, and
(ii ) an incremental search for plans that exploits structure
in the solution space by reusing sub-parts of plans. The
planning process is similar Dijkstra’s algorithm in the sense
that it constructs a sequence of sub-plans designed to reach
the goal from vertices that are increasingly distant from the
goal. A key complication is that a globally concise plan



may result from sub-plans that, for their sub-problems, are
not maximally concise. As a consequence, our algorithm
stores a collection of candidate sub-plans at each vertex,
including separate containers for plans that are themselves
concise (a local criterion) and plans than score well on a
heuristic estimate of their reusability (a global criterion). The
number of plans associated with each vertex is bounded by an
algorithm parameter that encodes a tradeoff between solution
quality and the time and memory consumed by the planner.

A further important difference is that, because constructing
and reducing a sub-plan is a relatively expensive process, it
behooves one to leverage that effort as much as possible. Our
algorithm accomplishes this by associating each generated
sub-plan withall of the I-state graph vertices for which it is
a correct solution. In this way, partial solutions are treated as
first-class objects, and there is a many-to-many relationship
between sub-plans and I-state graph vertices.

Section VI describes an implementation of this algorithm
and shows its effectiveness an a collection of planning
problems, including instances of both manipulation and navi-
gation problems. The paper then concludes with a discussion
of future work in Section VII.

II. RELATED WORK

The idea of understanding problems by examining the rep-
resentational complexity needed to solve them can be traced
at least as far Kolmogorov’s definition of the complexity
of a sequence in terms of size of the smallest problem that
outputs that string [10]. Another family of well-known results
considers the “power” of various sensors, such as abstract
compasses [2] and pebbles [1], for exploration tasks. In that
work, the power of a sensor is measured in terms of the
amount of memory (finite, finite augmented with a single
counter,etc.) required for an agent to explore its environment
using that sensor.

The class of planning problems we consider in this paper
is equivalent to the class of nondeterministic graphs that
appears in Erdmann’s recent topological conditions on the
existence of plans that succeed in such graphs [5]. Such
graphs, commonly represented asAND-OR graphs, have
received attention by AI researchers employing heuristics
to find a solution to reach a goal [3], [9]. The results we
present here are orthogonal, in the sense that our results are
algorithmic, and focused constructing on optimally concise,
rather than merely extant, plans. Likewise, the kinds plan
graphs we use here to represent the robot’s strategy as a
finite state machine have also been used in the context of
POMDPs [8].

As discussed in the introduction, prior work by the authors
addressed the related problem offilter reduction. Given an
I-space partition, the goal is to find the smallest finite state
machine that maintains enough information to identify the
cell in the partition that a robot’s current I-state residesin.
We showed that this problem is NP-complete and provided
an algorithm for solving it efficiently. The intuition of that
algorithm is to compress filters by recognizing vertices that
must remain distinct in an correct filter and forcing them

to be separated, but permitting any others to be merged.
Generating a partition that obeys these constraints becomes a
graph vertex coloring problem where vertices which have the
same color are identified, forming a more concise expression
of the given filter. This algorithm is used as a subroutine in
Algorithm 3 to reduce candidate sub-plans by treating them
as filters.

III. D EFINITIONS AND PROBLEM FORMULATION

We consider problems in which a robot interacts with
its environment by executingactions, selected from a finite
action spaceU . We assume that the action space contains a
specialtermination actionuT, which signals that the robot
has completed its execution. In response to each action,
the robot receives anobservation, selected from a finite
observation spaceY , from its sensors.

A. Information state graphs

The robot may haveprediction uncertainty—that is, un-
certainty about the results of its actions—andsensing un-
certainty—uncertainty arising from incomplete sensor data,
along with uncertainty about its initial conditions. We en-
capsulate all three forms of uncertainty using theinfor-
mation space (I-space)formalism, which was codified by
LaValle [11]. This approach uses the terminformation state
(I-state) to refer to any representation of the (generally
incomplete) knowledge available to the robot. As the robot
executes actions and receives observations, it can update its
current I-state to reflect new knowledge that can be inferred
from those events.

In discrete time systems in which both the action space
and observation space are finite, including the systems we
consider in this paper, we can model the progression of
I-states as a walk on an I-state graph.

Definition 1: AnI-state graphI = (Vu ∪ Vy, Eu ∪ Ey) is
a bipartite directed multigraph in which

1) the vertex set, of which each member is called an
I-state, can be partitioned into a set ofaction vertices
Vu and a set ofobservation verticesVy,

2) the edge set can be partitioned into a set ofaction
edgesEu ⊆ Vu × Vy and a set ofobservation edges
Ey ⊆ Vy × Vu,

3) each action edgee is labeled with an actionu(e),
4) each observation edgee is labeled with an observation

y(e), and
5) no pair of distinct edges (neither action edges nor

observation edges) share both a source vertex and a
label.

B. Plan graphs

Given an I-state graph, we can trace the evolution of
the robot’s I-state by following the appropriately labeled
edge each time the robot executes an action. Notice that
this formulation does not require the I-state graph to be
“complete,” in the sense that each action vertex does not
necessarily have an out-edge for each action in the action



space; those missing actions are considered “illegal” from
those I-states. Likewise, an observation node need not have
out-edges for each observation in the observation space,
which can occur if the underlying structure of the problem
dictates that certain observations cannot occur from a given
I-state.

Note that, because we are interested plans that succeed
even in the worst case, we do not attach any probability
models to the observations; any observation for which an
observation edge exists is considered possible, and all such
observations are treated equally by our algorithms. We dis-
cuss the potential for probabilistic extensions in SectionVII.

Definition 2: A planning problem is a 3-tuple
P = (I, vs, Vg), in which I = (Vu ∪ Vy, Eu ∪ Ey) is
an I-state graph,vs ∈ Vu is called the start nodeand
Vg ⊆ Vu is called thegoal region.

The objective is to generate a strategy that, when executed
starting fromvs, will terminate at some I-state inVg, re-
gardless of the observations received along the way. Such
strategies, which operate in discrete time and with finite
memory, are naturally expressed as transition graphs.

Definition 3: A plan graphP = (Vp, Ep) is a directed
graph in which

1) one vertexvs ∈ Vp is designated as astart plan vertex.
2) each vertexv ∈ Vp is labeled with an actionu(v) ∈ U ,
3) each edgee ∈ Ep is labeled with an observation

y(e) ∈ Y , and
4) no pair of distinct edges share both a source vertex

and a label.

To execute the plan described by such a graph the robot
should, starting fromvs, execute the actionu(vs), and then
follow the edge corresponding to the observation received.
This process repeats until:

1) The plan attempts to execute an action that is not
allowed at the robot’s current I-state (indicated by
the absence of the corresponding edge in the I-state
graph), or the plan lacks an edge labeled with the
robot’s observation outgoing from its current vertex.
In either case, the result of the plan for that execution
is a failure.

2) The plan executes actionuT. In this case, the plan’s
execution is asuccessif the current I-state is a member
of the goal region, or afailure otherwise.

We are interested in plan graphs that succeed in theworst
casefor a given planning problem:

Definition 4: A plan graphP solvesa planning problem
P = (I, vs, Vg) if there exists an integerk, such that every
execution ofP successfully terminates inVg after at mostk
steps.

Finally, notice that the size of a plan graph is a direct
indicator of the plan’s conciseness. This motivates the core
problem addressed in this paper:

Problem: Concise Planning (CP)
Input: A planning problemP.

Output: A plan graphP that solvesP, such that the
number of vertices inP is minimal.

IV. H ARDNESS OFCONCISEPLANNING

In this section, we prove that the concise planning problem
introduced in Section III is NP-hard. In keeping with the
usual practice in complexity theory, our approach starts from
the related decision problem:

Decision Problem: Concise Planning (CP-DEC)
Input: A planning problemP and an integerk.

Output: Trueif there exists a plan graphP of at mostk
vertices that solves theP; Falseotherwise.

We show thatCP-DEC is NP-complete, which directly
implies thatCP is NP-hard. To accomplish this, we first show
that CP-DEC is in class NP (Section IV-A), and then show,
via reduction from a graph coloring problem, thatCP-DEC

is NP-hard (Section IV-B).

A. Concise Planning is in NP

To show thatCP-DEC is in NP, it is sufficient to find a
polynomial-time algorithm that determines, given a planning
problem P, an integerk, and a plan graphP, whether
(i) G has at mostk nodes and (ii)G solves the planning
problem. The former condition requires a simple count of the
vertices. A technique to check the latter condition appears
as Algorithm 1.

The intuition of the algorithm is to enumerate all reachable
I-state/plan node pairs via a forward search, and to return
True only if the set of reachable pairs is exhausted without
finding any failures or incorrect terminations.

It is straightforward to see that, for each iteration of the
outer while loop, the algorithm does work bounded by the
number of observations. The outer while loop can perform
no more than one iteration per unique pair of plan and I-state
graph vertices, and therefore the whole algorithm has time-
complexity in O(|Y ||Vu||Vp| + |Y ||Vy||Vp|). Because this
algorithm exists and executes in polynomial time, we have
the desired result.

Lemma 1: CP-DEC is in complexity class NP.

B. Concise Planning is NP-complete

To show thatCP-DEC is NP-complete, we next present a
reduction from the standard problem of 3-coloring a graph:

Decision Problem: Graph 3-Coloring (GRAPH-3C)
Input: An undirected graphG.

Output: Trueif there exists coloring ofG using at most
three colors, such that no pair of adjacent vertices
shares the same color;Falseotherwise.

This problem is known to be NP-complete [4], so it only
remains to give a polynomial time reduction fromGRAPH-
3C to CP-DEC. Given an instance ofGRAPH-3C, namely an



Algorithm 1 Verify Plan Correctness

Input:
A problemP = (I, vs, Vg) and a plan graph .

Output:
True if P solvesP; False otherwise.

1: Q← empty queue
2: Q.insert(vs, vs(P))
3: while Q is not emptydo
4: (vi, vp)← Q.pop()
5: if (vi, vp) is its own ancestorthen
6: return False{Plan may never terminate.}
7: end if
8: if u(vp) = uT then
9: if vi 6∈ Vg then

10: return False{Plan terminates outside of goal.}
11: end if
12: else
13: for each out edgevi

y
−→ v′i of vp do

14: if P has an edgevp
y
−→ v′p and (v′i, v

′
p) has not

be inserted intoQ yet then
15: Q.insert(v′i, v

′
p)

16: else
17: return False

{Plan is not prepared for observation.}
18: end if
19: end for
20: end if
21: end while
22: return True {No incorrect terminations or failures.}

undirected graphG = (V ,E ), we construct an instance
(I, vs, Vg), k of CP-DEC with the following elements inI:

1) A starting action nodevs.
2) An observation nodev1 and an edgevs

u0−→ ws

connecting it tovs.
3) For each vertexa of G, an action nodeva, and

observation nodewa, and edgesw1
ya
−→ va andva

u1−→
wa.

4) Two action nodesv+ and v− and two observation
nodesw+ andw−, along with action edgesv+

u+
−→ w+

andv−
u−

−→ w−.
5) For each edgea → b of G, two observation edges

wa
yab
−→ v+ andwb

yab
−→ v−.

6) An action nodevg, and two observation edgesw+
yg

−→

vg andw−
yg

−→ vg.

We complete theCP-DEC instance by choosingvs and{vg}
for the start node and goal region respectively, and setting
k = 7.

Figure 2 shows an example of this construction. The
intuition is that only two action sequences allow the robot
to successfully reach the goal, namelyu0, u1, u+, uT and
u0, u1, u−, uT. Moreover, in any given execution, only one
of these two choices will succeed. The construction forces
any successful plan graph to “remember” enough to know
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Fig. 2: [top] An example instance of 3-coloring. [bottom] The I-state graph
constructed from that instance.
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Fig. 3: A plan that solves the planning problem in Figure 2. Because the
original graph is 3-colorable, the problem can be solved by plan with only
7 vertices.

whetheru+ or u− is the correct choice.
The time to perform this construction is linear in the size

of G. We must now argue that the constructed planning
problem is equivalent to the original graph, in the sense that
the graph has 3-coloring if and only if the planning problem
admits a solution of at most7 vertices.

Lemma 2: For any instanceG = (V,E) of GRAPH-3C

for which the correct output is “True,” the correct output of
the CP-DEC instance described above is also “True.”

Proof: Let c : V → {1, 2, 3} denote a 3-coloring ofG.
Let P denote the plan graph of exactly 7 vertices with the
following elements:

1) A start vertexvs labeled with actionu0.
2) Three verticesv1, v2, andv3 (one for each of the colors

of G), all labeled with actionu1.
3) Three verticesv+ andv−, andvg, labeled with action

u+, u−, anduT respectively, along with edgesv+
yg

−→

vg andv−
yg

−→ vg.
4) For each vertexa of G, an edgevs

ya
−→ vc(a).

5) For each edgea → b of G, edgesvc(a)
yab
−→ u+ and

vc(b)
yab
−→ u−.

Figure 3 illustrates this construction for the example
introduced in Figure 2.

To show thatP is indeed a plan graph, we must confirm
that none of its vertices has multiple outgoing edges labeled
with the same observation. The only vertices at which this
could occur arev0, v1, and v2. Suppose such a vertexv
exists, with two distinct outgoing edges for observationyab.
Becausev+ and v− are the only two possible targets for
edges outgoing fromv, these two edges must connect those
two vertices.

By construction,v must also have incoming edges fromvs
for observationsya andyb. Note that because observationsya



andyb both lead tov, we know that in the coloring ofG, we
havec(va) = c(vb). However, the existence of edges labeled
with observationyab implies thatG has an edge betweenva
andvb. Sinceva andvb are adjacent inG but have the same
color in c, we have a contradiction to the supposition that
c is a proper 3-coloring ofG1. ThereforeP is a legitimate
plan graph.

Finally, it is straightforward to see thatP correctly solves
the planning problem by examining each of the finitely many
possible execution traces. �

Lemma 3: For any instanceG of GRAPH-3C for which
the correct output is “False,” the correct output of theCP-
DEC instance described above is also “False.”

Proof: Prove by contrapositive. Suppose there exists a
seven-node plan graphP that solves this planning problem,
in order to show that there exists a 3-coloring of the
original G.

First, note that any correct plan for this problem must
contain at least one distinct node labeled with each ofu0,
u+, u−, anduT. Moreover, because each of these actions is
executed at most once in any correct plan, we can (without
loss of generality) assume that each of these actions is the
label forexactlyone vertex inP. Therefore, there are a most
three vertices ofP labeled withu1. Denote these verticesv1,
v2, andv3. Let vs denote theP vertex labeled withu0, which
must be the start vertex ofP.

For each vertexa in G, note that there must exist in
P a unique edgevs

ya
−→ vj to somevj labeled withu1.

Let c : V → {1, 2, 3} denote the vertex-labeling ofG that
maps each vertexa to the index of the target vertex of this
associated edge. Sincev1, v2, andv3 are the only candidates
for vj , this labeling uses only three colors.

Let us prove by contradiction thatc is a proper coloring
of G. Suppose not, and let(a, b) denote an edge ofG with
c(a) = c(b). By construction,P has edgesvs

yab
−→ vc(a) and

vs
yab
−→ vc(b). Observe that the target vertices of these two

edges are identical. However, notice that in a correct plan,
the observation sequenceyayab must lead to the plan node
labeledu+, whereas the observation sequenceybyab must
lead to the plan node labeledu−. In P, these observation
sequences lead to same plan node. Therefore,P is not a
correct solution to the planning problem. This contradiction
demonstrates thatc is a proper 3-coloring ofG.

�

C. Statement of results

The partial results in Section IV-A and IV-B lead directly
to our main hardness results.

Lemma 4: CP-DEC is NP-hard.

Proof: Combine Lemmas 2 and 3. �

Theorem 5:CP-DEC is NP-complete.

Proof: Combine Lemmas 1 and 4. �

Theorem 6:CP is NP-hard.

Proof: This is a direct consequence of Lemma 4. �

Algorithm 2 TRYSUBPLAN

Input:
A plan graphP and an action nodev.

1: Compute metadata forP.
2: for i ∈ {1, 2} do
3: si(v).insert(P)
4: if si(v) holds more thank plansthen
5: remove worst plan, according toHi, from si(v)
6: end if
7: end for
8: if P remains in anysi(v) and each out-neighbor ofv

holds at least one planthen
9: Q.push(v)

10: end if

Algorithm 3 PLAN CONCISELY

Input:
A problemP = (I, vs, Vg).

Output:
A plan graphP that solvesP.

1: Q← empty set of observation nodes
2: PT ← single vertex labeleduT

3: for each action nodev ∈ Vg do
4: TRYSUBPLAN(v,PT)
5: end for
6: while Q is not emptydo
7: w ← Q.pop()
8: for each in-neighborv ∈ Vu of w do
9: build candidate plans starting atv throughw.

10: for each candidate planP and eachv′ ∈ Vu do
11: TRYSUBPLAN(v′,P)
12: end for
13: end for
14: end while
15: return smallest reduced plan stored atvs, if any.

V. A LGORITHM DESCRIPTION

The previous section proved that, unlessP = NP , no
efficient algorithm can optimally solve the concise planning
problemCP. Therefore, we turn our attention now to a new
algorithm that solves the problem approximately, in the sense
that the plans the generate remain correct in the worst-case
sense, but cannot be guaranteed to be optimally concise.

The idea of the algorithm is to use the structure of the
I-state graph to generate a series of candidate plans, each
of which can successfully reach the goal from at least one
I-state. This process starts with a trivial “Terminate imme-
diately” plan, which is correct from the goal region. From
there, the algorithm maintains a collection of observation
nodes for which all of the out-neighbors have at least one
associated plan, and repeatedly constructs new plans that pass
though each successive observation node extracted from that
set. The plans generated in this way—all of which have
the form of a rooted tree with leaves labeleduT—each
undergo a plan reduction step, which mutates a given plan
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into an approximately-optimally-concise plan equivalentto
the original.

As this process proceeds, the algorithm maintains, for each
action node, a small finite collection of such sub-plans that
reach the goal from that node. Our algorithm prioritizes the
plans to retain based on heuristic evaluations of both the
local concision and global applicability of each sub-plan.

The algorithm terminates when its queue is exhausted,
at which time it returns the most concise plan associated
with the start vertex of the I-state graph. Pseudocode for
this approach appears as Algorithms 2 and 3. The following
subsections explain and clarify the details.

A. Candidate plan construction

Beyond the initial trivial plan, Algorithm 3 constructs
additional plans in the following way. It identifies action
nodesv for which (i) there exists an action edgev

u
−→ w,

and(ii) all of the out-neighborsv′1, . . . , v
′
n of w have at least

one associated plan. In this situation, we can form a new plan
graph that reaches the goal fromv as follows: Start with a
vertex that executes actionu, and attach plan out-edges for
each of the out-edgesw

y
−→ v′ of w in the I-state graph.

Each of these edges connects to a copy of a plan associated
with v′, which by construction reaches the goal from there.
See Figure 4.

To efficiently locate portions of the I-state graph at which
this construction is possible, the algorithm maintains, for
each observation nodew, a set of “incomplete” (that is,
planless) out-neighbors, and insertsw into the globalQ each
time a new plan is stored at one of its out neighbors, provided
thatw’s incomplete list is empty. In this way, the algorithm
ensures that every plan it generates is complete and correct
for the v at which it is generated.

B. Plan evaluation heuristics

As mentioned above, Algorithm 3 maintains a bounded
size collection of “promising” plans for each action node.
Specifically, at action nodev, we storetwo plan setss1(v)
ands2(v), each of which holds at mostk plans, in whichk
is a tunable algorithm parameter.

Below, we introduce heuristic functionsH1 (which mea-
sures the local conciseness of a plan) andH2 (which
measures the global reusability of a plan). As the algorithm
proceeds,s1(v) always contains thek or fewer plans that
maximizeH1, across all generated plans that reach the goal

from v. The sets2 likewise stores thek best plans according
to H2. The subsequent sections introduceH1 andH2.

1) Local heuristic: Reduced plan size:Notice that each of
the plans constructed as described in Section V-A will have
the form of a rooted tree but that, in most cases, concise
plans have cycles. In fact, there is no reason to suspect that
these trees will be concise plans. Figure 1 illustrates this
idea. As a result, as part of the “compute metadata step”
in Algorithm 2 (line 1), we use aplan reductionalgorithm
whose input is the original rooted tree plan graphP, and the
intended output is the smallest plan graphr(P) that produces
identical behavior.

This problem is equivalent to thefilter reductionproblem
from the authors’ prior work [12]—the only difference is
that the description of the existing algorithm refers to the
vertex labels as abstract “colors” instead of actions—and we
employ the algorithm from that paper to reduce plans. Note
that because filter reduction is NP-hard, we settle for reduced
plans that can be generated efficiently and are guaranteed to
be correct, but are only approximately optimal.

The size of these reduced plans represents local, greedy
measurement of the usefulness of a plan. Therefore, we
define the local heuristic as

H1(P) = − size(r(P))

Notice that, at the conclusion of the algorithm, the smallest
plan in the sets1(vs) represents the most concise plan start-
to-goal we have found. As a result, this plan becomes the
final output of the algorithm.

2) Global heuristic: Reuse potential:Unfortunately, the
local heuristic introduced in Section V-B.1 is not sufficient,
because it cannot account for the idea of choosing actions
at one action node expressly because those plan nodes can
be re-used in other portions of the I-state graph. This notion
of the reuse of plan fragments motivates our second, global
heuristic.

The idea is to compute theoutcome functionOP : Vu →
2Vu of a planP. This function considers the potential results
from executingP starting at each action nodev, mapping
each to the set of action nodes at which that plan might
terminate, or to the empty set if the plan might fail when
executed fromv. This function can be computed by a forward
search of reachable action node/plan node pairs, very similar
to Algorithm 1.

The appeal of the outcome function is that it shows, from
a global perspective, how much potential for reuse a plan
possesses. ForH2 we use a straightforward measure of
reusability based on the total average distance acrossI that
a plan can achieve. Specifically, we define

H2(P)=
∑

v∈{Vu|Or(P)(v) 6=∅}





1

Or(P)(v)

∑

v′∈Or(P)(v)

d(v, v′)



 ,

in which d(v, v′) denotes the number of edges in the shortest
directed path connectingv to v′ in I.

C. Algorithm summary

This completes the overall picture of Algorithm 3. To
summarize, it tracks a set of observation nodes through which



new complete plans can be constructed. As long as this set
is not empty, it removes an arbitrary observation node,w.
It then constructs new plans that pass throughw starting
from each of its in-neighbors, using all combinations of plans
stored in both thes1 ands2 sets of the resulting action nodes.
For each such planP, we compute the heuristic functionsH1

andH2, and insertP into thes1 and/ors2 sets ateveryaction
node for whichP successfully reaches the goal and improves
upon the existing plans andQ is updated appropriately. This
process continues untilQ is exhausted, at which point the
best start-to-goal reduced plan is returned.

VI. EXPERIMENTAL RESULTS

We implemented Algorithm 3 to test its efficiency and
the concision of the plans it produces for both manipulation
(Section VI-A) and navigation (Section VI-B) domains. Our
implementation uses C++ and all of the executions used a
single core of a 2.5GHz quad-core processor.

A. Manipulation

In the spirit of the established techniques for
(nearly-)sensorless manipulation [7], [13], we executed
the algorithm on a family of problems in which the goal
is to orient a polygonal shape using a series of squeezes
from a parallel-jaw gripper. Given a description of the
convex-hull of an object we followed the steps (detailed
in [6]) for treating such problems: (1) we computed the
diameter function for the polygon, (2) identified minima
in this function, giving the stable orientations that occur
after a squeeze operation, and (3) computed the so-called
squeeze function mapping a pre-squeeze orientation into the
post-squeeze orientation. For these problems we considered
small sets of actions of the form “rotate gripper byx and
squeeze.” This is sufficient to construct an I-state graph for
sensorless problems.

The left part of Figure 5 gives an example using one of
the objects we evaluated: the “fourgon” shape. The figure
provides intuition for how the local minima in the plot
represent stable orientations after a squeeze operation is
performed by the frictionless parallel-jaw gripper. Figure 5
shows the form of the I-state graph generated for the problem
of orienting the fourgon using rotations of only5◦ and65◦,
and squeeze operations; the resulting plan produced by the
algorithm is also shown. Note how, although the geometry
of the object is simple, determining a concise open-loop plan
given those actions remains far from obvious.

Sensing information can also be incorporated in this
problem. We considered a simple setting in which one can
specify a set of binary sensors, each determining whether the
distance between jaws of the gripper exceed some threshold
or not. Figure 6 extends the preceding example by adding a
single diameter threshold sensor with distance 10.5cm. The
I-state graph observation edges (in blue) are now labeled
with the output from the threshold sensor. The resulting plan
exploits this information and is smaller than the sensorless
plan, which has been seen in plans for orienting other objects
too.
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Fig. 6: [top] The I-state graph for the problem of orienting the Fourgon
polygon with a binary sensor measuring whether the jaws of thegripper are
more thanx =10.5cm apart or not. Observation arcs are labeled ‘0’ or ‘1’;
the latter is returned when the diameter of object in its stable orientation
exceeds the distance threshold, and ‘0’ is returned otherwise. (The remainder
of the graph follows the format of Fig 5.) [bottom] The most concise plan
found.
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Fig. 7: An example with multiple goals. The same (optimal) solution is
found with all values of parameterk, which bounds the number of subplans
stored at each action node.

B. Navigation

Second, we considered a simplified navigation domain
in which a robot moves within a grid of discrete cells
using actionsup, down, left, andright, each of which
reliably moves a single cell in the desired direction unless
an obstacle impedes that motion. The robot’s observation
space isY = {00, 01, 10, 11}, in which the first bit indicates
whether the robot bumped on obstacle on its previous move,
and the second bit is the output of a goal-detect sensor.

This family of problems is interesting because many
instances admit very concise plans. In particular, small
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Fig. 8: A switch-back pattern affords opportunity for plan compression.
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Fig. 9: An example in which many concise plans can navigate through the
open field, but only one can navigate the narrow corridor.
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Fig. 5: [left] The diameter function computed for the Fourgon figure (shown inset in three orientations). Local minima in the plot represent stable orientations
for the object when squeezed by a parallel-jaw gripper. [right, top] The I-state graph for the problem of orienting the Fourgon polygon without sensors,
constructed automatically using classical techniques. Theblack arcs leading from square vertices are where an action must be selected, the blue arrows
represent transitions based on a observation (but are empty in this example); the shaded vertex is the goal. The ‘S’ symbol denotes a squeeze action by
the gripper; ‘5’ and ‘65’ denote rotations of the gripper by those many degrees, respectively. [right, bottom] An open-loop plan found believed to be the
most concise solution, found using Algorithm 3.

plans tend to exist for instances in which short sequences
of actions, terminated by appropriate observations, can
be repeated to make progress toward the goal. We con-
structed several grid navigation problems in order to eval-
uate Algorithm 3. Space limits us to the three examples
in Figures 7—9. The figures show the performance of the
method with different limits on the number of plans associ-
ated with each action node. This is indicated with the value
of the k parameter (used on Line 4 of Algorithm 2).

Figure 7 is the same environment as Figure 1, but the
I-space differs because the earlier example had no bump
detector. The plot shows that an optimal 3 state solution
is found for each value ofk. Figure 8 is an environment
with the potential for comparatively long sequences to be
simplified in a concise plan. This example has a hierarchical
structure to the repetitions: there are corridor navigation
pieces (repeatedleft/right actions until a bump) and
repetitive sequences composed of corridor navigation sub-
plans. The shortest solution involves 5 states, and was found
for values ofk greater than one. Figure 9 is an instance
where many conceivable concise subplans can be generated
in the open field in the upper right, but only a single plan (the
most concise one, with 3 states) is concise and navigates the
corridor too. In this example, the optimal solution is found
only whenk ≥ 5.

The plots of “most concise plan so far” vs. running-
time show the same behavior. A largerk causes slower
progress, because the search phase keeps more subplans
thereby increasing the search space, but it also increases the
likelihood of finding the highest quality solution (k =∞ is
a search of the complete plan space). The lowest value ofk

which results in the optimal plan gives an informal idea of
the comparative complexity of the problems, suggesting that
Figure 7 is easiest and Figure 9 most difficult of the three.
We hypothesize that this result occurs because of the open
field in the top left of Figure 9, through which many distinct
plans successfully travel. In a counterintuitive contrastto the
narrow corridor problem faced by typical motion planning
algorithms, it appears that concise planning problems are
more difficult in the presence of wide corridors.

VII. C ONCLUSIONS
In this paper, we introduced the concise planning problem,

proved that solving it optimally is NP-hard, and presented an
implemented algorithm that solves it approximately. A few
avenues for future work are apparent.

First, one might relax the requirement of worst case
correctness and, after assigning a probability distribution
over the out-edges of each observation node, instead form
plans whose success probability is less than unity. An inter-
esting question is to understand the impact of increasing the
required success probability on plan conciseness.

Additionally, it is worth noting that generally one wishes
to have an understanding of the tradeoff between plan execu-
tion cost and expression cost. Existing work emphasizes the
latter factor, but the algorithm presented ignores the former
aspect. Joint consideration both criteria—via scalarization or
Pareto optimality concepts—would be useful results.
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