On Comparing the Power of Robots

Jason M. O’Kane and Steven M. LaValle*

Abstract

Robots must complete their tasks in spite of unreliable actuators and limited, noisy sensing. In this
paper, we consider the information requirements of such tasks. What sensing and actuation abilities are
needed to complete a given task? Are some robot systems provably “more powerful,” in terms of the
tasks they can complete, than others? Can we find meaningful equivalence classes of robot systems?
This line of research is inspired by the theory of computation, which has produced similar results for
abstract computing machines. The basic idea is a dominance relation over robot systems that formalizes
the idea that some robots are stronger than others. This comparison, which is based on the how the
robots progress through their information spaces, induces a partial order over the set of robot systems.
We prove some basic properties of this partial order and show that it is directly related to the robots’
ability to complete tasks. We give examples to demonstrate the theory, including a detailed analysis of
a limited-sensing global localization problem.

1 Introduction

Suppose we want a robot to complete some task, such as navigating to a goal, manipulating an object,
or localizing itself within its environment. Many different combinations of sensing and motion modalities
can be (and have been) used to complete each of these tasks. Indeed, much of the robotics literature is
concerned with finding sufficient conditions on the sensing and actuation capabilities needed to complete
such tasks. In this paper we take a different approach. For a given task, we are interested in determining
the necessary conditions: What sensors and actuators are needed? What are the information requirements
of robotic tasks? The long-term goal of this research is to develop a theory of robots and sensing that
helps in answering such questions. Answers to these questions are important because we expect that a deep
understanding of the difficulty of tasks in terms of their information requirements will lead to simpler and
less expensive robot designs.

This work is inspired in part by the theory of computation, which begins with precisely defined models
of abstract machines, such as finite automata, Turing machines, and so on [39]. In this context, a problem
is usually a language of strings; to solve the problem is to accept strings in this language and reject all
others. The theory of computation gives answers several kinds of basic questions about these machines and
problems.

1. Solvability: Can a given machine can solve a given problem?

2. Complezity: If the machine can solve the problem, how efficiently (in terms of time or space, for
example) can it do so?

3. Comparison: Are some machines strictly more powerful, in terms of the problems they can solve, than
others? It is known, for example, that pushdown automata can accept a strictly larger set of languages
than can finite automata. Likewise, Turing machines are more powerful than pushdown automata.

*This work is supported by ONR Grant N00014-02-1-0488, by DARPA grants #HR0011-05-1-0008 and #HR0011-07-1-
0002. J. M. O’Kane (corresponding author) and S. M. LaValle are with the Department of Computer Science, University of
Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL 61801, USA. Email: {jokane, lavalle}@cs.uiuc.edu. Fax:
+1-217-265-6591

4. FEquivalence: Are there apparently dissimilar machines that can solve the same set of problems? For
example, it is a standard result that a Turing machine with multiple tapes is functionally equivalent
to an ordinary single-tape Turing machine. Less obviously, Turing machines and recursive functions
have been shown to have equivalent computation power.

These ideas are well understood. In the sense that they form the formal foundation of the discipline, they
are part of the core of computer science. Current robotic science lacks a comparable foundation; the field
needs a unified theory in which meaningful statements can be made about the complexity of robotic tasks
and the robot systems we build to complete these tasks.

Can we adapt standard models of computation to the robotics context? Unfortunately, these models
are fundamentally ill-suited for studying robotics problems, because they assume that all of the relevant
information is supplied ahead of time on the machine’s tape. Sensing and uncertainty are central defining
issues in robotics; this structure is destroyed by an a priori encoding of the problem on a machine’s tape.
Traditional models of online computation (see, for example, [18,44,73]) are also inadequate, because they
assume that some fixed encoding of the problem is revealed incrementally. In contrast, robotics problems are
generally interactive, in the sense that the robot’s decisions influence the information that becomes available
in the future. Others study robotics problems using similar tools [33,67], but do not explicitly consider the
effects of varying sensing and motion capabilities.

The aim of this paper is to develop a “sensor-centered” theory for analyzing and comparing robot systems.
Our approach to doing so is based on two main ideas.

1. Information spaces: Traditional planning methods focus on the robot’s progression through a space of
states. What happens when the state is hidden and sensing thereby becomes relevant? One approach
is to use state estimation, in which the robot uses the information available to it to make an “educated
guess” about its state. The robot can treat this estimated state as its true state and ignore the
uncertainty. In some extremely limited contexts this is provably optimal (see for example, Section 6.1
of [14]). We, however, are interested in a broader class of tasks for which accurate state estimation is
impossible.

The relevant space for such problems is the robot’s information space. This space fully describes the
information available to the robot, including its initial condition, the history of actions it has applied,
and the history of sensor observations it has received. The robot’s “state” in this space is always fully
known. Information spaces originated in game theory [47], but have been used in robotics for some
time [11,28,37,50,51].

2. Tradeoffs expressed as partial orders: We present a partial order defining the dominance of one robot
system over another. The definition is based in turn on another partial order, an information preference
relation over information space, that indicates which information states are “more informed” than
others. Although these relations admit the possibility that no meaningful comparisons can be made,
we find this desirable: physical tasks and robot systems exhibit complex relationships and tradeoffs
that can potentially defy meaningful linear ordering.

The central idea we present in this paper is a notion of dominance of one robot model over another. In
informal terms:

A robot Ry dominates another robot Ry if Ry can “simulate” Ry, collecting at
least as much information as R;.

We make three primary contributions in developing this idea. First, we present the idea of robotic primitives
for modeling robot systems as collections of independent components. A single robotic primitive represents
a self-contained “instruction set” for the robot that may involve sensing, motion, or both. A robot model
is defined by a set of primitives that the robot can use to complete its task. By selecting a “catalog” of
primitives from which complete robot systems are constructed, we effectively determine a set of robot systems
to consider. For clarity, we define these models in an idealized setting in which time is modelled as a series of
discrete stages and the robot has perfect knowledge of its environment, perfect control and perfect sensing.

Second, we give a definition for dominance of one robot system over another that formalizes the imprecise
definition above. This definition is based on comparing reachability in a derived information space [50].
By mapping sensor-action histories from a variety of robots into the same derived information space, we
can compare the abilities of these robots in a concrete, formal way. We prove some basic properties of
this dominance relation and give some examples, including a detailed investigation of the global localization
problem. Third, we demonstrate the generality of our ideas by showing how to remove several of the
simplifying assumptions we make in the initial presentation.

The remainder of this paper is organized as follows. Section 2 reviews related research. Section 3 lays
a foundation of basic definitions for robotic planning problems. Section 4 introduces the concept of robotic
primitives and defines the set of robots induced by a catalog of primitives. In Section 5 we describe the
information preference relation, a partial ordering over derived information space that formalizes the idea
that some information states are better than others. The definition of dominance and some basic properties
thereof appear in Section 6. In Section 7, we apply the results from Sections 4-6 to the global localization
task. In Section 8 we present several generalizations our basic results to account for environment uncertainty,
imperfect control and sensing, and continuous time. Section 9 contains discussion and conclusions.

Preliminary versions of this work appear in [62] and [63].

2 Related work

Our approach can be viewed as minimalist in the sense that we are interested in solutions that use sensing
sparingly. The minimalist approach in robotics has a long history, dating perhaps to Whitney [79]. Minimalist
approaches have been used in manufacturing contexts for part orientation [4,5,30,36,37,57,77,80] and in
mobile robotics for navigation and exploration [3,21,42,48,54,59,76].

Our goals are similar to those of Donald [25]. The reductions in that work are similar to our dominance
relation; Donald’s notion of calibration is related to our idea of initial conditions. The most fundamental
difference is that our analysis is rooted in the information space. We claim that for robotic problems for
which sensing is a crucial issue, the information space is the space in which the problem can most naturally
be posed. The work of Erdmann [29] is grounded in the preimage planning ideas due to Lozano-Perez,
Mason, and Taylor [53]. In Erdmann’s work, sensors are modeled by giving a partition of state space. The
problem of sensor design is to choose a partition so that from each region in the partition, the robot knows
what action to select in order to make progress toward its goal. Others in artificial intelligence [19] and
control theory [1,27,34] have addressed related issues.

Although the examples in this paper use nondeterministic uncertainty, which is based on set membership,
the basic structure of our analysis is compatible with probabilistic uncertainty models like those of [75]. Many
probabilistic methods (for example, [7,52]) can be characterized as operating in an information space whose
members are probability distributions over state space. Our methods can be viewed as axiomatic because
they can be applied in any situation that satisfies the definitions of Sections 3-5. In this sense, the model of
uncertainty used is orthogonal to the questions addressed in this work.

3 Basic definitions

This section presents basic definitions for robotic planning problems. In order to keep the presentation as
clear as possible, we make several simplifying assumptions here and show in Section 8 how to relax them.

3.1 States, actions, and observations

We allow a robot to move in a state space X. Many of the examples in this paper are for a point robot
with orientation in the plane. In these examples, we use X = E x S', in which E C R? is the robot’s
environment and S = [0,27]/~, where ~ is an equivalence relation identifying 0 and 2, represents the
robot’s orientation. In general, however, we allow arbitrary state spaces, including configuration spaces and

Figure 1: A robot in a planar environment E. Its state space is X = E x S*.

Actions

u

Robot

-—

Y

Observations

Figure 2: The robot interacts with its environment by executing actions and receiving observations.

phase spaces of physical systems. Section 8.1 considers the particular case that arises when a robot moves
amidst unknown obstacles.

Time proceeds in variable-length stages, indexed by consecutive integers starting with 1. In each stage,
the robot selects an action u from its action space U and moves to a new state according a state transition
function f: X x U — X. At the conclusion of each stage, the robot’s sensors provide an observation y from
an observation space Y, according to h : X x U — Y. Call h the robot’s observation function. Let xy, ug,
and y; denote respectively the state, action, and observation at stage k. These sequences are related to each
other by f and h:

Trp1 = f(on, u) (1)
Yk = M@k, Yr). (2)

Although we are assuming in this section that both state transitions and observations are deterministic, we
acknowledge that in realistic contexts, managing unpredictability in motion and sensing is a crucial issue.
We omit such uncertainty here because of the additional complications it would introduce. The extensions
needed to relax this assumption are introduced in Section 8.

For convenience, we also define an iterated version of f that applies k actions in succession:

Fraun, . ue) = fo f(f(), ug) -), uk). (3)

The robot’s capabilities are modeled in the action and observation sets U and Y and in the maps f and h
that interpret these sets. See Fig. 2. A robot model is a 5-tuple (X, U,Y, f, h) giving values to each of these
elements.

3.2 Information spaces

Although the robot does not know its state, it does have access to the history of actions it has selected
and observations it has made. The space of such histories is the robot’s history information space (history
I-space), denoted Zp;s::

o}

Thist = U(U x V). (4)
=0

After k stages, the robot’s history information state (history I-state) is a sequence of length 2k: n =
(u1,91,-..,uk, yr). We occasionally abuse notation by writing (7, uk+1,yr+1) for the history I-state formed

by appending ug41 and yr11 to . How is the state space related to the robot’s history I-space? One
connection is by way to the notion of states consistent with an I-state:

Definition 1 A state x € X is consistent with a history I-state n = (u1,y1,. .., Uk, yi) if there exists some
T1 € X such that x = f*(x1,u1,...,ux) and y; = h(f7~ (@1, u1,. .., uj—1),u;) for each j =1,... k. o

The intuition is that a state x is consistent with an I-state 7 if a robot having I-state might possibly be at
state x.

We may define a policy 7 : Zp;s¢ — U over history I-space. As a shorthand, we recursively define a
function F' that applies a policy several times in succession, starting with some state x:

Fo(n,ma) = n (5)
Frpma) = (gk—1, 7(F* (0, m,2)), bz, 7 (F* (7, 2)))), (6)

Note that F*(n,r,x) depends on the true state (which is unknown to the robot) because x influences the
observation sequence that the robot receives.

The history I-space is not particularly useful by itself. For pairs of robots whose action or observation
spaces differ, the history I-spaces also differ, making the history I-space unhelpful for comparing robots. For
these reasons, we select a derived information space (derived I-space) Z and an information mapping (I-map)
K : Inist — I. Informally, an I-map computes a “compression” or “interpretation” of the history I-state.
If the history I-spaces of several robot models are mapped to the same derived I-space Z, then the robots
can be compared by examining their progression through Z. In principle, we may select Z and x arbitrarily.
The usefulness of a derived I-space lies in its ability to fully capture the information relevant to the task of
interest.

Example 1 We define the nondeterministic I-space Z,qet, in which derived I-states are nonempty subsets
of X. The interpretation is that the robot’s derived I-state is the minimal set guaranteed to contain the true
state. For any history I-state n, the nondeterministic derived I-state Knqet(n) is the set of states consistent
with n. Equivalently, the I-map Kndet : Zhist — Lndet can be defined recursively:

Kndet() = X (7)
Hndet(Thuvy) = {f(xau) | MRS Hndet(n)vy = h(.I, u)} (8)
Note that in Equation 7, we assume the robot initially has no information about its state. o

An important special case is the value of « for an empty history, that is, k(). This value gives an initial
condition for the robot, reflecting any knowledge the robot may have before its execution begins.

A task for the robot is a goal region Zg C 7 in information space that the robot must reach. This notion
is a generalization of the traditional idea of a goal state or goal region in state space. A solution is a policy
7 under which, for any x € X, there exists [such that F'(n;, 7,) € Zg.

4 Defining a set of robot systems

In this section we discuss how a set of robots can be defined in terms of a set of independent components.

4.1 Robotic primitives

At the most concrete level, a robot is a collection of motors and sensors connected to some sort of computer.
Between these components there may be interactions via open- or closed-loop controls. We abstract this
complexity by defining the notion of a robotic primitive. Each robotic primitive defines a “mode of operation”
for the robot. When primitives are implemented, they may draw on one or more of the robot’s physical

(NE]

=>
=>

j— T
u=72z y=73

Figure 3: Sample executions of the primitives of Examples 2 and 3. [top] P4 allows the robot rotate relative
to its current orientation. [bottom] P allows the robot to rotate relative to a globally defined “north”
direction.

sensors or actuators. Every kind of motion or sensing available to the robot must be modeled as a robotic
primitive. Robotic primitives correspond to the oracles that occur in the theory of computation [72], in
the sense that they provide the ability to make certain transitions and collect certain observations, without
specifying how these abilities are implemented.

Formally, we define robotic primitives in terms of the action and observation abilities they provide.

Definition 2 A robotic primitive (or simply a primitive) is a 4-tuple

(Ui, Yi, fi, hi) 9)
giving an action set U;, an observation set Yy, a state transition function f; : X xU; — X, and an observation
function h; : X x U; — Y. o

We now give several examples to illustrate the idea. Examples 3-7 apply to a point robot with orientation
in the plane, so X = R?xS'. Illustrations of these primitives appear in Figures 3-5. We revisit these examples
in Sections 6 and 7.

Example 2 Let Py = (S',{0}, fa,ha). Let fa compute relative rotations, so that from a state x =

(x1,22,0), we have fa(z,u) = (x1,22,0 + u). Since Y4 = {0} contains only a dummy element, ha is
a trivial function always returning 0. This primitive can be implemented with an angular odometer on a
mobile robot capable of rotating in place. o

Example 3 Let Pc = (S U {0}, S, fc,hc). The U notation indicates a disjoint union operation, under
which identical elements from different source sets remain distinct. Define fo(x,u) to set the rotation
coordinate of x to equal u if u € St or to leave x unchanged if u € {0}. The observation function hc returns
the robot’s final orientation. This primitive amounts to allowing the robot to orient itself with respect to a
global reference frame, or to sense its current orientation without rotating. This primitive can be implemented
using a compass on a robot that can rotate in place. o

Example 4 Let Pr = ({0}, {0}, fr, hr). Define fr to compute a forward translation to the obstacle bound-
ary. This primitive can be implemented with a contact sensor on a mobile robot that can reliably move
forward. o

Example 5 Let P, = ([0,00),[0,00), fr,hr). For x € X and u € U, define fr(x,u) to compute a forward
translation of distance at most u, stopping short only if the robot reaches an obstacle first. The observation
hp(z,u) is the actual distance traveled. This primitive can be implemented with a linear odometer. Depending
on implementation issues, a contact sensor may be needed as well. o

. - X

Py @é?; => €

u:d1 y=d1

Pgr /\ ::> \
s d2

© u=0 © y =ds2

Figure 4: Sample executions of the primitives of Examples 4-6. [top] Pr allows the robot to translate forward
until it reaches an obstacle. [middle] Py, allows a robot to specify a distance to translate. [bottom| Pg allows
the robot to measure the distance forward to the nearest obstacle, but does not change the robot’s state.

Pg O‘K;’g\ ::> ©

u=0 y=(z,y)

Figure 5: A sample execution of the primitive of Example 7. The robot senses its position, but its state does
not change.

Example 6 Let Pp = ({0},[0,00), fr, hr). Again, f(z,u) = x for all x and u. The observation h(x,u) is
the distance to the nearest obstacle directly in front of the robot. This primitive models the capabilities of a
forward-facing unidirectional range sensor. o

Example 7 Let Pg = ({0},R?, fg,hg). For all x € X, fo(z,0) = x, so that this primitive never changes
the robot’s state. For a state x = (x1,x2,0), let h(x,0) = (x1,22). This primitive roughly corresponds to a
GPS device that the robot can periodically poll to determine its location in the plane. o

Other possibilities for primitives include landmark detectors, wall followers, visibility sensors, and so on.
A more complete listing of sensors suitable for adaptation into robotic primitives appears in Section 11.5.1
of [50].

We claim that there are several benefits to modeling robot systems as collections of primitives. First,
we claim that robotic primitives represent the right level of abstraction at which planning problems are
interesting but manageable. If we consider sensors at too fine a level of detail, the problem takes on the

character of a closed-loop control system. If the primitives are too sophisticated, we risk trivializing the
planning problem while creating an unbearable modeling burden. Second, by dividing time into stages,
we avoid the technical difficulties of describing the robot’s progression through 7 in continuous time. This
consideration is increasingly important if we allow noise to affect state transitions or observations. We
address issues related to the modeling of time more completely in Section 8.3.

Let RP = {Pa,...,Pn} denote a catalog of primitives. We may form a robot model by selecting
nonempty subset of RP. A robot defined by the primitive set R = {P;,,...,P;, } € RP has action set
Ur = U;, U---1U;,, and observation set Yr = Y;, U---UY; . The state transition function fr : X xUr — X,
and observation function hr : X x Ugr — YR, are formed by unioning the f and h maps from the relevant
primitives. When it can be done without ambiguity, we sometimes the use phrase robot model to refer
directly to the set of primitives, rather than to the 5-tuple (X,U,Y, f, h) formed by these primitives. With
this usage, it is meaningful to apply set operations such as union or intersection directly to robots.

5 The information preference relation

Our goal is a dominance relation under which we can declare one robot “better than” another. To do so,
we need a formal notion of one I-state being “more informed” than another. To that end, choose a derived
I-space Z and an I-map k into Z. Equip Z with a partial order, which we call an information preference
relation. Write (1) =< k(n2) to indicate that k(72) is a refinement of x(n;). We require that for any
M1,M2 € Thist, and for any u € U and y € Y,

k(m) 2 k() = klm,w,y) 2 kN2, uw,y). (10)

This is a consistency property requiring preference for one I-state over another to be preserved across tran-
sitions in I-space.

Example 8 Regardless of T or k, it is well-defined (but perhaps unhelpful) to use a trivial relation under
which k() <X k(n2) if and only if K(n) = K(n2). o

Example 9 Under nondeterministic uncertainty, we can define kndet(N1) = Kndet(n2) if and only if knaet(n2) C
Kndet(n1). To show that (10) is satisfied, suppose Knget(N1) = Endet(2). Let © € Knget(N2,w,y). The defini-
tion of Knder ensures that there exists some &' € Knger(n2) such that f(2',u) = x and h(z',u) =y. However,
because Kndet(N2) C Kndet (1), we have &' € Kpger(1). It follows that x € Knget(N1,u,y). o

The information preference relation we choose affects the goal regions that are sensible to consider. We
should select a region in which, for every I-state in the region, we also include any I-states preferable to it.
Definition 3 codifies this idea of a sensible goal region.

Definition 3 Consider a set I C T of derived I-states. If, for any m € I and no € T with n1 =< 12, we have
1o € I, then I is preference closed.)

Alternatively, we can view preference closure as a constraint on <. Fixing a space G of potential goal
regions, we admit a partial order =< only if every region in G is preference closed under <. The trivial
definition of < in Example 8 always passes this test, regardless of G.

6 A dominance relation over robot systems

Now we turn our attention to a definition of dominance of one robot system over another. This dominance
relation induces a partial order over robot systems according to their sensing and actuation abilities. The
intuition is that dominance is based on one robot’s ability to “simulate” another.

Ri Ry

KD () % w3 (1)
U1 2
KO (01, ur, kD (21, u1)) 2 63 (FL (12, 72))

Figure 6: An illustration of Definition 4. If Ry can always reach an I-state better than the one reached by
Rl, then R1 S] Rg.

Definition 4 [Robot dominance] Consider two robots R = (XM UMy 1) p1)) gnd
R® = (Xx®@ y® y@ @ p) Choose a derived I-space T and I-maps £ : XN — T and 6® : X3 —
Z. If, for all

® M€ If(ilu
® 1o € I,(jlt for which kKM (1) = K@) (1), and all
o u e UW,

there exists a policy w3 : I}(jit — U@ such that for all z1 € X consistent with m and all xo € xX®
consistent with nq, there exists and a positive integer | such that

kW (1, ur, R (21, u1)) 2 6(F (02, 72, 22)), (11)

then Ro dominates Ry under Z and k, denoted Ry I Ry. If Ry < Ry and Ry < Ry, then Ry and Ry are
equivalent, denoted Ry = Ry. If Ri 4 Rs and Ro 4 Ry then Ry and Ry are incomparable, denoted RiBR,.

[¢]

Informally, Definition 4 means that, for any transition made by R;, there exists some strategy for Ry to
reach an information state at least as good, in the sense of information preference, as that reached by R;.
This is what we mean when we describe the statement R; < R, as meaning that R, can simulate R;. See
Fig. 6.

6.1 Dominance examples

Several examples will clarify the definition.

Example 10 Let Ry = {Pr} and Ry = {Pa, Pr}. Recall the definitions of these primitives from Examples 3,
5, and 6. We argue under nondeterministic uncertainty that Ry J Ry by showing that Ry can simulate Ry
in the precise sense of Definition 4. Let m € I,(iit and 12 € I,(jit with k(n1) X Kk(n2). Since Uy = {0}, there
is only one choice for uy. Let | = 4 and define mo so that Ra, starting from ns, evecutes these actions in
succession:

(1) Use Pp with a very large input to move forward to the nearest obstacle. Let d = h(x,u) denote the
distance moved.

(2) Use Pa with w = 180" to perform a half turn.
(8) Use Pr, with u = d to return the robot to its initial position.

2 d %

Ry = {Pr} Ry = {Pa, P}

Figure 7: An illustration of Example 10. The robot Ry = {Pa, Pr} dominates the robot Ry = {Pr} because
the former can simulate the latter. [left] A distance measurement made directly by R;. [right] Distance is
measured indirectly by Ry using its linear odometer.

(4) Use Pa with w = 180" to perform a half turn, returning the robot to its original orientation.
This policy is illustrated in Figure 7. It is easy to verify that from any x € X, we have

K/(ﬁlaulvh(xvul)) j I{(F4(7727’/T2,5E)),

and therefore Ry < Ro. Since Ry, which is completely immobile, cannot simulate the translations or rotations
of Ra, we have Ro 4 Ry.

Note that these relationships are based on the robots’ ability to move through ZI,qet, and do not consider
any notion of the cost of motion or sensing. The introduction of such a cost function would likely lead to
Pareto optima that express tradeoffs between the complexity of sensing built into the robot and the execution
costs of particular plans executed by the robot. We do not consider such tradeoffs here. o

Example 11 Let Ry = {Pr} and Ry = {Pr}. We show under nondeterministic uncertainty that Ry < Rs.

Letm € I,(lgt and ny € Z,(jlt with 1 =< na. There is only one choice for uy. Choose |l =1 and define my to

choose an input for P, larger than the diameter of the environment. This causes the motions of Ry and Rs
to be identical. The resulting derived I-states ny and nh for Ry and Ry are the same, except that Rs receives
a meaningful sensor reading that may cause one or more candidates to be pruned. This sensor information
only makes 0y smaller, so the preference ny =< 1} is preserved. Conclude that Ry < Rs. o

It bears emphasis that the relation induced by Definition 4 depends on the I-maps used. The next two
examples illustrate this.

Example 12 Let Ry = {Pa} and Ry = {Pc}. We argue that Ry < Ry under the usual nondeterministic
I-map with the initial condition of total uncertainty. Let n1 € I,Slt and ne € I,(jit with m1 =X 1m2. Let
uy € Uy = S'. Choose l =2 and define T to select the following two actions:

(1) Use Po with u = 0 to sense the robot’s orientation without changing the state. Let 6 denote this
orientation.

(2) Use Pc to rotate the robot to orientation 6 + u in the global frame.
As in Example 11, the resulting states for Ry and Ry are identical but, since Ry knows its orientation,
it may be able to eliminate some candidates that Ry cannot. This establishes that Ry < Ry. Are Ry and

Ry equivalent under this I-map? No, because Ry can, with a single action, sense its orientation, but this
information can never be gathered by Ry. Therefore Ro A Ry and Ry Z Rs. o

Example 13 Consider a situation identical to that of Example 12, but modify k for a different initial
condition k() = R? x {r/2}. That is, the robot begins its execution knowing its initial orientation. At every
step, Ry knows its orientation in the global frame, and can simulate Ro using angle addition. Therefore we
have Ry < Ry. But using the same reasoning as in Example 12, we know Ry < Rs. Therefore, for this k, we
have R1 = R,. o

10

6.2 Properties of the dominance relation

We conclude this section with some basic properties that follow from Definition 4.

Lemma 1 The dominance relation < is partial order. Likewise = is indeed an equivalence relation.

Lemma 2 For any three robots R, Ry and R3 for which Ry < Ry:
(a) Ry < Ry U R3 (Adding primitives never hurts)

(b) Ry = Ro U R; (Redundancy doesn’t help)
(¢) R1URs <Ry U R3 (No unexpected interactions)

Proof: (a) Let n; € I;(lgt’ M3 € I}(li’z, and uy € Uy. Assume k(n1) =< £(n13). Choose [=1 and 713(n) = uy
for all n. We have s(ny,u1, h(x,u1)) < k(nis, ur, h(z,u1)) = &(F'(m13,T13, 7)), completing the proof.

(b) Since Ry URs = Ry, it follows from part (a) that Ry <R; U Rs. It remains to show that Ry UR; < Rs.
Let g € I}(jz,t, M2 € I,(éiz, and uy € Us. Assume k(12) =< k(n12). Choose | = 1 and m13(n) = ug for all 7.
We have x(ng,up, h(z,up)) = k(ma,up, h(z,up)) = k(F' (N2, T2, 7)), completing the proof.

(c) Let m3 € 121327 N23 € I;(ji? and u13 € Uy UU;. Assume k(113) =< (n23). Either uyz € Uy or uyz € Us.
If uy3 € Uyp, then because Ry < Ry there exist w3 and [satisfying the definition for R; U R3 < Ry U R3.
If w3 € Us, then choose | = 1 and mo3(n) = wys for all n. For all xz, we have k(m13, u1s, h(x,u13)) =<

K(na3, u13, h(x,u13)) = K(F' (193, T23,2)), completing the proof. O
Corollary 3 If Ry = Rs, then Ry U R3 = Ry U R3.

Proof: Apply Lemma 2c twice. ([l

Lemma 2c¢ might be misleading. Certainly, hardware components can be made to interact in interesting
ways. For example, a control system might combine information from linear and angular odometers to
execute circular arc motions. This apparent contradiction results from the definition of robotic primitives,
which execute serially, rather than in parallel. In this sense, robotic primitives model complete “packages”
of sensing and actuation strategies, rather than the individual sensors or motors themselves.

Lastly, we connect the idea of dominance to the ability of robots to complete tasks.

Lemma 4 (Solution by imitation) Consider two robots Ry and Re with Ry <Ry and a preference-closed
goal region L. If Ry can reach Zg then Ry can reach Zg.

Proof: Use the policy 7o implied by Definition 4 to complete the task with Rs. |

7 Extended example: Global localization

In this section we present a detailed example using the definitions of Sections 5 and 6. We consider a global
localization task, in which the robot has an accurate map of its environment but has no knowledge of its
position within that environment. Many forms of the localization problem with varying sensing modalities
have been studied in great detail. Some methods [8,12,22-24,38,49,74, 78] passively observe the motions of
the robot in order to draw conclusions about the robot’s state. Others [26,45,46,60,61,68,69] actively drive
the robot to reduce uncertainty. The purpose of this example is to show how the results of Section 6 can
be used to discover the information requirements of this particular problem in robotics. An analogy can be
made to the classification of languages in the theory of computation. It has been shown, for example, that
to accept the language of palindromes requires a machine with computation abilities at least as powerful as
a pushdown automaton. In this section, we derive similar results regarding the sensing and motion abilities
needed to complete the active global localization task.

11

'CALICTLICTALI CL'

Figure 8: Fifteen robot models grouped into their eight equivalence classes.

7.1 Task definition

Let E C R? denote a planar environment in which a point robot moves. Assume that F is polygonal,
bounded, closed, and simply-connected and that the rotational symmetry group of FE is trivial. The robot’s
state space is X = E x S!, accounting for its position within £ and its orientation. We consider a catalog
RP = {Pa, Pc, Pr, Py} of four primitives from Examples 2-4. From these primitives we can form 15 distinct
robots. For brevity, we use concatenation to indicate the primitives with which a robot is equipped, so that
CT refers to a robot with primitive set { Pc, Pr}; similar names apply to the other 14 robot models.

Select Z = pow (X) — . For k, use the nondeterministic map defined in Example 1. The initial condition
is total uncertainty, so k() = X. For the information preference relation, use the definition from Example 9,
in which information preference is defined by subset containment. The goal region for the localization task
is

Ig={nel||n =1} (12)

That is, we want to command the robot so that only a single final state is consistent with its history I-state.
If the robot can complete the task for any E consistent with the assumptions above, we say that the robot
can localize itself.

7.2 Equivalences and dominances

Although RP generates 15 robot models, we can use the results of Section 6 to group them into equivalence
classes.

Lemma 5 The following equivalences hold:
(a) CA=C
(b) CTA=CT
(¢c) TL=1L
(d) TAL= AL
(e) CAL= CTL= CTAL = CL
The three remaining robot models, A, T, and AT, are in singleton equivalence classes.
Proof: (a) Combine Example 12 and Lemma 2b. (b) Combine Example 12, Lemma 2b, and Corollary 3. (c)

Combine Example 11 and Lemma 2b. (d) Combine Example 11, Lemma 2b, and Corollary 3. (e) Combine
Examples 11 and 12, Lemma 2b, and Corollary 3. O

These equivalences are illustrated in Figure 8. From each, select the unique robot with the fewest
primitives and discard the remaining 7 robots. We can state a number of dominances between these classes.
Lemma 6 Between representatives of the equivalence classes from Lemma 5, the following dominances
hold:

(a) CLCT<CL

12

AN
[NN

L

Figure 9: Classification of robot models under which the localization task can be completed. Shaded models
do not admit a solution. Arrows indicate dominances.

(b)) ASAT<AL<QCL
(¢) LSLAL<SCL
(d) TSAT<ACT<CCL
Proof: Combine Examples 11 and 12 with Lemma 2a. O

7.3 Completing the localization task

Which equivalence classes contain robots that can complete the localization task? First, notice that several
robot models are so absurdly simple that we can rule them out immediately.

Lemma 7 None of C, A, L, and T can localize themselves.

Proof: For C and A, notice that no action changes the robot’s position and no observation is influenced
by position. Therefore neither robot can ever gather information about its position. For L and T, notice
that the robot can never change its orientation. Information available to the robot is limited to the ray
extending from its initial state to the nearest obstacle forward. Since E may contain continua of starting
states consistent with this information, neither robot can localize itself. O

Prior results are helpful for the remaining cases.

Lemma 8 ([64]) AL and CT can localize themselves but AT cannot.

Finally, we can finish the classification. The results of Lemmas 7-9 are summarized in Figure 9.
Lemma 9 CT can localize itself.

Proof: Combine Lemma 4 with Lemma 8. O

The result is a complete description of the power of the primitives in RP, in terms of dominance and
equivalence, and a complete classification of the solvability of the localization problem over this hierarchy.

8 Extensions and generalizations

This section contains a series of extensions and generalizations to the techniques presented in Sections 3-6.
Our intention is to illustrate that, although the preceding results are for a class of highly idealized systems,
the general structure of our analysis is useful for a wider variety of problems with greater degrees of realism
and generality. We propose methods for dealing with unknown environments (Section 8.1), with sensing and
control uncertainty (Section 8.2), and with continuous time (Section 8.3). Although we present each method
separately, the extensions are orthogonal in the sense that it its straightforward to apply all of them at once.

13

AT

Figure 10: Three states for an example system containing a mobile robot in the plane with environment
uncertainty. When the environment is uncertain, the identity of the environment becomes part of the state
of the system.

Actions Disturbances

u

6, ¥

Robot Nature

-—

Y

Observations

Figure 11: As the robot interacts with its environment, an artificial decision maker nature generates distur-
bances.

8.1 Unknown environments

In the preceding analysis, we tacitly assumed that the robot moves in a fixed, known environment. What
happens when the robot begins with limited or no knowledge about its environment, in the sense that
positions and geometry of obstacles, map topology, navigability of terrain, and so on are unknown? Imperfect
knowledge about the environment is a more drastic instance of the general issue of state uncertainty. If the
state is defined to include a description of the environment in addition to the robot’s configuration, then
uncertainty in the environment can be represented as an additional dimension of state uncertainty.

Concretely, choose an environment space € of which each element E € £ is a potential environment
for the robot. Possibilities for £ with varying degrees of realism, interest, practicality, and amenability to
analysis, include:

1. the set of bounded planar grids with occupancy maps,

2. the set of simple polygons in the plane, and

3. the set of compact regions in R? or R? with connected interiors and piecewise analytic boundaries.
4. the set of terrain maps from R? to R, giving the elevation or navigability at each point in the plane.

The state space is formed by combining the robot’s configuration space C with £, so that X = C x £. In the
complete model, the true environment E € £ affects the robot by influencing the state transitions that the
robot makes and the observations that the robot receives. Since the only change is to use a more complicated
state space, Definition 4 need not change, and the results of Section 6 still hold.

8.2 Imperfect sensing and control

We have assumed so far that the robot can execute all of its actions with perfect precision and complete reli-
ability. The motions of real robots are imprecise and unpredictable. Moreover, although we have accounted
for the importance of sensing by assuming that the robot is uncertain of its current state and must rely
on sensing, we have assumed that sensor readings are uncorrupted by noise. A more realistic sensor model
would allow information from sensors to be subject to error.

14

=

Figure 12: [left] The robot in Example 14 gives displacement inputs that determine a nominal trajectory.
[right] Nature interferes with this motion, but error bounds ensure that the final state is contained in a circle

of radius k0,,4-
[] []
X X
]
(0,0)

Figure 13: [left] The robot in Example 15 has a sensor that reports a noisy estimate of the distance to
the origin. [right] Accounting for noise bounded by ©,,q., the observation confines the robot’s state to an
annulus of width 2¢,,44.

We propose to follow the approach used in game theory [15,66] and represent this uncertainty by en-
visioning an abstract external decision maker called “nature.” The current state, the action chosen by the
robot, and the choices made by nature combine to determine how the state changes; given this information,
the state trajectory is fully determined. Formally, define a nature action space © and augment the state
transition function f to depend on nature’s choice of § € ©, so that f: X x U x © — X. Nature affects the
robot’s observations in a similar way. Define a nature observation action space ¥ and redefine the observation
function h: X x U x ¥ — Y.

Example 14 Consider a point robot that can move freely in the plane by issuing displacement commands,
but whose motion is subject to noise. Let Upmqr denote a bound on the magnitude of the displacement in
each stage, and let 0,,q, denote a bound on magnitude of the error in this displacement. Let X = R2,
U={ueR? | ||jul| <tna}, © ={0 € R? | ||0]| < Omaz}, and f(z,u,0) =z +u+0. At stage k, the robot
can be certain that its state lies within a closed ball of radius kOy,q., centered at the nominal (error free)
final point. See Figure 12. o

Example 15 Suppose a mobile robot has a sensor that detects the distance to some landmark. Let X = R?
and Y = R. Without loss of generality, position the landmark at the origin. Assume that the sensor has
bounded additive error, so that ¥ = [—maz, Ymaz] and h(z,y) = ||z|| + . See Figure 13. At each stage,
the robot knows that its state is within an annulus of width 21,4, centered at the origin. o

In the presence of interference from nature, there are at least two relevant solution concepts.

1. A strategy 7 : Zp;s¢ — U is a possible solution if there exists some stage k and choices of 64, ..., 0 and
1, ..., for which the robot reaches an information state 7, € Zg. The robot may reach Zg, but it
is also possible that control or sensing errors will prevent it from achieving this goal.

15

2. A strategy m: Zp;st — U is a guaranteed solution if there exists some stage k such that for all choices
of 01,...,0, and v1,...,9y, the robot reaches an information state n, € Zg. The robot can always
reach its goal, regardless of any interference by nature.

Other solution concepts, such as those based on performance bounds or on probabilistic guarantees of reaching
the goal, are possible but we do not consider them here. In this context, Definition 4 must be generalized to
include universal quantifiers over nature’s actions.

Definition 5 [Robot dominance with sensing and control error| Consider two robot systems RM = (X(l), U,
YW oW g M a1)) gnd R® = (X@, U@ vy 0@ w® 2 h2). Choose a derived I-space T and
Imaps kK0 : XO) S T and kK@ : X@ S T, If, for all

* M e If(Lgt’
® 1y € I,(jlt for which kKM (1) = k@ (), and all
o uy e UMD,

there exists a policy s : Il(jit — U@ such that for all z1 € X consistent with m and all x4 € xX®
consistent with ny, there exists a positive integer | such that for all
o 0 €0,

L /(/)1 € \11(1)7
° 9271, . ;92,1 S @(2),
L4 wZ,la"'an,l S 11)(2);

we have

£ (1, un, RO (21, 01)) = 6 (FH (g, 7, 22)) (13)
then Ry dominates Ry under Z and k, denoted Ry I Ry. If Ry < Ry and Ry < Ry, then Ry and Ry are
equivalent, denoted R1 = Rs. o

The next example demonstrates that Definition 5 behaves reasonably.

Example 16 (Varying error bounds) Recall the incompletely specified models in Examples 1/ and 15.

Consider two robot systems Ry and Ro with state transitions as in Example 14 and observations as in

Ezample 15; Ry and Ro differ only in the error bounds 9,%)”, ,(it)w, 97(73?”;, and 1/),(,%2135 We compare these

robots under Kpget- Comparing 9,(7{()135 to 952@, and w%t)m to wﬁ)n, there are four cases:
1. If Ohe = 00 and 1/)7(791:,; = gz)zm; then Ry = Rs.
2. If Ohnde < Onaw and Plnde < iiae, then Ry < Ry,
3. If Oihe < Oinbe and Yiias < Glade, then Ry < Ry,
4. Otherwise, Ro ® Ry .

These results follow in a straightforward manner from Definition 5. The intuition is that one robot system
dominates the other if and only if its error bounds are smaller. o

8.3 Continuous time

The models presented to this point manage time in discrete stages, in which the robot makes a single decision
at each stage. This discretization of time may be unsatisfactory for many kinds of systems, especially those
that require complicated control strategies. Continuous-time models have a more direct correspondence with

16

reality. To make the appropriate generalizations, we must replace the discrete sequences of states, actions,
and observations with functions of a continuous time parameter ¢.

The state space X, action space U, and observation space ¥ remain unchanged from the discrete stage
formulation. At each instant ¢, the robot chooses some u(t) € U. Let U; denote the space of all functions
from [0,¢) into U, and let U= Ute[o,oo) U,. For simplicity of notation, adopt the convention that [0,0) = 0.

Define @ : [0,00) — U as the robot’s complete action history, and let u; € U denote the robot’s action history
up to (but exclusive of) time ¢. We include a special termination action up € U. The robot selects ur to
indicate that it has finished its task and intends to terminate execution. We require that if u(t) = up, then
u(t’) = up for all ¢/ > t. We describe changes in the state with a state transition function

©:Xx |J U —X (14)
te[0,00)

The intuition is that, given a starting state x(0), and an action history u;, the state transition function
computes the resulting state

2(t) = ®(2(0), Ty). (15)

This notation of a “black box” state transition function follows notation employed in control theory, for
example by Chen [20].

Example 17 A familiar special case of (15) occurs if U is a smooth function and there exists a function f
such that

B(x(0),) = £(0) + / F(a(s), u(s))ds. (16)

In this case, the system dynamics can be described by the differential equation & = f(x,u). o

As time passes, the robot’s sensors provide feedback in the form of observations drawn from an observation
space Y. Let Y; denote the space of functions mapping [0,¢] into Y and let ¥ = Ute[o,oo) Y;. The robot’s
complete observation history is 4 : [0,00) — Y. The observation history up to ¢ (inclusive) is y; € Y;. The
observations received by the robot are governed by the observation function® h : X — Y. The history I-state
becomes L
Tniw= |J U xY, (17)
te[0,00)

and the history I-state at time ¢ is n(t) = (Uy, Yt) € Znist- A state z is consistent with an I-state n(t) = (u, i)
if and only if there exists some starting state 2(0) such that ®(z(0),u;) = x and h(z(t')) = y(t’) for ¢’ < ¢.

Strategies for the robot are given as feedback plans over Zp;s;. We describe the robot’s strategy as a
feedback strategy 7 : Zp;s+ — U that specifies an action for history I-state. The next two examples illustrate
that feedback over a derived I-space can be a natural way to express familiar kinds of strategies.

Example 18 (Open loop strategy) Let Zijme = [0,00) and consider the I-map Kiime(n(t)) = t. In this
case, the derived I-state is simply the time elapsed. If the robot has an intended open loop action trajectory
w:[0,t5) = U, a strategy to execute v is m(n(t)) = w(Ktime(n(t)) if t <ty and m(n(t)) = ur otherwise. o

1n our discrete-stage formulation, we used a slightly different observation model, in which h : X x U — Y. In a continuous-
time adaptation, the time period over which observations are available is the half-open interval [0, t); ¥ would be undefined at
t itself. As a result, the closest we could come to a memoryless strategy is to use the left-hand limit of y; at ¢, kKops(n(t)) =
lim,,_,,— y(t'), provided the limit exists. (Compare to Example 19.) This technicality is part of the motivation for preventing
y from depending directly on u, as we have done in this section. A more complete treatment of these kinds of sensor models
appears in Section 11.1.1 of [50].

17

Example 19 (Memoryless strategy) Another possibility is that it is enough to know the “most recent”
observation, so Iops =Y and kops(n(t)) = y(t). Given a memoryless plan v :Y — U, the composed function
Kobs © 7Y : Lnist — U is a memoryless information feedback strategy. o

We assume that a given strategy is executed until it selects up. The time when this occurs, the resulting
final state, and the observations received along the way are all affected by the strategy m itself and the
starting state x(0). Assuming that the robot executes , the termination time is

T(m,2(0)) = inf{t € [0,00) [w(n(t)) = ur}, (18)
and the final state is F'(7,2(0)) = ®(2(0), Ur(r,2(0)))-

Example 20 (Concatenating strategies) Given two strategies w1 and w2, a new strategy that concate-
nates them (that is, executes them in sequence) is expressed by w(n(t)) = m(n(t)) if m(n(t)) # ur and
m(n(t)) = ma(n(t)) otherwise. By nesting this construction, arbitrarily many strategies can be chained to-
gether. o

Definition 4 generalizes in a natural way.

Definition 6 [Robot dominance in continuous time] Consider two continuous-time robot systems Ry =
(X u® y® oM pMW) and Ry = (X, UR) YR & h2). If, for all

o nW(t) e T

hist’
o 1 (ts) € T2, for which kO (M (t1)) < £ (1 (L)),
e t} €]0,00), and all

o ﬂi}) cuM

[
1 t 1

there exists an information feedback strategy s : I,(jit — U@ such that for all 2V € XU consistent with

nW(ty) and 2 € X @) consistent with n? (t3), there exists th € [0,00) such that if Ry evecutes ﬁi;) from

time t1 to t) and Ry executes ©?) from time ty to t, we have
MM (1) = KO (P (1)) (19)
then Ry dominates Ry, denoted Rq < Rs. o

See Figure 14. The next two examples illustrate the implications of Definition 6.

Example 21 (Omniscient sensing and perfect control) Consider a degenerate case with' Y = X, and
h(z) = x. This situation gives the robot complete information about its state. Choose k(n(t)) = y(t) = z(t).
Let my = ng if and only if my = no. In this context, Definition 4 becomes a statement about the regions of
state space reachable by different control systems.

Suppose three such systems R1, Ra, and Rs differ only in their action spaces UV, U and UG). Let
Z(A) denote the subset of state space reachable by a robot with action space A. Suppose Ry < Ry. R3 need
not be comparable to either Ry or Ry. Note that additional robot models can be constructed from unions of
UD, UR | and UG). We have the following results:

ZzwWy c zZWwPuu®) (20)
ZzwW)y = zZwWuu®) (21)
ZUMDuUu®y c Zzu®uu®) (22)

These results are analogous to Lemma 2. Note that in combining action spaces in this way, we allow the
robot to choose sequentially the action set from which to choose its action. The results fail if the robot is
somehow allowed to choose actions from each constituent set in parallel. o

18

Ri Ry

R (D (t1)) i R () (t2))

Figure 15: The lost cow of Example 22 searching for a gate.

Example 22 (A Lost Cow) A well-known problem in online algorithms is the lost cow problem [10,43] in
which a near-sighted cow moves along a fence searching for a gate, as illustrated in Figure 15. The difficulty
under the standard sensing model is that the cow must systematically search in both directions from its initial
position without any information about the distance or direction to the gate. The interest in this problem
derives from potential applications in (or at least the potential for better understanding of) exploration in
unbounded environments.

We formulate the lost cow problem and consider how the sensing model affects the cow’s searching ability.
Let X = R, in which x(t) is the position of the gate relative to the cow at time t. Let the action space be
U = [-1,1] with ®(x(0),d;) = =(0) + fot u(s)ds. We compare three distinct models Cy, Ca, and Cs under
Rndet -

1. Cy: Let YU =R and hV(2) = x. Here the cow can determine both the direction and distance to the
gate.

2. Co: Let Y?) = {~1,0,1} and h(x) = sign(x). This allows the cow to determine the direction it must
move to reach the gate, but not the distance.

3. C3: Let YO = {0,1} and h® () =1 if = 0 and h® (x) = 1 otherwise. This is the standard lost
cow sensing model, in which the cow cannot see the gate from a distance, but can detect the gate when
it arrives.

Perhaps surprisingly, these three models are equivalent in the sense of Definition 6. This is because each can
eventually determine its state (by finding the gate) and after the state is known, state uncertainty cannot
recur. To simulate Cy with Cs, first execute the algorithm of [10], then move to the state occupied by Cy. ¢

We conclude our discussion of continuous-time models by showing how a discrete stage model in the
form of Section 3 can be constructed from a continuous-time model in the form presented above. Consider a
division of time into variable length stages, in which, in each stage, the robot executes a single information
feedback strategy to completion. We require of each of these strategies the following special property:

19

Definition 7 [History invariance] If, for all n(t) € Tyist, all x € X consistent with n(t), and all y(0) € Y,
we have F(m,x,n(t)) = F(m,x,1(0)), then 7 is a history-invariant strategy. o

The intuition of the definition is that the robot executing 7 is free to use the observation and action history
generated during its own execution, but it cannot peer into the past before its execution began in order to
make decisions. Given a continuous-time robot system R = (X,U,Y, ®, h) (as defined in this section) and a
set IT of history-invariant information feedback strategies, construct a discrete-stage system (as in Section 3)

R=(X,U,Y, f,h) as follows:
1. The state space X is the same.

2. The action space is U = II.

3. The observation space is Y =Y.
4. The state transition function is f : X x U — X, with f(z,7) = F(m,z,7(0)).
5. The observation function is h: X x U — Y.

The system starts at some (unknown) initial state 1 € X. Let a2 € X, uy, € U, and y;, € Y, denote the
appropriate values at stage k. These sequences are related to each other by zx11 = f(xg,ur) and y, =
h(zk,ur). The history I-state consists of the action and observation histories: n, = (u1,y1,...,Ux—1, YK —1)-
This construction gives a discrete-stage system faithful to the dynamics in both state space and I-space of
the underlying continuous time system.

Lemma 10 Any action sequence ui,...,ux evecuted by R reaches the same final state x and the analogous
final history I-state as does R.

Note, however, that in making this transformation, we must choose a set II of strategies and may therefore
restrict the space of plans that the robot can execute. If II does not contain a sufficiently rich selection
of information feedback strategies, there may be regions of I-space that are no longer reachable under the
discretized model. In this way, II is analogous to the catalog of robotic primitives R'P introduced in Section 4.

9 Discussion

The results of this paper are intended to lay a foundation for a sensor-centered theory for comparing robotic
problems and systems. Great potential exists to build on this foundation, particularly by pushing the analogy
to the theory of computation even further.

The most obvious avenue for future work is to study a broader collection of problems. Although this
paper considers an active global localization problem in detail, other fundamental robotics problems warrant
similar analysis of their information requirements. For example, results exist for limited-sensing versions
of navigation [42,42, 54, 55, 67], exploration [2,21, 59, 76], and manipulation [4-6, 30, 36] tasks. Using the
techniques we have presented, it should be possible to unify and extend these results to develop a more
complete understanding of the sensing and motion abilities needed to solve these problems. Other problems
and more complex sensing systems could also be investigated.

One of the most powerful ideas in the theory of computation that we have not explored here is the idea
of reductions, which hold promise for comparing robotic problems themselves. The resulting statements
would have the form “Problem A is at least as hard as Problem B.” To make things more concrete, we
might consider decision problems, in which the robot must determine if its environment E € £ has a certain
property. Such problems can be expressed naturally as planning problems in I-space. To decide if E has a
property = : £ — {0, 1}, the robot must reach the goal region

Zoz = {n € Tnist | V(¢ E) € finder(n), E(E) = 1} U{n € Tnist | V(q, E) € Rnaer(n),E(E) =0} (23)

20

Figure 16: A sample decision problem. What sensing is required to decide if a planar environment is simply
connected? What robots can distinguish the annulus environment on the left from the helix on the right?

An example is in Figure 16.

Another direction is to study the computational complexity of robotics problems. We expect that there
exist rich tradeoffs between computation time, memory usage, sensing requirements, and solution quality.
Some research has been done on computation requirements for certain tasks, for example [13,17,41], but
very little is known in general. These computational issues must be approached with care, especially if those
computations involve real numbers [16]. One way of approaching such issues is to study sufficient I-maps [50],
which are I-maps for which transitions can be computed directly in the derived I-space, allowing the history
to be discarded. For example, if a problem can be solved under a given robot model using a sufficient I-map
into a finite derived I-space of cardinality n, the memory required to solve the problem is O(logn). The
results of Blum and Kozen [17], for example, can be characterized as showing how a discrete exploration
problem can be solved in a derived I-space with cardinality linear in the height of the area to be explored,
meaning that only logarithmic memory is required. Similarly, the complexity of computing transitions in a
derived I-space gives an indication of the computation time required to solve a given problem.

In spite of these possibilities, there are important limitations to the the idealized models we presented.
Of the many issues remaining to be addressed, we mention a few here.

Probabilistic uncertainty We have focused our attention on nondeterministic uncertainty, but a large
subset of contemporary work in robotics uses probabilistic models of uncertainty [7,31,40,70,71,75]. Our
results also apply, at least in principle, to probabilistic uncertainty. In this context, the relevant derived I-
space is a space of probability distributions over X. It is not immediately clear what the “right” information
preference relation over such a space would be. Depending on the models used, it may also be necessary
to relax Definition 4 to require only that Rs can simulate R; with sufficiently high probability. More
generally, the differences between nondeterministic and probabilistic uncertainty models warrant further
exploration. For example, nondeterministic uncertainty has the property that sensing can only help —
actions from primitives like Pr (Example 6) or Pg (Example 7) that do not change the state always lead to
a derived I-state at least as good as the current one. Under probabilistic uncertainty, this property does not
hold; sensing can sometimes increase uncertainty.

Selecting the catalog of primitives Although we believe that our robotic primitives provide a useful
abstraction, any results derived using our methods are meaningful only if RP is diverse enough to faithful
represent the underlying system. It remains an open problem to systematically find small (or at least
succinctly described) sets of robotic primitives that are complete (or nearly complete) in the sense of not

21

eliminating any reachable regions in I-space. There is, however, active interest in related problems for control
systems [32,35,56, 58].

What happens if RP is not a finite set? For example, we may extend Pp, (from Example 5) to a family
{Pp = (S {0}, fr.,hr.) | € > 0} of primitives, each using a noisy linear odometer whose error is bounded
by e. If RP contains many such families of primitives, and we assume each robot has at most one primitive
from each family, then the space of robot models is a cube in R™. The problem of identifying the region in
which a given task can be solved is correspondingly more difficult.

Parameterization of time In Section 8.3, we parameterized the robot’s observations by time. In doing
so, we implicitly assumed that the robot has an accurate clock. Although such an assumption is generally not
technologically impractical, it requires care in abstract models to ensure that the robot cannot acquire extra
information “for free.” A robot might, for example, use this implicit clock to parlay an accurate velocity
sensor into a perfect odometer. One solution is to express u and y as functions of some other abstract
parameter p. Then, to recover the original functions of time, the robot must determine a hidden mapping
from R to R under which p maps to t.

Cooperation and coordination In this work we consider only a single independent robot. We might
also consider the performance of teams of cooperative robots on the same tasks. Such work would require
an investigation of the joint I-spaces that would arise from the interaction of multiple agents, each having
only limited information. In particular, limited and possibly noisy communication between robots must be
modeled. Many of the relevant issues are worked out in the game theory literature [9,65].

References

[1] A. Abate, A. D. Ames, and S. Sastry, “Error-bounds based stochastic approximations and simulations
of hybrid dynamical systems,” in American Control Conference, 2006.

[2] E. U. Acar and H. Choset, “Complete sensor-based coverage with extended-range detectors: A hierarchi-
cal decomposition in terms of critical points and voronoi diagrams,” in Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001.

[3] ——, “Robust sensor-based coverage of unstructured environments,” in Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001.

[4] P. K. Agarwal, A. D. Collins, and J. L. Harer, “Minimal trap design,” in Proc. IEEE International
Conference on Robotics and Automation, vol. 3, 2001, pp. 2243-2248.

[5] S. Akella, W. Huang, K. M. Lynch, and M. T. Mason, “Parts feeding on a conveyor with a one joint
robot,” Algorithmica, vol. 26(3), pp. 313-344, March-April 2000.

[6] S. Akella and M. Mason, “Posing polygonal objects in the plane by pushing,” International Journal of
Robotics Research, vol. 17, no. 1, pp. 70-88, Jan. 1998.

[7] D.J. Austin and P. Jensfelt, “Using multiple gaussian hypotheses to represent probability distributions
for mobile robot localization,” in Proc. IEEE International Conference on Robotics and Automation,
2000, pp- 1036-1041.

[8] D. Avis and H. Imai, “Locating a robot with angle measurements,” J. Symb. Comput., vol. 10, no. 3-4,
pp- 311-326, 1990.

[9] T. Bagar and G. J. Olsder, Dynamic Noncooperative Game Theory, 2nd Ed. London: Academic, 1995.
[10] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins, “Searching in the plane,” Information and
Computation, vol. 106, pp. 234-252, 1993.

22

[11]

[12]

[13]

[14]

J. Barraquand and P. Ferbach, “Motion planning with uncertainty: The information space approach,”
in Proc. IEEFE International Conference on Robotics and Automation, 1995, pp. 1341-1348.

K. Basye and T. Dean, “Map learning with indistinguishable locations,”

tainty in Artificial Intelligence. North-Holland, 1990, pp. 331-342.

in Proc. Conference on Uncer-

M. A. Bender, A. Ferndndez, D. Ron, A. Sahai, and S. Vadhan, “The power of a pebble: exploring and
mapping directed graphs,” in Proc. IEEE Symposium on Foundations of Computer Science, 1998, pp.
269-278.

D. P. Bertsekas, Dynamic programming and optimal control, 2nd ed. Belmont, MA: Athena Scientic,
2001, vol. 1.

D. Blackwell and M. A. Girshik, Theory of Games and Statisitical Decisions. New York: Dover, 1979.

L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real Computation. Berlin: Springer
Verlag, 1998.

M. Blum and D. Kozen, “On the power of the compass (or, why mazes are easier to search than graphs),”
in Proc. IEEE Symposium on Foundations of Computer Science, 1978, pp. 132-142.

A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis. Cambridge, UK: Cam-
bridge University Press, 98.

R. I. Brafman, J. Y. Halpern, and Y. Shoham, “On the knowledge requirements of tasks,” Artificial
Intelligence, vol. 98, no. 1-2, pp. 317-349, 1998.

C.-T. Chen, Linear System Theory and Design. New York: Holt, Rinehart, and Winston, 1984.

H. Choset and J. Burdick, “Sensor based planning, part I: The generalized Voronoi graph,” in Proc.
IEEFE International Conference on Robotics and Automation, 1995, pp. 1649-1655.

I. J. Cox, “Blanche — an experiment in guidance and navigation of an autonomous robot vehicle,” IEEE
Transations on Robotics and Automation, vol. 7:2, pp. 193-204, 1991.

F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mobile robots,” in Proc.
IEEE International Conference on Robotics and Automation, 1999.

E. D. Demaine, A. Lépez-Ortiz, and J. I. Munro, “Robot localization without depth perception,” in
Scandinavian Workshop on Algorithm Theory, 2002.

B. R. Donald, “On information invariants in robotics,” Artificial Intelligence, vol. 72, no. 1-2, pp.
217-304, 1995.

G. Dudek, K. Romanik, and S. Whitesides, “Localizing a robot with minimum travel,” SIAM J. Com-
put., vol. 27, no. 2, pp. 583-604, 1998.

M. Egerstedt, “Motion description languages for multi-modal control in robotics,” in Control Problems
in Robotics, ser. Springer Tracts in Advanced Robotics, A. Bicchi, H. Cristensen, and D. Prattichizzo,
Eds. Springer-Verlag, 2002, pp. 75-90.

M. Erdmann, “Randomization for robot tasks: Using dynamic programming in the space of knowledge
states,” Algorithmica, vol. 10, pp. 248291, 1993.

——, “Understanding action and sensing by designing action-based sensors,” International Journal of
Robotics Research, vol. 14, no. 5, 1995.

M. Erdmann and M. T. Mason, “An exploration of sensorless manipulation,” IEEE Transations on
Robotics and Automation, vol. 4, no. 4, pp. 369-379, Aug. 1988.

23

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

D. Fox, W. Burgard, and S. Thrun, “Active markov localization for mobile robots,” Robotics and
Autonomous Systems, vol. 25, pp. 195-207, 1998.

E. Frazzoli, “Robust hybrid control of autonomous vehicle motion planning,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, Cambridge, MA, June 2001.

Y. Gabriely and E. Rimon, “Competitive complexity of mobile robot on line motion planning problems,”
in Proc. Workshop on the Algorithmic Foundations of Robotics, 2004.

A. Girard and G. J. Pappas, “Approximation metrics for discrete and continuous systems,” IEEE
Transactions on Automatic Control, Mar. 2005, to appear.

——, “Hierarchical control using approximate simulation relations,” in Proc. IEEE Conference on De-
cision and Control, 2006.

K. Y. Goldberg, “Orienting polygonal parts without sensors,” Algorithmica, vol. 10, pp. 201-225, 1993.

K. Y. Goldberg and M. T. Mason, “Bayesian grasping,” in Proc. IEEE International Conference on
Robotics and Automation, 1990.

L. J. Guibas, R. Motwani, and P. Raghavan, “The robot localization problem,” in Proc. Workshop on
the Algorithmic Foundations of Robotics, K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson, Eds.
Wellesley, MA: A.K. Peters, 1995, pp. 269-282.

J. E. Hopcroft, J. D. Ullman, and R. Motwani, Introduction to Automata Theory, Languages, and
Computation, 2nd ed. Reading, MA: Addison-Wesley, 2000.

P. Jensfelt and S. Kristensen, “Active global localisation for a mobile robot using multiple hypothesis
tracking,” IEEE Transations on Robotics and Automation, vol. 17, no. 5, pp. 748-760, Oct. 2001.

T. Kameda, M. Yamashita, and I. Suzuki, “On-line polygon search by a six-state boundary 1-searcher,”
Apr. 2003, submitted for publication.

I. Kamon, E. Rivlin, and E. Rimon, “Range-sensor based navigation in three dimensions,” in Proc.
IEEE International Conference on Robotics and Automation, 1999.

M.-Y. Kao, J. H. Reif, and S. R. Tate, “Searching in an unknown environment: An optimal randomized
algorithm for the cow-path problem,” in Proc. ACM-SIAM Symposium on Discrete Algorithms, 1993,
pp. 441-447.

R. M. Karp, “On-line algorithms versus off-line algorithms: How much is it worth to know the future?”
in Proceedings World Computer Congress, 1992.

J. M. Kleinberg, “The localization problem for mobile robots,” in Proc. IEEE Symposium on Founda-
tions of Computer Science, 1994, pp. 521-531.

S. Koenig, A. Mudgal, and C. Tovey, “An approximation algorithm for the robot localization problem,”
in Proc. ACM-SIAM Symposium on Discrete Algorithms, 2006.

H. W. Kuhn, “Extensive games and the problem of information,” in Contributions to the Theory of
Games, H. W. Kuhn and A. W. Tucker, Eds. Princeton, NJ: Princeton University Press, 1953, pp.
196-216.

K. N. Kutulakos, C. R. Dyer, and V. J. Lumelsky, “Provable strategies for vision-guided exploration
in three dimensions,” in Proc. IEEE International Conference on Robotics and Automation, 1994, pp.
1365-1371.

24

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

A. M. Ladd, K. E. Bekris, A. P. Rudys, D. S. Wallach, and L. E. Kavraki, “On the feasibility of using
wireless Ethernet for indoor localization,” IEEFE Transactions on Robotics and Automation, vol. 20,
no. 3, pp. 555-559, June 2004.

S. M. LaValle, Planning Algorithms. Cambridge, UK: Cambridge University Press, 2006, also available
at http://planning.cs.uiuc.edu/.

S. M. LaValle and S. A. Hutchinson, “An objective-based framework for motion planning under sensing
and control uncertainties,” International Journal of Robotics Research, vol. 17, no. 1, pp. 1942, Jan.
1998.

S. Lenser and M. Veloso, “Sensor resetting localization for poorly modelled mobile robots,” in Proc.
IEEFE International Conference on Robotics and Automation, 2000.

T. Lozano-Pérez, M. T. Mason, and R. H. Taylor, “Automatic synthesis of fine-motion strategies for
robots,” International Journal of Robotics Research, vol. 3, no. 1, pp. 3-24, 1984.

V. Lumelsky and S. Tiwari, “An algorithm for maze searching with azimuth input,” in Proc. IEEE
International Conference on Robotics and Automation, 1994, pp. 111-116.

V. J. Lumelsky and A. A. Stepanov, “Path planning strategies for a point mobile automaton moving
amidst unknown obstacles of arbitrary shape,” Algorithmica, vol. 2, pp. 403-430, 1987.

T. Mehta, F. Delmotte, and M. Egerstedt, “Motion alphabet augmentation based on past experiences,”
in Proc. IEEE Conference on Decision and Control, 2006.

M. Moll and M. Erdmann, “Manipulation of pose distributions,” International Journal of Robotics
Research, vol. 21, no. 3, pp. 277-292, 2002.

T. Murphey, “Motion planning for kinematically overconstrained vehicles using feedback primitives,”
in Proc. IEEE International Conference on Robotics and Automation, 2006.

c. O. Dunlaing and C. K. Yap, “A retraction method for planning the motion of a disc,” Journal of
Algorithms, vol. 6, pp. 104-111, 1982.

J. M. O’Kane, “Global localization using odometry,” in Proc. IEEE International Conference on
Robotics and Automation, 2006.

J. M. O’Kane and S. M. LaValle, “Almost-sensorless localization,” in Proc. IEEE International Con-
ference on Robotics and Automation, 2005.

——, “On comparing the power of mobile robots,” in Robotics: Science and Systems, 2006.

——, “Sloppy motors, flaky sensors, and virtual dirt: Comparing imperfect ill-informed robots,” 2007,
submitted to IEEE International Conference on Robotics and Automation. Under review.

——, “Localization with limited sensing,” Conditionally accepted to IEEE Transactions on Robotics,
Sept. 2006.

G. Owen, Game Theory. New York: Academic, 1982.

C. H. Papadimitriou, “Games against nature,” Journal of Computer and System Sciences, vol. 31, pp.
288-301, 1985.

”

C. H. Papadimitriou and M. Yannakakis, “Shortest paths without a map,
ence, vol. 84, pp. 127-150, 1991.

Theoretical Computer Sci-

M. Rao, G. Dudek, and S. Whitesides, “Randomized algorithms for minimum distance localization,” in
Proc. Workshop on the Algorithmic Foundations of Robotics, 2004, pp. 265—280.

25

[69]

[70]

[71]

[72]
73]

[74]

[75]
[76]

[77]

[78]

[79]

[80]

)

K. Romanik and S. Schuierer, “Optimal robot localization in trees,” in Proc. Symposium on Computa-

tional Geometry, 1996, pp. 264-273.

H. Shatkay and L. P. Kaelbling, “Learning topological maps with weak local odometric information,”
in Proc. International Joint Conference on Artificial Intelligence, 1997, pp. 920-927.

R. Simmons and S. Koenig, “Probabilistic robot navigation in partially observable environments,” in
Proc. International Joint Conference on Artificial Intelligence, 1995, pp. 1080-1087.

M. Sipser, Introduction to the Theory of Computation. Boston, MA: PWS, 1997.

D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging rules,” Communications
of the ACM, vol. 28, pp. 202-208, 1985.

K. Sugihara, “Some location problems for robot navigation using a simple camera,” Comp. Vis., Graph-
ics, & Image Proc., vol. 42, no. 1, pp. 112-129, 1988.

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, MA: MIT Press, 2005.

B. Tovar, L. Guilamo, and S. M. LaValle, “Gap Navigation Trees: Minimal representation for visibility-
based tasks,” in Proc. Workshop on the Algorithmic Foundations of Robotics, 2004.

A.F. van der Stappen, R.-P. Berretty, K. Goldberg, and M. H. Overmars, “Geometry and part feeding,”
in Sensor Based Intelligent Robots, 2000, pp. 259-281.

G. Weiss, C. Wetzler, and E. von Puttkamer, “Keeping track of position and orientation of moving
indoor systems by correlation of range-finder scans,” in Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems, 1994.

D. Whitney, “Real robots don’t need jigs,” in Proc. IEEE International Conference on Robotics and
Automation, 1986.

J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski, “A complete algorithm for designing passive
fences to orient parts,” Assembly Automation, vol. 17(2), Aug. 1997.

26

