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Abstract— We consider the problem of filtering whilst main-
taining as little information as possible to perform a given
task. The literature includes several illustrations of how adroit
choices for state descriptions may lead to concise — or even
minimal — filters tailored to specific tasks. We introduce an
efficient algorithm which is able to reproduce these hand-
crafted solutions.

Specifically, our algorithm accepts as input an arbitrary com-
binatorial filter, expressed as a transition graph, and outputs an
equivalent filter that uses fewer information states to complete
the same filtering task. We also show that solving this problem
optimally is NP-hard, and that the related decision problem
is NP-complete. These hardness results justify the potentially
sub-optimal output of our algorithm. In the experiments we
describe, our algorithm produces optimal or near-optimal
reduced filters for a variety of problem instances.

These reduced filters are of interest for several reasons,
including their direct application on platforms with severely
limited computational power and in systems that require
communication over low-bandwidth noisy channels. Moreover,
inspection of reduced filters may provide insights into the
structure of a problem that can guide the design of the other
elements of a robot system.

I. I NTRODUCTION

A central question facing the designer of any autonomous
robot is to determine how the robot should process and store
information from its sensors. The answer to this question
must account for the incompleteness and potential inaccuracy
of that information, the computational capabilities of the
robot, and the specific task that robot must complete. A re-
cent line of research has considered solutions to this problem
using combinatorial filters, which are carefully crafted to
retain only the information that is essential to completing
the robot’s task [11], [17], [19]. The goal of this paper is to
investigate algorithms for automatically constructing optimal
combinatorial filters.

As a simple example, consider the problem depicted
in Figure 1, which was introduced by Tovar, Cohen, and
LaValle [16]. In this problem, two agents move through an
annulus-shaped environment. The environment is subdivided
by three beam sensors that can detect when an agent crosses
the beam, but cannot determine the identity of the agent nor
the direction of the crossing. The goal is to determine, at
all times, whether the agents are in the same region. An
obvious approach is to define a nine-element state space
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Fig. 1: [left] Two agents move amidst three beam sensors. [right] An optimal
combinatorial filter, first discovered by Tovar, Cohen, and LaValle and
reproduced by our algorithm, for tracking whether the agentsare in the
same region. The numbers 0, 1, and 2 denote the regions, and the letters a,
b, and c denote observations from each of the three beams.

X = {0, 1, 2} × {0, 1, 2}, and to track thenondeterminis-
tic information state (I-state)—that is, the set of possible
states—based on the beam crossings we observe. This ap-
proach requires us to track which of29 = 512 distinct I-states
is consistent with the observation history.

However, Tovar, Cohen, and LaValle observed that this
problem can be solved using a filter with only four I-states:
One I-state representing “agents are together” and three I-
states representing “agents are separated by beamx” for
each of the three beams. The right side of Figure 1 is
graphical depiction of this filter. The vertices represent I-
states and the directed edges show transitions that occur
when a beam crossing is detected. In this paper we describe
an algorithm that is able to automatically replicate this kind
of filter reduction, which heretofore has required clever hand-
crafting.

More generally, our results are applicable to any filtering
task that can be described in terms of discrete transitions
between finitely many information states (which need not
necessarily represent sets of possible states as in the example
above), triggered by finitely many events such as observa-
tions from sensors or actions executed by a robot. A filtering
task in this context is determined by a partition or “coloring”
of the I-states, indicating which I-states that filter must be
able to tell apart.

We present an algorithm that accepts this kind of colored
graph as input, and outputs a reduced graph that is provably
equivalent to the input graph. The intuition of our approach
is to identify pairs of same-colored I-states that must remain
distinct to ensure that the reduced filter produces correct
results, and to use a graph coloring subroutine to refine
the original coloring, eliminating those conflicts. When no
conflicts remain, we merge each pair I-states that have the
same color to form the reduced filter.



We also show that the problem of determining whether a
given filter can be reduced to a given size is NP-complete.
As a result, no polynomial time algorithm exists for this
problem, unlessP = NP. This limitation is evident in our
algorithm in the graph coloring subroutine which dominates
its run time; our algorithm is efficient only when that graph
coloring is approximate rather than optimal. We consider sev-
eral quadratic-time approximate coloring algorithms which,
in our experiments, produce optimal or near-optimal reduced
filters.

We believe that these kinds of reduced combinatorial filters
are of interest for several reasons.

1) First, reduced combinatorial filters, which require very
small quantities of memory, can be directly useful on
platforms that have, because of constraints on space,
weight, or energy, severely limited computation power.

2) Second, for systems that require communication be-
tween multiple robots over a low-bandwidth noisy
channel, using a reduced filter to maintain the infor-
mation to be communicated can optimize the number
of bits that must be transmitted.

3) Finally, inspection of reduced filters may reveal in-
sights into the structure of the problem that we can
exploit. For example, if the algorithm generates a
reduced filter that does not utilize the output of one
or more sensors, we can conclude that those sensors
are unnecessary for completing the task, and revise the
system’s hardware design accordingly.

After reviewing related work in Section II, this paper
makes several specific contributions:

• In Section III, we define the filter minimization problem
in a precise, general way.

• In Section IV, we prove that the problem of finding an
optimal reduction of a given filter is NP-hard.

• In Section V, we present an efficient algorithm for filter
reduction that often generates optimal or near-optimal
filters.

• In Section VI, we describe an implementation and
a series of quantitative experiments that measure the
performance of our algorithm.

The paper concludes with a discussion of future work in
Section VII.

II. RELATED WORK

The kinds of combinatorial filters and reduced I-states we
study in this paper have a long history —see, for example,
the sensorless manipulation work of Erdmann and Mason [6]
and Goldberg [7] which uses transition graphs to represent
the evolution of a robot’s uncertainty— and were formalized
in a general way by LaValle [10], [11].

A number of recent papers have presented combinatorial
filters for such tasks as target tracking [19], mobile robot
navigation [12], [17], and manipulation [9]. However, that
prior research relies upon careful human analysis of specific
problem types and often seeks only to find feasible, rather
than optimal, filters. To the best of our knowledge, this paper

is the first to address the question of automatic reduction of
combinatorial filters.

The I-state graphs we consider are a special case of
the nondeterministic graphs recently studied by Erdmann
[4], [5]. That work is primarily concerned with topological
conditions on the existence of plans to reach certain goals in
such a graph, rather than with reducing the size of the graph
itself.

Another thread of research has proposed systematic sim-
plifications of geometric information spaces [13], [15] by
approximating the I-states with simple geometric shapes.
That work is more general than the present research because
it does not require the observation and information spaces to
be finite, but it relies on experimental data as evidence that
the underlying tasks can still be completed, in contrast to the
provable equivalence provided in this paper.

Roy, Gordon, and Thrun [14] also automate reduction of
representational detail, but within a probabilistic planning
setting using POMDPs. They apply dimensionality reduction
techniques to reduce computational requirements needed to
solve for policies. In contrast, the I-state model allows one to
minimize state without requiring as rich a transition model,
and enables the hardness result produced herein.

III. D EFINITIONS AND PROBLEM FORMULATION

We consider filters that have access to a stream of discrete
observationsfrom a finite observation spacedenotedY .
Each observationy ∈ Y corresponds to a discrete unit of
information that becomes available to the filter. These will
generally be readings produced by sensors, but may also be
actionsthat a robot executes, as observed by a passive filter
on that robot. For the purposes of reduction in this paper, the
difference between observations and actions is not important.
To simplify the language we use the term “observations”
exclusively.

Following the terminology introduced by LaValle [10],
we use the terminformation state (I-state)to refer to any
representation of the information available to the system,
derived from the history of observations it has received.
Because the observation space is finite, we can describe the
changes in the I-state using a transition graph.

Definition 1: An I-state graphG is a edge-labelled di-
rected graph supplemented with a starting vertex,i.e., G ,

(V ,E , l : E → Y , v0), in which

1) the finite setV contains vertices which we call “I-
states”,

2) the setE consists of ordered pairs of vertices termed
directed edges,

3) each edge is labelled with an observation via the
function l , and

4) the starting I-state is identified asv0 ∈ V .

An additional and important requirement onl is that if e1 ,

(v, vj) and e2 , (v, vk) with vj 6= vk then l(e1) 6= l(e2).
That is, no two edges originating from the same vertex have
the same label. For convenience, we writev1

y
−→ v2 for an

edge fromv1 to v2 bearing labely.



Given a sequence of observationsy0y1 · · · yn, one may
trace these onG by starting atv0 and following the edges
labelled by eachyi, one after another. If all of the corre-
sponding edges exist, then the resulting I-state is uniquely
determined. However, because we do not require the image of
l to be its entire codomain, it is possible that no edge labelled
with yi ∈ Y exists from the current I-state. This occurs
when constraints imposed by the structure of the underlying
problem indicate that an observation cannot occur at a given
I-state. For observation sequences under which this occurs,
the resulting I-state is undefined.

Because we are primarily interested in the behavior of
I-state graphs for observation sequences whose resulting I-
states are well-defined, we define the language of strings for
which this is the case.

Definition 2: The language induced by an I-state graph
G, denoted asL(G) ⊆ Y ⋆, is the set of all sequences of
observations (e.g., y0y1 · · · yn) for which valid transitions
may be traced onG by starting at its initial vertex.

We can now consider the kinds tasks that one may wish
to use an I-state graph to perform.

Definition 3: An I-state graph supplemented with a col-
oring of its vertices is termed afilter, e.g., F , (V ,E ,

l : E → Y , v0, c : V → N
+), in which functionc assigns a

natural number to each I-state.

The interpretation is that observations are made and in-
formation retained, and ultimately a color is reported as the
filter output. The coloring describes the task performed by
filter and, thus, represents the degree of fineness to which
information is required. For example, in a planning problem
in which the goal is to reach some I-state in given class
of goal I-states, one might form a “goal detection filter” by
choosingc to assign color1 to every goal I-state and color
2 to every non-goal I-state. By using more than two colors,
arbitrarily complex filtering tasks can be defined.

Our goal in this paper is to reduce these kinds of filters
without impacting their correctness at completing a given
task. This requires a precise notion of equivalence between
two filters.

Definition 4: Two filtersF1 , (V ,E ,l : E → Y , v0, c1 ),
and F2 , (W ,F ,m : F → Y , w0, c2 ) with a common
observation spaceY are said to beequivalent with respect to
a languageL ⊆ Y ⋆ if, for every observation sequencel ∈ L,
the I-statesvl and wl reached by tracingl on F1 and F2

respectively are both defined, and we havec1 (v
l) = c2 (w

l).

We denote this equivalence relation withF1

L
== F2.

Assuming we are given an initial filterF as the specifi-
cation of a filtering task, we are concerned with other filters
that are equivalent on the language induced byF, viz. those

filters F
′ whereF

L(F)
==== F

′. (Note that one needs some care

sinceF
L(F)
==== F

′ 6⇒ F
L(F′)
===== F

′.) Comparing the cardinality
of the vertex sets ofF andF′, one obtains a relative measure
of the memory required by implementations of either filter.
It is natural to consider thefilter minimization problem:

Problem: Filter Minimization ( FM)
Input: A filter F.

Output: A filter F
⋆ such thatF

L(F)
==== F

⋆ and the number
of I-states inF⋆ is minimal.

IV. H ARDNESS OFFILTER M INIMIZATION

This section presents a hardness result for the filter mini-
mization problemFM introduced in Section III. Following the
usual technique, we first convertFM to a decision problem:

Decision Problem: Filter Minimization ( FM-DEC)
Input: A filter F andk ∈ N

+.
Output: True if there exists a filterF′ with at most k

I-states, such thatF
L(F)
==== F

′; Falseotherwise.

The primary result of this section is thatFM-DEC is an
NP-complete problem, which directly implies thatFM is NP-
hard. We proceed by arguing thatFM-DEC is in complexity
class NP (Section IV-A) and by providing a polynomial time
reduction from the problem of 3-coloring a graph —a known
NP-complete problem— toFM-DEC (Section IV-B). Finally,
Section IV-C briefly discusses the relationship between this
problem and the closely related (but efficiently solvable)
problem of minimizing deterministic finite automata.

A. Filter Minimization is in NP

To prove thatFM-DEC is in NP, it suffices to show that,
given the reduced filterF′, we can verify its correctness in
polynomial time. The first condition onF′ —that it has at
mostk vertices— is trivial to confirm. It remains to show how
we can, given two filtersF1 andF2, efficiently determine

whetherF1

L(F1)
===== F2.

Algorithm 1 shows a method to perform this test. The
intuition is to imagine bothF1 andF2 working in parallel to
filter some observation sequence fromL(F1). The algorithm
uses a forward search to generate and examine each pair of
vertices(v1, v2) ∈ V1 ×V2 that can be reached during any
such simultaneous execution. IfF2 produces correct colors
for every possible observation at every reachable state pair,
then the filters must be equivalent.

Note that the outer loop of Algorithm 1 (lines 3–16)
executes at most|V1 | |V2 | iterations, that the inner loop
(lines 5–15) executes at most|Y | iterations, and that the
remaining operations can be completed in constant time.
Therefore, Algorithm 1 runs inO(|V1 | |V2 | |Y |) time. The
existence and polynomial run time of this algorithm lead
directly to the following result.

Lemma 1: Filter minimization is in complexity class NP.

B. Filter Minimization is NP-complete

The previous section showed that verifying the correctness
of a reduced filter can be done efficiently. Next we prove that,
unlessP = NP, determining whether such a reduced filter
exists is a computationally intractable problem. We proceed
by reduction from a standard graph coloring problem:



Algorithm 1 Filter Equivalence Test

Input:
Two filters F1 , (V1 ,E1 , l1 : E1 → Y , v1, c1 ),

. andF2 , (V2 ,E2 , l2 : E2 → Y , v2, c2 )
Output:

True if F1

L(F1)
===== F2, or False otherwise.

1: if c1(v1) 6= c2(v2) return False
2: Q ← (v1, v2) {Initialize queue with the start vertices.}
3: while Q is not emptydo
4: (v1, v2)← Q .pop()

5: for each edgev1
y

−→ w1 in E1 do
6: if E2 has an edgev2

y

−→ w2 then
7: if c1 (w1) 6= c2 (w2) then
8: return False{F2 produces an incorrect color.}
9: else if (w1, w2) has not been enqueued beforethen

10: Q .insert ((w1, w2))
11: end if
12: else
13: return False{F2 terminates whereF1 does not.}
14: end if
15: end for
16: end while
17: return True {No discrepancies for any reachable state pair.}

Decision Problem: Graph 3-Coloring (GRAPH-3C)
Input: An undirected graphG.

Output: Trueif there exists coloring ofG using at most
3 colors, such that no pair of adjacent vertices
shares the same color;Falseotherwise.

This problem is known to be NP-complete [2]. Therefore,
it suffices for us to show a polynomial time reduction from
GRAPH-3C to FM-DEC.

Given an undirected graphG1 , (V1 ,E1 ) as an instance
of GRAPH-3C, we construct an instance ofFM-DEC with
filter F2 , (V2 ,E2 , l , v0, c) and size boundk as follows:

1) Create a start vertex inV2 called v0. Define
c : v0 7→ 1.

2) Create additional vertices inV2 , one for each vertex
in V1 . For each such vertexv, assignc : v 7→ 2.

3) For each vertexvi ∈ V1 , create a new observation
yi and a new edgev0

yi
−→ v in E2 , by ensuring that

(v0, v) is in E2 and l : (v0, v) 7→ yi.
4) Create two additional vertices inV2 namedvR and

vG. Let c : vR 7→ 3 and c : vG 7→ 4. The intuition of
these vertex names is to suggest the colors “red” and
“green.”

5) For each edge(vi, vj) in E1 , create a new observa-
tion yij in Y and two new edgesvi

yij

−→ vR and
vj

yij

−→ vG, i.e., (vi, vR) and (vj , vG) are inE2 , and
l : (vi, vR) 7→ yij and l : (vj , vG) 7→ yij .

6) Setk = 6.

The intuition of this construction is to “embed” the original
graphG1 into filter F2 in such a way that vertices inV2

are forced to remain separate in any reduced filter equivalent
to F2. Figure 2 shows an example of this construction.

The algorithm to perform this construction clearly runs
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Fig. 2: [top] An example instance ofGRAPH-3C. [bottom] The correspond-
ing instance ofFM-DEC. The vertices in the left column have color 1, the
middle column has color 2, and the vertices in the right column have colors 3
and 4. Our constructed instances usek = 6.

in time linear in the size ofG1. Therefore, it remains for
us to show thatG1 is 3-colorable if and only if there
exists a reduced filterF3 with at most 6 vertices, such

that F2

L(F2)
===== F3. Let us consider each direction of this

proposition in turn.

Lemma 2: For any instanceG1 of GRAPH-3C for which
the correct output is “True,” then the correct output of the
filter minimization problem instanceF2 described above is
also “True.”

Proof: We must show that ifG1 is 3-colorable, thenF2

can be reduced to an equivalent filter of at most 6 vertices.
Let c1 : V1 → N

+ denote a 3-coloring ofG1. To construct
filter F3 with the required properties, start fromF2 as de-
scribed above, and perform vertex identification operations1

on all pairs of verticesva and vb for which (i) both are
generated in step 2 above, and(ii) c1 (va) = c1 (vb). Note
that the resulting graph has at most 6 vertices:v0, vR, vG,
and at most three vertices associated with the three distinct
colors in c1 . Figure 3 illustrates this construction for the
example introduced in Figure 2.

To show thatF3 is a legitimate filter, we must confirm that
none of its new vertices have more than one outgoing edge
for any observation. Suppose such a vertexv exists, with two
distinct outgoing edges for observationyab. Then this vertex
must also have incoming edges fromv0 for observationsya
andyb. The resulting situation is depicted below.

1A vertex identification operation modifies a graph by replacing multiple
vertices into single new vertex, redirecting the incoming and outgoing edges
of the original vertices to the new vertex.
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Fig. 3: A filter equivalent to the filter shown in Figure 2. Because the original
graph is 3-colorable, the filter can be reduced to one with only six vertices.
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Note that because observationsya andyb both lead tov, we
know thatc1 (va) = c1 (vb). However, the existence of edges
labeled with observationyab implies that an edge exists in
E1 betweenva andvb. Sinceva andvb are connected by an
edge but have the same color, we have a contradiction to the
supposition thatc1 is a proper 3-coloring ofG1. Therefore
F3 is a legitimate filter.

Finally, it is straightforward to see thatF3 is equivalent
to F2 by examining each of the finitely many observation
strings inL(F3). �

Lemma 3: For any instanceG1 of GRAPH-3C for which
the correct output is “False,” then the correct output for the
FM-DEC instanceF2 described above is also “False.”

Proof: Use proof by contrapositive. Suppose there exists
a six-vertex filterF3 , (V3 ,E3 ,m, v′0, d) that is equivalent
to F2. We must show that there exists a 3-coloring ofG1.

First, note that the start vertex ofF3 must have color 1
(i.e., d(v′0) = 1), sinceF2 generates color 1 on an empty
observation string. Note also thatF3 must also have one
vertex of color 3 and one vertex of color 4 that are reached by
observation sequences of length 2. Therefore the other three
vertices are reached by observation sequences of length 1.
Denote these three verticesv1, v2, andv3.

For each vertexva in V1 , note that an edgev0
ya
−→ vj ,

must exist inF3 since the filter is equivalent toF2. Let c1
denote the vertex-labeling ofG1 constructed by assigning
c1 (vi) = i. Sincev1, v2, andv3 are the only candidates for
vj , this labeling uses only three colors.

We still must argue that this labeling is a proper coloring
of G1. Suppose not, and let(va, vb) ∈ E1 denote an
edge for whichc1 (va) = c1 (vb). By construction,F3 has
edgesv0

ya
−→ vc1 (va) and v0

yb
−→ vc1 (va). Therefore, the

observation sequencesyayab and ybyab generate the same
color in F3. However, the construction ofF2 dictates that
these two observation sequences generate different colors,
namely a 3 and a 4. This contradiction implies that the
labeling c1 is indeed a 3-coloring ofG1, completing the
proof. �

Finally we can assemble these partial results.

Lemma 4: FM-DEC is NP-hard.

Proof: Combine Lemmas 2 and 3. �

Theorem 5:FM-DEC is NP-complete.

Proof: Combine Lemmas 1 and 4. �

Theorem 6:FM is NP-hard.

Proof: This is a direct consequence of Lemma 4. �

C. Relationship to DFA minimization

Notice thatFM-DEC has some surface-level similarity to
the problem of minimizing a deterministic finite automaton
(DFA):

Decision Problem: DFA Minimization (DFA-DEC)
Input: A DFA M.

Output: True if there exists a DFAM′ with at mostk
states, such thatL(M) = L(M′); False other-
wise.

In both cases, the input is a graph that describes transitions
that occur in response to a finite alphabet of input symbols,
and the goal is to determine whether the input graph can
be reduced to a given size. However,DFA-DEC is efficiently
solvable using a straightforward partition refinement algo-
rithm [8].

This apparent discrepancy is explained by the fact that,
in contrast to DFA-DEC, we do not require the reduced
filter to produce identical results for every observation string
in Y ⋆, but only on those observation strings inL(F). In
practice, this means that the reduced filter may generate
colors for observations strings that are not in the language
induced by the original graph, which allows I-states to be
“merged” even when their outgoing edges differ. Perhaps
somewhat surprisingly, the need to perform these merges in
a globally optimal way leads to the hardness result expressed
in Theorem 6.

V. A PPROXIMATE FILTER M INIMIZATION

In the previous section, we showed that, under widely-
accepted complexity assumptions, the optimal filter mini-
mization problem cannot be solved by any polynomial-time
algorithm. In this section, we present an efficient technique
for approximate filter minimization. That is, we describe an
algorithm whose input is a filterF1, and whose output is an-

other filterF2, for whichF1

L(F1)
===== F2 and|V1 | ≤ |V2 |. In

contrast to the optimal filter minimization problem discussed
in Section IV, we do not requireF2 to be the smallest filter
with this property.

A. Algorithm Description

The intuition of the algorithm is to imagine “merging”
each group of same-colored vertices inF1 into a single
vertex in F2. If, for each color that appears inF1, all of
the outgoing edges for each observation go to vertices of the
same color, then this operation forms a well-defined filter—
there is no ambiguity about the correct destination inF2 for



Algorithm 2 Approximate Filter Minimization

Input:
A filter F1 , (V ,E ,l : E → Y , v0, c1 ).

Output:

A filter F2, such thatF1

L(F1)
===== F2.

1: while F1 has a conflicted colork do
2: Compute the conflict graph for colork in F1.
3: Color the conflict graph using an efficient approximate

graph coloring algorithm.
4: Refine the coloring ofF1, replacing k with this

coloring.
5: end while
6: Form F2 by performing vertex identifications on any

pair of same-colored vertices inF1.
7: Color each vertex ofF2 using the (unique) original color

of its constituent vertices.
8: return F2

each edge inF1. In contrast, if any color that appears inF1

has two outgoing edges labeled with the same observation but
with different destination colors, then it is not clear which
edges should be included in the new filter. Our algorithm
works by iteratively refining the coloring ofF1 until all of
these conflicts are eliminated, after which it merges all of
the same-colored vertices to formF2.

More formally, we use the notion ofconflict between the
two vertices:

Definition 5: In a filter F , (V ,E , l : E → Y , v0, c),
two verticesv ∈ V , w ∈ V are in conflict if c(v) = c(w)

and there exists an observationy and edgesv
y
−→ v′ and

w
y
−→ w′ such thatc(v′) 6= c(w′). A color k is called

conflicted if at least one pair of vertices assigned to that
color are in conflict.

Definition 6: In a filter, theconflict graph for colork is
an undirected graph with vertex set{v ∈ V | c(v) = k} and
edge set{(v, w) ∈ E | v conflicts withw}.

The key observation is that, for any conflicted colork, if we
find a coloring of its conflict graph (using new, unique colors
that are not in the image ofc) and modify the originalc to
use those new colors in replacement ofk, then none of the
new colors that replacek will be in conflict with any other
vertices.

Our algorithm, for which pseudocode appears as Algo-
rithm 2, uses a series of these conflict graph colorings
to refine the coloring ofF1 until it has no conflicts. We
intentionally leave the algorithm for coloring the conflict
graph as an unspecified “black box.” Section V-C discusses a
few options for how one might instantiate this black box, and
the experiments in Section VI evaluate their performance.
When there are no remaining conflicts, the final filter is
formed by merging each subset of I-states that share the
same color.

B. Correctness and Runtime

The next two lemmas confirm that Algorithm 2 terminates
and returns a correct answer.

Lemma 7: Algorithm 2 terminates after at most|V |2

iterations of its loop.

Proof: Let n(F) ,
∑|V |

i=1

∑|V |
j=1[c(vi) = c(vj)], in which

[·] denotes the indicator function whose value is 1 when its
argument is true and 0 when its argument is false. That
is, n(F) denotes the number of same-colored vertex pairs
in F. Observe thatn(F1) decreases by at least 1 with
each iteration of the loop in Algorithm 2. Moreover, if
n(F) = 0, then every vertex inF has a distinct color, so
by definition there are no conflicts. Therefore, the algorithm
must terminate on iteration|V |2, if not before. �

Lemma 8: Algorithm 2 correctly produces a filter equiv-
alent toF1.

Proof: Note that each edge inF1 corresponds to an edge
in F2 with the same source color, destination color, and
observation label. As a result, every observation sequence
in L(F1) generates the same color in bothF1 and F2,

which implies thatF1

L(F1)
===== F2. Therefore, Algorithm 2

is correct. �

To bound the run time of the algorithm, letf (n) denote
an upper bound on the time used to color a conflict graph
of size n, which depends on the graph coloring technique
we select. To compute the conflict graph requires|Y | time
to check for each conflict, and|V |2|Y | to build the entire
graph. To apply the conflict graph’s coloring back toF is
a trivial |V | time operation. Finally, forming and coloring
F2 is also straightforward|V ||Y | time computation. Hence,
Algorithm 2 runs in timeO(|V |4|Y |f (|V |)). However, note
that this a pessimistic bound: In practice, the algorithm
generally uses far fewer than|V |2 iterations of its outer loop.

C. Conflict Graph Coloring

So far we have not specified any technique to use for
coloring the conflict graphs in Algorithm 2. First, note thatall
known algorithms for performing this coloring optimally—
that is, using the fewest colors possible—take time exponen-
tial in the number of vertices [2]. Therefore, Algorithm 2
can only be efficient if the subroutine we use to color the
conflict graphs is only approximate.

A large family of approximate graph coloring algorithms
have been proposed [1], [18], any of which would be suitable
for our approach. Our implementation usessequential greedy
coloring [3] because of its simplicity, ease of implementa-
tion, and solution quality. The intuition of this approach is
to select some order for the vertices and to assign colors to
them in that order, using the first available color for each. The
quality of the solutions generated by this approach depends
strongly on how the vertices are ordered. We considered
several options:

• A natural ordering, in which we make no special
attempt to order the vertices, and allow them to retain



whatever arbitrary ordering is determined by the details
of the implementation.

• Ordering by degree, in which the vertices are ordered
by their degree in the conflict graph, starting with the
highest degree vertex.

• Random ordering, in which we use a pseudo-random
number generator to shuffle the vertices, so that all
permutations are equally likely.

• Iterated random ordering, in which we repeat the color-
ing several times using different random permutations,
and retain only the best result.

For comparison purposes, we also implemented an optimal
coloring algorithm that works by exhaustively enumerating
partitions of the vertices.

VI. EXPERIMENTAL RESULTS

We have implemented Algorithms 1 and 2 in C++. This
section presents results showing its effectiveness on several
example problems. All of the executions described in this
section were performed on a GNU/Linux computer, using a
single core of a quad-core 2.5GHz processor. We terminated
each run as a failure after 10 minutes of CPU time.

We considered two generalizations of problem shown in
Figure 1, in which we varied both the number of agents and
the number of beam sensors subdividing the annulus. First,
we formed a family of problems in which one agent moves
in the annulus amidst varying numbers of beam sensors and
the goal is to recognize when the agent is in a given target
region (“region 0”). This problem is noteworthy because the
optimal filter has a constant size of five vertices, regardless
of the number of regions.

We constructed input filters based on nondeterministic I-
states for all instances with between 1 and 20 regions, and
executed Algorithm 2 to reduce those filters. For conflict
graph coloring, we used an exponential-time optimal algo-
rithm, along with sequential greedy coloring using (i) the im-
plementation’s natural ordering, (ii) ordering by degree,and
(iii) random ordering with the number of random colorings
k of each conflict graph set tok = 1, 10, 100, and 1000.
For the randomized algorithms, we performed 10 trials and
computed the mean and standard deviation of the reduced
filter size. Figure 4 shows the results of this experiment.
Notice that, except for the naı̈ve natural ordering, all of the
approximate coloring algorithms achieved results at or near
the globally optimal solution with 5 vertices. All of these
runs completed within the allotted time.

Figure 5 shows two of the reduced filters for the annulus
problem. Note that the equivalence of these to one another
illustrates the utility of Algorithm 1 as it is challenging
to assess their equivalence visually. We speculate that this
difficulty stems from the fact that the language over which
they are equivalent is a subset ofY ⋆, which is only implicit
here. Notice how the structure of the five region, single agent
annulus implies that, for example, no observation sequence
contains the subsequence “ad.”

Second, we considered a variation of the problem from
Figure 1 in which there are two agents, the number of beam
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generated by Algorithm 2, using optimal colorings for the conflict graphs.
[bottom] An equivalent filter using seven vertices for the sameproblem,
generated using the best of 10 colorings of each conflict graph, each based
on sequential coloring with a random ordering of the vertices.

sensors varies between 1 and 20, and the filter’s goal is to
know when the agents are in the same region, without regard
for which of region they share. Figure 6 shows results of this
experiment, which used the same conditions as described
above.

Third, we considered the L-shaped corridor problem intro-
duced in Section 11.3.1 of LaValle’s book [10]. This scenario
features a single robot moving in an L-shaped grid using
actions up, down, left, and right. Each of these actions moves
the robot in the requested direction by either one or two steps,
but stops prematurely should the robot reach the environment
boundary before completing its motion. The robot has no
sensors. This problem is noteworthy because, whereas the
number of I-states in the unreduced filter increases exponen-
tially as a function of the length of the corridor, the size
of the reduced filters increases only linearly. Figure 7 shows
the results of this experiment. In this case, our algorithm was
able to generate the optimal reduced filter in every run for
which it finished within the allotted time.
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VII. C ONCLUSIONS

In this paper, we proved that optimal minimization of com-
binatorial filters is NP-hard. We also presented an efficient
algorithm to perform these minimizations that often produces
optimal or near optimal reduced filters. There remain a
number of interesting unanswered questions.

A. Sub-optimality bounds
For some problems, such as the families of filters referred

to in Figures 4 and 7, we can determine the size of the op-
timal reduced filter by manual inspection. We observed, for
all such problems, that executing Algorithm 2 with optimal
conflict graph coloring did indeed produce a globally optimal
filter. An interesting conjecture is to determine whether
Algorithm 2 always produces optimal reduced filters when
the conflict graphs are colored optimally. More generally,
we may be able to place bounds on the quality of solutions
produced by Algorithm 2 in terms of the approximation ratio
of the underlying conflict graph coloring algorithm.

B. Relationship to planning
In this paper, we focused exclusively on the passive

problem of filtering the information available to the robot,
without regard for the related planning problems. Indeed,
if we consider information feedback plansπ : V → U

which map I-states to actions, then we can naturally extend
the filters described here intoplan graphs in which each
vertex (that is, each I-state) is labelled with the action that
should be executed at that I-state. This gives rise to a number
of questions on plan reduction and its relationship to filter
reduction.

The diagram below depicts one way to visualize the
operations that might be performed on filters (top row) and
plan graphs (bottom row):

original filter reduced filter

plan graph reduced plan graph

filter reduction

planning planning

plan reduction

The current paper has considered only filter reduction. An
interesting unanswered question is to determine the condi-
tions under which the diagram “commutes.” Is it better to
reduce and then plan, to plan and then reduce, or are these
two options ultimately equivalent to each other?
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