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Abstract

This paper describes recent results from the robotics commu-
nity that develop a theory, similar in spirit to the theory of
computation, for analyzing sensor-based agent systems. The
central element to this work is a notion of dominance of one
such system over another. This relation is formally based on
the agents’ progression through a derived information space,
but may informally be understood as describing one agent’s
ability to “simulate” another. We present some basic prop-
erties of this dominance relation and demonstrate its useful-
ness by applying it to a basic problem in robotics. We argue
that this work is of interest to a broad audience of artificial
intelligence researchers for two main reasons. First, it calls
attention to the possibility of studying belief spaces in way
that generalizes both probabilistic and nondeterministic un-
certainty models. Second, it provides a means for evaluating
the information that an agent is able to acquire (via its sensors
and via conformant actions), independent of any optimality
criterion and of the task to be completed.

Introduction

Across the artificial intelligence literature, there is strong
interest in understanding and reasoning about uncertainty.
Such issues are especially important in robotics. Actuators
are often subject to noise. Sensors are generally error-prone
and provide only limited information. Useful robots must
overcome these obstacles by making good use of the infor-
mation available to them, and by making good decisions in
spite of the incompleteness of this information.

Unfortunately, sensing and movement capabilities are often
available only at significant cost. This reality motivates us
determine what information is truly necessary to complete a
particular task. We believe that understanding a task’s infor-
mation requirements is an important part of understanding
the task itself. More practically, this insight would also al-
low robot designers to make more informed decisions about
the tradeoffs associated with the inclusion or exclusion of
each sensor.

∗This work is supported by DARPA award #HR0011-07-1-
0002.

To that end, we are working to develop a theory for ana-
lyzing robot systems, including assessing the solvabilityof
various problems with various robot systems, measuring the
complexity (execution time, computation time, or the use of
some other resource) of those solutions, and finding mean-
ingful notions and comparison and equivalence between ap-
parently dissimilar robot systems. The primary contribu-
tion we present in this paper is a formulation ofdominance
of one robot system over another. Our inquiry is inspired
in part by the theory of computation, which provides sim-
ilar machinery for analyzing abstract computing machines.
For example, the hierarchy of robot systems induced by our
dominance relation is functionally similar to the hierarchy
of degrees induced by Turing reductions.1

This work originally appeared in the robotics community
(O’Kane & LaValle 2006a; 2007; 2006b). However, the
ideas are equally applicable to any agent that must explicitly
collect information to inform its decisions. In the remainder
of this paper, we review our results and discuss their rele-
vance to a general AI audience. For greater technical detail,
we direct the interested reader to the original publications.

Summary of results

In this section, we briefly summarize the previously pub-
lished results.

Basic definitions Place a robot in astate spaceX, which
need not be finite or even countable. Time proceeds in
discrete stages indexed with consecutive integers starting
with 1, and the robot’s state at stagek is denotedxk. At
each state, the robot executes an action from itsaction
spaceU . Let uk denote the robot’s action at stagek. The
robot’s state changes according to astate transition func-
tion f : X × U → X, so thatxk+1 = f(xk, uk). The
state is unknown to the robot, but at each stagek, the robot
receives an observationyk from its observation spaceY .

1For a general introduction to the theory of computation, see
(Sipser 1997) or (Hopcroft, Motwani, & Ullman 2007). Details on
Turing degrees appear in (Soare 1987).
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The observations are governed by an observation function
h : X × U → Y , under whichyk = h(xk, uk).

Note that this model includes several simplifying assump-
tions. The robot’s transitions and its observations are deter-
ministic. Time is modelled discretely, rather than as a con-
tinuum. The results we present remain valid but are more
notationally cumbersome if these assumptions are removed.

Information spaces What information is available to the
robot as it chooses actions to execute? Other than anya pri-
ori knowledge it may have, the robot must make its decisions
based only on the history of actions it has executed and the
corresponding history of observations it has received. This
fact leads us to define the robot’shistory information state2

(history I-state)ηk, formed from these two histories:

ηk = (u1, y1, . . . , uk, yk).

Thehistory information space(history I-space)Ihist is the
set of all history information states.

Unfortunately, history I-states are unwieldy (since they grow
with each passing stage) and generally uninformative (since
they merely record the raw histories). This motivates us to
choose aderived information space(derived I-space)I and
an information mapping (I-map)κ : Ihist → I. Informally,
the derived I-space represents an “interpretation” or “com-
pression” of the history I-state. In this context, atask for
the robot is a goal regionIG ⊂ I and aplan is a function
from I to U that leads the robot intoIG. Although, in prin-
ciple,I may be an arbitrary set, we emphasize that selecting
I is a crucial modelling choice, because it affects the tasks
and plans that can be expressed, and strongly influences the
dominance relation we state later.

One important example derived I-space is the nondetermin-
istic information spaceIndet = pow(X), in which the de-
rived I-stateκ(ηk) is a minimal subset ofX guaranteed to
contain the robot’s true state. This corresponds to worst case
or set-based reasoning about uncertainty. Another reason-
able choice is to letI be a set of probability distributions
overX, and chooseκ to compute the posterior distribution
givenηk. A more complete discussion of information spaces
and their use in robotics appears in Chapters 11 and 12 of
(LaValle 2006).

Comparing robot systems The central contribution of
this work is a definition ofdominanceof one robot system
over another. The intuition of the definition is that one robot
system (as defined above) dominates another if the former
can “simulate” the latter.

To formalize this notion, equipI with a partial orderin-
formation preference relation�, under which we write
κ(η1) � κ(η2) to indicate thatκ(η2) is “more informed”

2Equivalent terms includebelief state, knowledge state, andhy-
perstate.
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Figure 1: A illustration of Definition 1. RobotR2 dominates robot
R1 if R2 can always reach an information state at least as good as
the one reached byR1.

d d

Figure 2: Comparing a robot,R1, equipped with a unidirectional
range sensor to another robotR2, equipped with perfect odometry.
R2 dominatesR1 because the former can simulate the latter. [left]
A distance measurement made directly byR1. [right] Distance is
measured indirectly byR2 using its odometer.

than κ(η1). We require only that preference is preserved
across transitions, so that for anyη1, η2 ∈ Ihist, u ∈ U and
y ∈ Y , we have

κ(η1) � κ(η2) =⇒ κ(η1, u, y) � κ(η2, u, y).

For example, inIndet, one might defineκ(η1) � κ(η2) if
and only ifκ(η2) ⊆ κ(η1).

Now we can define the dominance relation.

Definition 1 (Robot dominance) Consider two robotsR1

andR2 along with a derived I-spaceI and two I-mapsκ(1) :

I
(1)
hist

→ I and κ(2) : I
(2)
hist

→ I. If, for all η1 ∈ I
(1)
hist

,

η2 ∈ I
(2)
hist

for which κ(1)(η1) � κ(2)(η2), and all u1 ∈

U (1), there exists a policyπ2 : I
(2)
hist

→ U (2) for R2 that, in
a finite number of stages, reaches an information stateη′

2,
such that

κ(1)(η1, u1, h
(1)(x1, u1)) � κ(η′

2)

thenR2 dominatesR1, denotedR1 E R2. If R1 E R2 and
R2 ER1, thenR1 andR2 are equivalent, denotedR1 ≡ R2.

Figure 1 illustrates the definition. Figure 2 shows a simple
example of dominance, in which a range sensor is simulated
by odometry.

Note that the definition depends heavily on using the same
derived I-space for both robots. As a result, the choices
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one makes forI, κ(1), andκ(2) are extremely important,
to the extent that different choices will generate different
dominance hierarchies. Observe also that the definition is
concerned only with which derived I-states can be reached,
rather than with the cost or efficiency of reaching those I-
states; it comparesfeasibility rather thanoptimality. Fi-
nally, note that this dominance relation is task independent;
it makes no mention of a goal region, but instead considers
reachability across all ofI.

We now present a few basic results related to Definition 1,
starting with the connection between dominance and solv-
ability.

Lemma 2 SupposeR1 E R2. With certain technical condi-
tions3, if R1 can reach a given goal regionIG ⊂ I, thenR2

can also reachIG.

Corollary 3 If R1 ≡ R2, then with certain technical condi-
tions,R1 andR2 can complete the precisely the same tasks.

Definition 1 applies to arbitrary pairs of robot models. Alter-
natively, we can form robot models as collections ofrobotic
primitives, each of which represents a self-contained “in-
struction set” for the robot that may involve sensing, motion,
or both. In this context, a robot model is a set of primitives,
so that ordinary set operations like union and intersection
apply normally. The following results show how the domi-
nance relation forms a hierarchy over the set of robot models
formed in this way.

Lemma 4 For any three robotsR1, R2 and R3 for which
R1 E R2:

(a) R1 E R1 ∪ R3 (Adding primitives never hurts)
(b) R2 ≡ R2 ∪ R1 (Redundancy doesn’t help)
(c) R1 ∪ R3 E R2 ∪ R3 (No unexpected interactions)

These results may be reminiscent of the axioms of rationality
used in utility theory (Robert 2001; DeGroot 1970).

Active global localization To demonstrate the usefulness
of our ideas, we applied them to the problem of active global
localization, in which a robot with has an accurate map of its
environment but no knowledge of its location within that en-
vironment. The task is to choose motions and sensing com-
mands in order to eliminate this uncertainty. What sensors
are required to solve this problem?

Using the concepts described above, we give a partial an-
swer. Consider four very simple sensors: a compass (which
reports the robot’s orientation relative to a global reference

3Precisely, we require thatIG bepreference closed. A sets ⊆

I is preference closed if, for anyη1 ∈ I andη2 ∈ s with η1 � η2,
we also haveη1 ∈ s.

CL CTATALL T A C
Figure 3: [left] A robot localizing itself within its environment.
Localization is a fundamental problem for mobile robots, but rel-
atively little had been known about what sensing this problem
truly requires. [right] A hierarchy of simple robot models, vari-
ously equipped with compasses (C), angular odometers (A), lin-
ear odometers (L), and contact sensors (T). Arrows indicate dom-
inances. Only the unshaded models can solve the active global
localization problem.

direction), an angular odometer (which allows rotations rel-
ative to the robot’s current orientation), a linear odometer
(which measures the robot’s translations), and a contact sen-
sor (which reports when the robot comes in contact with the
boundary). The 15 nonempty combinations of these sensors
generate 15 distinct robot models. We grouped these models
into 8 equivalence classes, found the dominance hierarchy,
and determined the solvability of the localization problem
for the robots in each equivalence class. See Figure 3.

Connections within AI

In this section, we discuss connections from our work to
problems closer to the core of AI.

General information spaces In recent years, probabilis-
tic methods for reasoning about uncertainty have gained sig-
nificant momentum (Kaelbling, Littman, & Cassandra 1998;
Zhang & Lin 1997). Such methods offer robustness, but also
carry the heavy burden of modelling or learning the relevant
probability models. In contrast, situations such as confor-
mant planning (Cimatti, Roveri, & Bertoli 2004), adversarial
games (Russell & Wolfe 2005), or nondeterministic domains
(Amir & Russell 2003) are better suited to crisper set-based
representations. Other lines of research (that focus more on
reasoning than on acting) use nonmonotonic (McDermott &
Doyle 1980) or modal logics (Blackburn, van Benthem, &
Wolter 2006) to deal with incomplete or uncertain informa-
tion.

It seems likely that general purpose autonomous agents will
need to employ some combination of these techniques, de-
pending on the situation. Is there any common ground be-
tween these methods that appear on the surface to be so dis-
similar? We claim that the answer, at least on a fundamental
level, is yes. The history I-state fully expresses the informa-
tion available to any agent that interacts with the world by
executing actions and receiving observations. The general
approaches mentioned above differ only in how the history
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I-state is interpreted. The I-mapκ represents precisely this
interpretation: It maps from the history of actions and ob-
servations into another space (the derived I-space) in which
the implications of these histories is more clear.

In this regard, the novelty of our work is that it does not
assume any particular I-map or derived I-space. Instead, we
take an axiomatic approach, stating conditions onI, κ, and
� under which certain results hold. The advantage of this
kind of I-space centered approach is that (ideally) one can
seek results that are independent of the particular way that
uncertainty is modelled. Failing that, our work suggests at
least to state precisely the range of uncertainty models to
which a given result applies.

Partial orders and sensor selection Much of the litera-
ture on sensor-based agents assumes that the agents have
fixed action and sensing capabilities, instead focusing on the
(also important) problems of learning those capabilities and
developing plans to achieve goals. The research presented
in this paper makes a case for thinking carefully about sen-
sor selection. Since sensing and information gathering are
costly, agent designers are wise to consider carefully which
sensors to include.

A few researchers have considered sensor selection prob-
lems. One approach is to attempt to maximize the nu-
merical utility of the information collected (Bian, Kempe,
& Govindan 2006). Others use information-theoretic tech-
niques (Zhang & Ji 2005) to assess the value of particular
sensor combinations. This approach is unsatisfying because
just a few bits of the right information are often more valu-
able for certain tasks than large quantities of less relevant in-
formation. Our work has similar goals, but omits the scalar
optimality criterion. This leads directly to the partial order
structure of dominances. Although the partial order admits
the possibility that no meaningful comparisons can be made,
we find this desirable: different sensing-action systems ex-
hibit complex relationships and tradeoffs that can potentially
defy meaningful linear ordering. This willingness to admit
a partial order also allows us to make comparisons that are
task independent. The partial order remains meaningful be-
cause Lemma 2 guarantees that the dominance hierarchy re-
spects solvability.

Conclusion

This paper described recent work that seeks to construct an
analog to the theory of computation that is sufficiently ex-
pressive to deal meaningfully with the sensing and uncer-
tainty issues that are so central to robotics. Although the
current work is only preliminary, we believe that the general
framework we have presented – that of comparing sensor-
based agents based on their progress through a derived infor-
mation space – offers a unique perspective to several areas
within AI.
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