
TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 1

Localization with Limited Sensing
Jason M. O’Kane and Steven M. LaValle

Abstract— Localization is a fundamental problem for many
kinds of mobile robots. Sensor systems of varying ability have
been proposed and successfully used to solve the problem.
This paper probes the lower limits of this range by describing
three extremely simple robot models and addressing the active
localization problem for each. The robot, whose configuration
is composed of its position and orientation, moves in a fully
known simply connected polygonal environment. We pose the
localization task as a planning problem in the robot’s information
space, which encapsulates the uncertainty in the robot’s configu-
ration. We consider robots equipped with (1) angular and linear
odometers, (2) a compass and contact sensor, and (3) an angular
odometer and contact sensor. We present localization algorithms
for models 1 and 2 and show that no algorithm exists for model
3. An implementation with simulation examples is presented.

Index Terms— information spaces, mobile robot localization,
robots, robot sensing systems

I. I NTRODUCTION

Localization, the task of systematically eliminating uncer-
tainty in the pose of a robot, is widely regarded as a central
problem in mobile robotics. A wide spectrum of sensor sys-
tems have been proposed for the localization problem, ranging
from visibility sensors [1, 2, 3] to landmark detectors [4, 5, 6].
How complex a sensor system does localization truly demand?
In this paper, we take aminimalist approach, describing two
simple robots with which localization is still possible anda
third for which localization is provably impossible.

Suppose a robot is given an accurate map of its environment,
but has no knowledge of its configuration. The robot’s goal
is to move within the environment, gathering information
about its configuration until the uncertainty is eliminated. We
may consider this task as a planning problem with discrete
stages, but this approach is complicated by the fact that the
robot’s configuration is unknown. This leads us to define the
robot’s information spaceand give methods for computing
its information statewithin that space. Informally, the robot’s
information state is a set of candidate configurations in which
the true configuration is known to lie. When the robot is finally
localized, the information state contains only the robot’strue
configuration.

We consider the localization task for three distinct robot
models:

• R1 – A robot equipped with angular and linear odometers.
This robot can accurately rotate and translate through its
environment, measuring each of these motions.

• R2 – A robot equipped with with a compass and contact
sensor. This robot can, using its compass, orient itself

J. M. O’Kane (corresponding author) and S. M. LaValle are with the
Department of Computer Science, University of Illinois at Urbana-Champaign,
201 North Goodwin Avenue, Urbana, IL 61801, USA. Email:{jokane,
lavalle}@cs.uiuc.edu. Fax: +1-217-265-6591

angular odometerontat sensorR3 angular odometerR1 linear odometerompassontat sensorR2Loalization possibleLoalization not possible
Fig. 1. Although R1 and R2 have only slightly stronger sensing than R3,
they are capable of localization whereas R3 is not.

with respect to a global reference frame, then move
forward until its contact sensor detects the environment
boundary.

• R3 – A robot equipped with an angular odometer and
contact sensor. This robot can rotate with respect to a
local frame and then move forward until reaching the
environment boundary.

The main contribution of this paper is to classify these robots
according to their ability to localize themselves. We show that
R1 and R2 can localize themselves in polygonal environments,
but R3 cannot.

The intention of this line of inquiry is to identify basic
sensing requirements for robotic tasks. For a given task, some
robot systems are capable of completing the task whereas
others are not. Our goal is to search the space of robot systems
for the boundary between the “can localize” and “cannot
localize” regions. This boundary gives an indication of the
necessaryconditions on robot models for localization. In this
paper we describe a very simple robot (R3) in the “cannot”
set and show that small improvements to its angular sensing
(R2) or linear sensing (R1) lead to models in the “can” set.
See Figure 1.

The balance of this paper is organized as follows. We
present related work in Section II. Section III formally defines
our robot models and gives a problem definition. Sections IV
and V describe localization algorithms for robot models R1
and R2, respectively. In Section VI we show that no local-
ization algorithm exists for R3. Concluding remarks appearin
Section VII.

Portions of this work appeared in preliminary form in [7]
and [8].

II. RELATED WORK

There are two primary lines of antecedent research. First,
many works have studied the localization problem itself on
theoretical and practical levels. Second, a recurring theme

TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 2

in robotics research has been the notion ofminimalism, the
idea that simple but carefully designed robotic systems can
offer advantages in cost, efficiency and robustness over more
complex systems that are richer in sensors and actuators.

A. Localization

We can generally separate localization research into two
flavors.Passive localization[2, 9, 10, 11] does not prescribe
motions for the robot, but only provides methods for using
sensor readings and externally-selected commands to estimate
the robot’s state. In this paper, we consideractive localization
problems, in which the goal is to prescribe motions for the
robot in order to fully determine its position. Algorithms in this
context are often expressed as online methods and evaluated
in terms of theircompetitive ratio[12], which compares the
lengths of paths generated by the algorithm to the length of
the shortest possible path that could have been selected if the
robot started with full information. In [13], the environment
is constrained to an embedding of a bounded degree acyclic
graph into R

n with sensing limited to the orientations of
incident edges. This algorithm has competitive complexity
O(n2/3), in which n is the number of leaves in the graph.

The problem of computing a localization strategy that
minimizes the worst case distance traveled by a robot equipped
with a visibility sensor was proved NP-hard in [14]. The opti-
mal strategy can, however, be approximated (in the competitive
ratio sense) and [14] gives an algorithm based on the visibility
cell decomposition that does this. An important weakness of
this algorithm is that it relies on motion commands that direct
the robot into visibility cells that may be arbitrarily small.
In [15], this difficulty is addressed by introducing randomiza-
tion. Other work considers the problem in the framework of
approximation algorithms [16].

Others have used probabilistic methods for active local-
ization. In [17], the robot localizes itself with respect toa
metric map by representing its knowledge as a probability
distribution over its state space and selecting actions that
reduce the entropy of this distribution. Jensfelt and Kristensen
[18] address similar problems, but use a topological map.

B. Minimalism

Both sensors and actuators are subject to significant errors
in precision and accuracy. Effective robots must be robust to
these errors. Starting, perhaps, with Whitney’s critique ofmid-
1980’s robotics research [19], an approach has arisen in which
these difficulties are dealt with by designing extremely simple
robots that exploit the compliant properties of the system
in question to execute their assigned tasks. This approach
has been calledminimalist robotics. It has been applied to
problems in manipulation for part orientation [20, 21, 22].Bug
algorithms [23, 24, 25, 26] are used for navigation by robots
capable of moving toward obstacles and following walls. In
[27], the robot has an extremely crude range sensor that can
only detect discontinuities in depth information. As the robot
explores its environment, this information is used to construct
a data structure that allows for optimal navigation between
previously visited locations. More explicit maps can be built

with a range sensor by traversing the generalized Voronoi
graph of the environment boundaries [28, 29].

III. PROBLEM STATEMENT

In this section, we formally define an active, global local-
ization problem for robot models R1, R2, and R3. We also
define the robots’ information space, which is the machinery
we use to solve the problem.

A. Actions, transitions, and observations

Allow a point robot with orientation to move in a compact
simply connected polygonal environmentW ⊂ R

2. Assume
that the rotational symmetry group ofW contains only the
identity symmetry1. Let ∂W denote the boundary ofW , which
is itself a subset ofW . The robot has access to an accurate map
of W , including its orientation in the plane. Since the robot’s
orientation is relevant, the configuration space isC = W ×S1,
in which S1 is the set of directions in the plane, represented
as unit vectors inR2.

The space of available actions depends on the robot model.
For each, we define an action setU and a state transition
function f : C × U → C.

• Robot R1 can, at each time step, issue either of two
types of commands. First, the robot may rotate by a
commanded amount. Since the robot has an angular
odometer, we assume that rotation commands are exe-
cuted precisely. Second, a translation command may be
issued, instructing the robot to advance forward by a
given distance. The actual distance traveled may be less
than the commanded distance, if the robot reaches the
boundary of the environment first. Formally, letU =
S1 ⊔ [0,∞) denote the robot’s action space, in which
elements ofS1 denote relative rotation commands and
elements of[0,∞) denote translation commands. Ifu ∈
S1, thenf(x, u) is the appropriate change of orientation
of x. If u ∈ [0,∞), thenf(x, u) computes the appropriate
forward translation ofx within W .

• The action space for R2 is the unit circleU = S1. A
single u ∈ U represents a rotation to orient the robot
in a given direction, followed by a motion forward to
the environment boundary. The state transition function
f maps a configuration action pair(x, u) to the opposite
endpoint of the maximal segment inW starting atx and
having directionu in the global frame. Note that because
the robot has a compass, we assume it can orient itself
as it wishes; therefore the current orientation (specified
as part of its configuration) is not relevant to R2.

• The model for R3 is similar to that of R2, but with the
motion directions specified relative to the robot’scurrent
orientation, rather than with respect to a global reference
frame. We still haveU = S1, but f is modified to
interpretu as a motion direction relative to the robot’s
current heading.

1This assumption is important because ifW has a nontrivial symmetry
group, the algorithm of Section IV is effective only up to symmetry. This
technicality is addressed in greater detail in Section IV-F.

TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 3

An iterated version off that applies several actions in succes-
sion will also be useful:

f(x, u1, . . . , uk) = f(· · · f(f(x, u1), u2) · · ·), uk). (1)

Consider a sequence of commandsu1, . . . , uK . This, com-
bined with an initial statex1, defines a sequence of configu-
rationsx1, . . . , xK+1 governed byxk+1 = f(xk, uk).

After each action, the robot receives anobservationfrom its
sensors. One may regard this observation as a “hint” regarding
the true configuration of the robot. LetY denote a space
of possible observations andh : C × U → Y denote an
observation functionthat gives the sensor reading that would
result from choosing a particular action from a particular
configuration. BothY andh depend on the robot model.

• For R1, we must consider the feedback provided by the
linear odometer. ChooseY = [0,+∞) as the observation
space, in which an observationy ∈ Y indicates that in
executing the previous action, the robot’s translation had
magnitudey. Rotations always succeed without providing
useful feedback, soh(x, u) = 0 whenu ∈ S1.

• Neither R2 nor R3 have sensors that provide useful
feedback about the environment. For each, the capabilities
of the sensors are instead modeled in the action sets.
We assume that the compass (for R2) and the angular
odometer (for R3) are used as part of a closed loop
control system the correctly executes the desired rotation.
Similarly, the contact sensor is used to stop the robot
when it reaches the environment boundary, but does
not provide sensor observations as such. Therefore, for
both R2 and R3, we select a dummy observation space
Y = {0} and defineh(x, u) = 0 for all configurationsx
and all actionsu.

Lastly, we can define a sequence of observationsy1, . . . , yK

so thatyk = h(xk, uk).

B. The information space

Since the robot’s initial configuration is unknown, it can
use only the actions it has selected and the observations it has
received to draw conclusions about its configuration. To handle
this complexity in a concrete way, we consider the problem
as a search through a space we call the robot’sinformation
space. To begin, consider what information is available from
the robot’s action and observation sequences.

Definition 1: A configuration xk ∈ C is consistent
with an action sequenceu1, . . . , uk−1 and an observation
sequencey1, . . . , yk−1 if there exists some configuration
x1 ∈ C such thatxk = f(x1, u1, . . . , uk−1) and yj =
h(f(x1, u1, . . . , uj−1), uj) for eachj = 1, . . . , k.

The intuition is that the consistent configurationsxk are
those for which there is some starting configuration from
which executing the given action sequence would produce
the given observation sequence and leave the robot atxk.
The set of consistent configurations provides a concise way
of describing the information available to the robot.

Definition 2: Suppose the robot has chosen actions
u1, . . . , uk and received sensor readingsy1, . . . , yk. The in-
formation stateηk is the set of all configurations consistent

with these actions and observations. Theinformation spaceI
is the set of all information states, in this case the power set
of C.2

Transitions in information space are determined by the cur-
rent information state, the selected action, and the observation
from the sensors. Theinformation transition functionhas the
form F : I × U × Y → I, and can be defined in terms off
andh:

F (ηk, uk, yk) =
⋃

x∈ηk

{f(x, uk)}

∩ {f(x, uk) | x ∈ C, yk = h(x, uk)} (2)

Thus, we have a sequence of information statesη1, . . . , ηK

governed byηk+1 = F (ηk, uk, yk).
We approach the task of localization as a planning problem

in I. Initially the robot has no knowledge of its configuration,
so the initial information stateη1 = C contains the entire
configuration space. The goal region is

IG = {η ⊂ C | |η| = 1}. (3)

A plan is a feedback strategy onI: We want a function
I → U such that, regardless of the robot’s initial configuration,
repeatedly executing the actions chosen by this function leads
in finite time to an information state inIG. For R1, we must
specify a policyπ : I → U . For R2 and R3, there is no
meaningful feedback, so it is sufficient to choose a sequence
u1, . . . , uK of actions that eliminates the state uncertainty. We
call such a sequence alocalizing sequence.

IV. L OCALIZATION WITH ODOMETRY

In this section we present an algorithm to solve the local-
ization problem described in Section III, for robot model R1.
Recall that R1 is equipped with linear and angular odometers.
An overview appears in Algorithm 1. The algorithm is “on-
line” in the sense that the commands it issues depend on the
observations obtained as the robot is executing. Indeed, there
is no external “plan” computed ahead of time; instead we may
regard Algorithm 1 itself as a plan in the sense that it defines
a feedback strategy on the information space.

A. Algorithm overview

The algorithm tracks the robot’s information stateηk

throughout the execution. The first step, INITIAL ACTIONS,
issues several commands to move from the initial condition
(η1 = C) to an information state of finite cardinality. This
process is described in Section IV-B. For some degenerate
but potentially interesting environments, INITIAL ACTIONS

fails to generate a finite information state, instead possibly
leaving one or more continua expressed as intervals on the
boundary ofW . The function ELIMINATE SEGMENTS issues
commands guaranteed to reach an information state devoid
of such segments. This issue is dealt with in Section IV-C.

2In this context we consider only thenondeterministic information space,
which is based on set membership. Other formulations use probabilistic
reasoning or some other technique to manage the history data. See, for
example, Chapters 11 and 12 of [30].

TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 4

Algorithm 1 LOCALIZER1(W)

(ηk, k)← INITIAL ACTIONS(W)
(ηk, k)← ELIMINATE SEGMENTS(W,ηk)

while |ηk| > 1 do
Selectx1, x2 from ηk.
Wx1

← TRANSFORMTOLOCALFRAME(W,x1)
Wx2

← TRANSFORMTOLOCALFRAME(W,x2)
p← FINDPOINTINONLYONE(Wx1

,Wx2
)

(uk, . . . , uk′)← PATH INPOLYGON(Wx1
, (0, 0), p)

while x1, x2 ∈ ηk do
yk ← EXECUTECOMMAND(uk)
ηk+1 ← F (ηk, uk, yk)
x1 ← f(x1, uk)
x2 ← f(x2, uk)
k ← k + 1

end while
end while

return ηk−1

The final section of the algorithm, detailed in Section IV-
D, systematically reducesηk until only a single configuration
remains.

B. Generating a finite set of candidates

This section describes a technique for reaching an informa-
tion state of finite cardinality. The central idea is to make two
motions between points on the boundary of the environment,
separated by a90° turn. We show that if the environment has
no pair of parallel edges, only finitely many configurations
are consistent with such a sequence of motions. Section IV-C
addresses the more troublesome case when the environment
violates this condition.

The robot, starting with no knowledge of its position, makes
several motions:

1) Move forward until reaching the boundary.
2) Rotate 180°, then move forward until reaching the

boundary. Letd1 denote distance traveled on this motion.
3) Rotate90°, then move forward until reaching the bound-

ary. If the robot reaches the boundary immediately, rotate
180° and try again. Letd2 denote distance traveled on
this motion.

The commands to “move until reaching the boundary” can
be realized by selecting a translation amount larger than the
diameter ofW . In order to continue in final step, the robot
must make a net rotation of either90° or −90°, depending
on its angle of incidence with the boundary. Except when
the robot reaches an environment vertex, at least one of these
rotations allows the robot to continue. If the robot knows it
has reached an environment vertex, then there are already only
finitely many candidates. The use of90° rotations is motivated
by the simplifications it affords in Equation 5. In principle,
rotations of other amounts would work equally well.

The problem remains to find the set of configurations con-
sistent with these initial motions. For simplicity, we ignore the

Fig. 2. [left] Two boundary-to-boundary motions in a square shaped
environment, separated by a turn of90°. [right] The 8 possibilities for these
motions in this environment.

p1

pb

pc

d2

p4p3

p2

d1

p5

p6

pa

Fig. 3. Three fixed segmentsp1p2, p3p4, and p5p6 and translations of
lengthd1 andd2 between them.

first translation and instead consider only the two boundary-
to-boundary translation with lengthsd1 and d2. A geometric
interpretation of the problem is perhaps helpful here:

GivenW and the two odometer readingsd1 and d2,
we want to find all ways to pack intoW a 2 link
polygonal chain with edges having lengthsd1 andd2

joined at a right angle, such that the initial and final
endpoints rest on different boundary edges from the
middle vertex.

The set of final endpoints of these chains can be used directly
to compute a set of candidate configurations of the robot.
Figure 2 shows an example.

1) Generating candidates for three fixed edges:The robot’s
initial motions visit three environment edges. Suppose these
three edgesp1p2, p3p4, andp5p6, and the order in which the
robot visits them are fixed. Letpa ∈ p1p2, pb ∈ p3p4, and
pc ∈ p5p6 denote the three boundary points visited by the
robot. See Figure 3.

First, parameterize these three points as follows:

pa = (1− a)p1 + ap2

pb = (1− b)p3 + bp4

pc = (1− c)p5 + cp6.

The first motion has lengthd1, therefore||pa − pb|| = d1.
Expanding from the parameterization above gives a quadratic
constraint ina andb:

Aa2 + Bab + Cb2 + Da + Eb + F = 0 (4)

TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 5

with constant coefficients

A = (x2 − x1)
2 + (y2 − y1)

2

B = −2(x2 − x1)(x4 − x3)− 2(y2 − y1)(y4 − y3)

C = (x4 − x3)
2 + (y4 − y3)

2

D = −2(x3 − x1)(x2 − x1)− 2(y3 − y1)(y2 − y1)

E = 2(x3 − x1)(x4 − x3) + 2(y3 − y1)(y4 − y3)

F = (x3 − x1)
2 + (y3 − y1)

2 − d2
1,

in which we use the convention thatpi = (xi, yi). We also
know thatpc must be distanced2 from pb, and thatpb − pc

must be perpendicular topa−pb. These constraints are satisfied
when

pc − pb = s1

d1

d2

(pb − pa)⊥ (5)

in which s1 is either−1 or +1, depending on whether its net
rotation was90° or−90° in step 3 above. This vector equation
can be separated into a pair of scalar linear equations ina, b,
and c. Eliminating c yields a single linear equation ina and
b:

Ga + Hb + I = 0 (6)

with constant coefficients

G=
s1d2

d1

(y2 − y1)

x5 − x6

+
s1d2

d1

(x2 − x1)

y5 − y6

H =
(x4 − x3)−

s1d2

d1

(y4 − y3)

x5 − x6

−
(y4 − y3) + s1d2

d1

(x4 − x3)

y5 − y6

I =
(x3 − x5)−

s1d2

d1

(y3 − y1)

x5 − x6

−
(y3 − y5) + s1d2

d1

(x3 − x1)

y5 − y6

.

Note that if either denominator is 0 (corresponding top5p6

being horizontal or vertical), the system can be solved trivially.
Equations 4 and 6 form a linear-quadratic system ina andb.
Barring degeneracies, this system has at most two solutions,
which can be found analytically by standard methods.

The method described above gives candidate values fora,
b, andc. Candidates for which any ofa, b, or c are outside the
interval [0, 1] should be discarded, because they correspond to
endpoints outside ofp1p2, p3p4, or p5p6 respectively. The final
configuration (that is, position-orientation pair) of the robot
resulting from such a candidate is(pc, atan(yc−yb, xc−xb)).

Lastly, note that ifd1 = 0 or d2 = 0, then the robot knows
that its position is at some convex vertex ofW . This does not,
however, eliminate the uncertainty in the robot’s orientation.
In order to determine its orientation, the robot must move
away from the vertex. To do so, the robot must rotate and
attempt translations, at most360/θ times, in whichθ denotes
the measure of the smallest interior angle inW , measured in
degrees.

2) Generating candidates over all ofW : The previous
section showed how to find candidate solutions, givend1, d2

and three fixed environment edges to be visited in sequence.
Candidate positions over the complete environment can be
computed by iterating over each ordered triple of environment
edges. Since we must admit the case wherep1p2 = p5p6, there
are n(n − 1)(n − 1) such triples. The at most 2 candidates
for each can be computed in constant time. In practice, the

Fig. 4. [top] Parallel edges of the environment admit continuaof candidate
configurations. [bottom] A motion parallel to one of these segments leaves
only a single candidate point.

performance of this process may possibly be improved by a
preprocessing step which, for each pair of environment edges,
computes the minimum and maximum distances between
mutually visible points on these edges. This information can
be used to filter some edge triples as infeasible without explicit
consideration.

As a final step, the candidate list must be pruned, retaining
only those candidates that represent motions that lie entirely
within W . In a simple polygon, data structures are known to
answer such queries inO(log n) time, with O(n) preprocess-
ing time andO(n) space [31]. This final candidate set becomes
the robot’s information stateηk.

C. If some boundary edges are parallel

Although the preceding exposition made the assumption
that the environment contains no pair of parallel edges, en-
vironments of practical interest often contain parallel edges.
In particular, note the case where the environment contains
a narrow strip bounded by two parallel edges. This situation
would arise, for example, in a indoor corridor or narrow room.
When parallel edges exist, continua of final configurations may
be consistent with the robot’s initial motions. See Figure 4.
Each of these continua can be eliminated with a motion
parallel to itself.

D. Localization from a finite set

The previous sections showed how to select actions to
guarantee thatηk contains only finitely many configurations.
How can we select additional actions to determine the robot’s
true position from among these candidates? The approach
is to select two candidates and choose motions that are
guaranteed to disambiguate them. More precisely, we want
choose two configurationsx1 and x2 from ηk and choose
actionsuk, . . . , uk+j so thatηk+j+1 contains eitherx1 or x2

(or neither) but not both.
In Sections IV-B and IV-C, we described a method for

reaching an information state representable by a finite union
of single configurations. Given an information stateηk, an
action uk, and an observationyk, how can we compute the
resulting information stateηk+1 = F (ηk, uk, yk)? Recall the
definition of F , given in Equation 2. The definition suggests
the algorithm should proceed in two stages: First, we find the
forward projection ofηk under actionuk, by ray shooting

TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 6

Fig. 5. [left] Two configurations in an L-shaped environment.[right]
Two overlaid copies of the environment shown in the local frameof those
configurations. Attempting to execute the path shown (which consists of one
rotation and one translation) shown will result in different odometry readings
for these two configurations.

in W . Then we prune from the result any configurations for
which the distance traveled differs fromyk using a simple
constant time procedure.

For a given configurationx, let Wx denote a transformation
of the environmentW into the robot’s local frame, such that
the robot rests at the origin and faces the positivex-axis. Note
that (0, 0) ∈ Wx if and only if the position portion ofx is
contained withinW in the global frame.

Selectx1 and x2 arbitrarily from ηk. ComputeWx1
and

Wx2
and overlay them. See Figure 5. In this overlay, rotation

and translation commands affect bothx1 andx2 in the same
way; we can choose a destination position in this frame and
command actions that to navigate bothx1 andx2 to this point
in their respective local frames.

SinceW has no nontrivial rotational symmetries, we have
Wx1

6= Wx2
. Therefore, there must exist some positionp in

Wx1
but not inWx2

. Plan a path inWx1
from (0, 0) to p. Since

(0, 0) ∈Wx2
but p /∈Wx2

, this path must cross the boundary
of Wx2

at least once. The translation action corresponding to
this crossing of the boundary ofWx2

necessarily distinguishes
betweenx1 and x2. If the robot began atx1, its odometry
reading at this step will be greater than if it had begun onx2.
One of the two can be pruned after this step. A third possibility
is that both candidates are pruned before or during this step.
This could happen if the robot’s true configuration is neither
x1 nor x2, but some third configuration inηk. In this case,
the remaining actions in the plan can be discarded, and new
choices forx1 andx2 can be made from the reducedηk+1.

Which path should the robot follow withinWx1
to reachp

from (0, 0)? To disambiguatex1 andx2 requires only a path
that stays withinWx1

but leavesWx2
. Our implementation

uses theshortest pathbetween(0, 0) and p, which can be
computed in timeO(n) [32, 33]. Also of potential interest
is the minimum link path [34], which minimizes the number
of robot commands. The minimum link path can also be
computed in timeO(n). In any case, a piecewise linear path
in Wx1

can be trivially converted to a sequence of alternating
translation and rotation commands.

E. Complexity

Let n denote the number of edges inW . In INITIAL AC-
TIONS, we execute fewer thanO(n3) ray shooting queries,
each taking timeO(log n), so this step takesO(n3 log n)
time to generateO(n3) initial candidates. Letr denote the
number of such candidates. IfW has parallel edges, each
segment returned by INITIAL ACTIONS takes timeO(n log n)
to compute.

The outer while loop in Algorithm 1 eliminates at least one
candidate in each iteration, so there are at mostr−1 iterations.
There are fewer thanr − 1 iterations if some candidates are
pruned as a side-effect of distinguishingx1 and x2. The run
time of each iteration is dominated by the time to computeF ,
which is O(r log n). This computation must be done at each
of theO(n) steps of the of the path generated at each iteration.
Therefore, the total computation time for the algorithm is
O((n3 + r2n) log n) = O(n7 log n).

It is possible that these bounds can be improved. The ques-
tion remains unanswered whetherr = Θ(n3). Our informal
experiments suggest that in practical situations, bothr and the
number of disambiguation iterations often fall far short ofthe
upper bounds we present here.

F. Dealing with Symmetries in the Environment

We have thus far assumed thatW has no nontrivial rota-
tional symmetries. This is important in Algorithm 1 to ensure
that there exists at least one pointp in Wx1

but not inWx2
. If

this assumption does not hold, then we can still consider the
problem of localizationup to symmetry. This section makes
the notion of localization up to symmetry more precise.

Definition 3: A symmetryis function composed of rigid
translations and rotations mappingW onto itself. Without
ambiguity we can extend such a function toC by applying
the appropriate change of orientation. Two configurations
x1, x2 ∈ C are symmetricif there exists a symmetry under
which x1 7→ x2.

The number of symmetries ofC can be computed inO(n)
time [35]. The following lemma will be useful for showing
the relevance of these symmetries to localization.

Lemma 4: The relation of symmetry between configura-
tions is an equivalence relation, which we denote≡. Each
equivalence class of≡ contains one configuration for each
symmetry of the environment.

Proof: Observe that the symmetries of a polygon form
a group under function composition. In particular the identity
is always a symmetry, and the set of symmetries is closed
under composition and inverse. The reflexivity, transitivity, and
symmetry of the≡ relation all follow immediately. �

Now we show that R1 cannot distinguish between symmet-
ric configurations.

Lemma 5: Consider an action sequenceu1, . . . , uk−1, an
observation sequencey1, . . . , yk−1 and the resulting informa-
tion stateηk. For anyx ∈ ηk andx′ ∈ C with x ≡ x′, x′ ∈ ηk.

Proof: Sincex ∈ ηk, there exists some initial statex1

for which executingu1, . . . , uk−1 leads tox and generates
y1, . . . , yk−1. Sincex ≡ x′, there exists a symmetryτ under
which x′ = τ(x). But f acts only locally, so we know that a

TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 7

Fig. 6. A sample execution of Algorithm 1 generated by our implemen-
tation in approximately 0.03 seconds. Top row: (a) The robot in its initial
configuration. (b) The motions generated by INITIAL ACTIONS. (c) There are
7 configuration consistent with these initial motions, so|η6| = 7. Bottom row:
(d) One disambiguation results in|η12| = 2. (e) The robot is full localized
after 13 commands, with final information state|η14| = 1.

robot starting fromτ(x1) and executingu1, . . . , uk−1 has state
f(τ(x1), u1, . . . , uj) = τ(f(x1, u1, . . . , uj)) = τ(x) = x′.
Moreover, the observation sequences are identical, because the
boundary edges ofW are affected byτ in the same way as
x1 is. Consequently,τ(x1) is an initial state that leads tox′,
thereby demonstrating thatx′ is consistent withu1, . . . , uk−1

andy1, . . . , yk−1. Hencex′ ∈ ηk. �

The practical importance of this lemma is that for R1,
the localization task can only be accomplished modulo the
symmetries in the environment. No sequence of actions and
observations can distinguish between a pair of symmetric con-
figurations. Note, however, that Algorithm 1 can be adapted to
handle symmetries gracefully. The only modifications needed
are to change the termination condition to stop when|ηk|
is equal to the number of symmetries, and to ensure that
the configurations selected asx1 and x2 are not themselves
symmetric. The rest of the algorithm remains unchanged.

G. Computed examples

To illustrate its effectiveness, we have implemented Algo-
rithm 1 in simulation, using simplified methods for many of
the geometric computations. The implementation is in C++
on a 2.5GHz GNU/Linux system. Figure 6 shows a simple
example in which the robot makes 13 motions to localize
itself. In Figure 7, the environment is a regular pentagon, so
the final information state contains one configuration for each
of the 5 symmetries. The environment depicted in Figure 8 is
serpentine and self similar, but has no symmetries.

V. L OCALIZATION WITH A COMPASS AND CONTACT

SENSOR

Having addressed the localization task for R1, we now
consider R2, a robot equipped with only a compass and contact
sensor. Once again we show constructively that the localization
task can be completed. A simple example of our algorithm’s
execution appears in Fig. 9.

Recall that each actionu ∈ S1 represents a rotation to
the given orientation, followed by a forward motion to the
environment boundary. After its first action, the robot knows
its true orientation. Also note that after the first motion, the

Fig. 7. A robot localizing itself in an environment with 5 symmetries. From
top to bottom: (a) The robot’s initial configuration. (b) Executing INITIAL AC-
TIONS results in an information stateη8 containing 15 configurations. (c) One
disambiguation iteration fully localizes the robot, leaving 5 configurations
in η10. Our implementation took approximately 0.1 seconds to solve this
problem.

robot’s translations are all between points on the environment
boundary. For these reasons, we can simplify the robot’s state
space to∂W , ignoring orientation and the interior ofW . In
this context, the information states are subsets of∂W . We use
this simplification throughout Sections V and VI.

A. Computing the information transition function

This section presents an algorithm for computingF (η, u)
given W , η and u. We restrict our attention to information
states that can be reached from the initial stateη1 = ∂W .

Consider an information stateη that can be expressed as the
union of a finite collections1, . . . , sl of open segments and a
finite set of pointsp1, . . . , pm on ∂W . To be precise, eachsi

is a linear subset of∂W not containing its endpoints. Each
si need not be a complete edge of∂W and since it is linear,
cannot contain any vertex of∂W . Without loss of generality,
assume that thesi’s are pairwise disjoint. The next lemma
shows that every reachable information state can be expressed
in this form.

Lemma 6: Every information stateη reachable from∂W
by an action sequenceu1, . . . , uk can be expressed as a finite
union of open segments and points on∂W .

Proof: Use induction onk. Whenk = 0, η = ∂W , which
is the union of the vertices and edges boundingW . Assume
inductively thatηk−1 can be expressed as a finite union of
open segments and points. BecauseF maps each segment to
a finite set of polygonal chains on∂W and each point to
another single point,ηk also has a representation as a finite
set of points and segments. �

The intuition is that, given an actionu and an information
stateη described as a finite union of points and segments, the
resulting information stateF (η, u) is simply the projection of
those points and segments onto∂W in directionu. For a point,
this projection is a simple ray-shooting query. For a segment
ab, compute the projection by sweeping line parallel tou from
a to b, generating a new segment each time the point on∂W
intersectingl closest toab is a vertex ofW . See Fig. 10. The
time to perform this computation isO((m + nl) log n) for an
information state described bym points andl segments in an
environment withn vertices.

B. Algorithm overview

We now present the localization algorithm itself. The al-
gorithm proceeds in two parts. First, actions are selected

TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 8

Fig. 8. A robot localizing itself in a serpentine environment. From top to
bottom: (a) The robot’s initial configuration. (b) ExecutingINITIAL ACTIONS

results in an information stateη6 containing 48 configurations. (c) After
2 iterations of the disambiguation algorithm, only6 configurations remain
in η10. (d) There are only two configurations inη20. (e) The robot is
fully localized after 25 motions. Our implementation took approximately 3.8
seconds to solve this problem.

which reduce the uncertainty in the robot’s position to a finite
set of possibilities. Second, additional actions are chosen to
reduce the uncertainty from this finite set to a single point.
The complete localizing sequenceu1, . . . , uK is divided into
two partsu1, . . . , uK1

and uK1+1, . . . , uK2
generated by the

respective parts of the algorithm. The complete algorithm is
shown in Algorithm 2.

C. From the entire boundary to a finite subset

This section presents a sweep line algorithm for computing
a sequence of actions to reduce the robot’s information state
to a finite set of points. The following lemma, whose intent is
illustrated in Figure 11, provides the basis for the algorithm.

Lemma 7: For any segments = ab ⊂ W , F (s, u) is a
single point if and only ifu = (a − b)/||a − b|| or u =
(b− a)/||b− a||.

i ui ηi+1

0

1

i ui ηi+1

2

3

Fig. 9. A localizing sequence generated by Alg. 2 for R2 in a nonconvex
polygon. The information state at each step is shaded. Compareto Fig. 6.

a b

l

u

Fig. 10. ComputingF (ab, u) by a line sweep algorithm. The diagram shows
a snapshot of the algorithm as it runs. The sweep linel moves from left to
right.

Proof: For the forward part, note that sinceab is
contained inW and is therefore itself collision free, the
maximal collision free segment starting from eachx ∈ ab
is the same. Hence eachx ∈ ab maps to the same point
underf . For the backward part, supposeu is not parallel toab
andF (ab, u) is a single point. Thena, b, andF (ab, u) form
a nondegenerate triangle. This is a contradiction because by
definition of f , we must haveax parallel tobx. �

Starting withη1 = ∂W , the algorithm maintains a “current”
information stateηk and a sequence of actionsu1, . . . , uk−1

mapping η1 to ηk. Computation proceeds by sweeping a
vertical line l from left to right acrossW , maintaining the
invariant thatηk has no segments on the left side ofl. Each
time l reaches the endpoint of a segmentab in ηk, the
sweep line stops and the algorithm selects asuk whichever
of (a − b)/||a − b|| and (b − a)/||b − a|| has nonnegative
x coordinate. The resultingηk+1 = F (ηk, uk) maintains the
sweep invariant because thex-component of the motion of
each segment inηk is nonnegative; hence, no segment can
crossl. Whenl passes the rightmost vertex ofW , it is certain
that no segments remain inηk. It remains to show that this
method generates a plan of finite length.

Lemma 8: The above algorithm generatesK1 = O(n3)
actions for an environment withn edges.

Proof: Let e1, . . . , en denote the edges of∂W and let
v(ei) denote a unit vector parallel toei and oriented so that its
x component is nonnegative. For a fixedi andj, F (ei, v(ej))
is a set of polygonal chains on∂W with total complexity
O(n). Let Rij denote the set of endpoints of segments in

TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 9

Algorithm 2 LOCALIZER2(W)

η1 ← ∂W
k ← 1
while ηk contains at least one segmentdo

ab← LEFTMOSTSEGMENT(ηk)
if (a− b).x > 0 then

uk ← (a− b)/||a− b||
else

uk ← (b− a)/||b− a||
end if
ηk+1 ← F (ηk, uk)
k ← k + 1

end while

while ηk contains at least two pointsdo
Selectp, q from ηk.
pk ← p, qk ← q
while qk /∈ Vis(pk, W) do

tk ← first vertex of shortest path frompk to qk

uk ← (tk − pk)/||tk − pk||
ηk+1 ← F (ηk, uk)
pk+1 ← SHOOTRAY(W, pk, uk)
qk+1 ← SHOOTRAY(W, qk, uk)
k ← k + 1

end while
uk ← (qk − pk)/||qk − pk||
ηk+1 ← F (ηk, uk)
k ← k + 1

end while

return (u1, . . . , uk−1)

F (ab, u)

ua

b

F (ab,−u)

b

a

x

Fig. 11. [left] A motion alongab collapsesab to a single point. [right] No
motion not parallel toab can collapseab.

F (ei, v(ej)) and letR =
⋃

i,j Rij . Observe that|R| = O(n3).
Clearly every segments reached byl is in the initial condition
η1, or is a subset of someF (ei, v(ej)). There aren segments
in η1 and R is a set of earliest possible points at which
an information state segment projected from another edge
may begin. These events are sufficient to maintain the sweep
invariant, soK1 = O(n) + O(n3) = O(n3). �

D. From a finite subset to a single point

The previous section showed how to select actions
u1, . . . , uK1

that map η1 = ∂W to a finite setηK1
=

{p1, p2, . . . , pm} of points on ∂W . It remains to generate
additional actionsuK1+1, . . . , uK2

mapping{p1, p2, . . . , pm}
to a single point. We derive this part of the algorithm by
reduction to the special case whenm = 2. The more general
problem form points can be solved by iterating the algorithm

Vis(x,W)
x x

Fig. 12. [left] A visibility polygon. Spurious edges are dashed. [right] The
shortest path to any point not in the visibility polygon begins with a motion
in the direction of a spurious edge.

for two points.
Let η = {p, q}. The ordering of the points is arbitrary but

must be fixed. Our goal is to design a sequence of actions
uK1+1, . . . , uK2

such that

f(p, uK1+1, . . . , uK2
) = f(q, uK1+1, . . . , uK2

). (7)

That is, we want an action sequence mappingp and q to the
same destination. ForK1 < k ≤ K2, let

pk = f(p, uK1+1, . . . , uk)

and likewise
qk = f(q, uK1+1, . . . , uk).

Our algorithm selectsuk using onlypk andqk. We begin with
the simple base case:

Lemma 9: If pkqk ⊂ W , then the actionu = (qk −
pk)/||qk − pk|| is a localizing sequence for{pk, qk}.

Proof: Follows from Lemma 7 witha = pk andb = qk.
�

The intuition is that ifpk can “see”qk in the sense that
there is an unobstructed path between them, then a motion in
the direction of this path maps bothpk and qk to the same
place.

Now supposepkqk 6⊂W . The following definition is useful
in this case.

Definition 10: For anyx ∈ W , let Vis(x,W) denote the
visibility polygonof x in W , defined as

Vis(x,W) = {x′ ∈W | xx′ ⊂W}. (8)
We follow [2] in characterizing the boundaries visibility

polygons in terms of non-spurious edges which are parts of
∂W and spurious edges which are not. Observe that sinceW
is simply connected, the spurious edges subdivideW in such
a way that every pointx′ /∈ Vis(x,W) can be associated with
exactly one spurious edge such that the shortest path fromx
to x′ crosses this spurious edge. Further, the first segment of
the shortest path fromx to x′ is parallel to this spurious edge.
See Figure 12. Lettkvk denote the spurious edge crossed by
the shortest path frompk to qk.

Assume momentarily thattkvk is not a bitangent ofW .
Chooseuk = (tk − pk)/||tk − pk||. That is, select a motion
in the direction of the spurious edge that hidesqk from pk.
Figure 13 illustrates this selection (and the intuition behind
the proof of Lemma 11). This completes the definition of our
action sequenceuK1+1, . . . , uK2

:

ui =

{

(qi − pi)/||qi − pi|| if qi ∈ Vis(pi,W)

(ti − pi)/||ti − pi|| otherwise
, (9)

TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 10

pk

qk
vk

tk

pk+1

qk+1

Fig. 13. [left] The spurious edgetkvk hidespk from qk. [right] The point
qk+1 cannot crosstkvk because its motion is parallel totkvk.

in which K2 is the minimali for which the first case applies.
Clearly if K2 exists, then this action sequence is a localizing
sequence. It remains only for us to show thatK2 exists.

Let Qk = W −
⋃

i=K1,...,k Vis(pi,W) and observe that
Qk+1 ⊂ Qk. Informally, Qk is the portion ofW that p has
never seen.

Lemma 11: For all k > K1, qk ∈ Qk.
Proof: Use induction onk. The statement is true by

construction whenk = K1. For the inductive step, note that
qk moves parallel totkvk, so thatqk+1 is still behind this
spurious edge. Ifqk /∈ Qk, thenqk must be in a region visible
to somepi, or in some region not seen by anypi but separated
from qk by tkvk. In either case, we can form a nontrivial loop
in W , contradicting the simply connected property ofW . �

One informal way to understand Lemma 11 is to imagine
that p is “chasing” q. With each motion,p takes a step in
pursuit of q and eliminates a portion of the environmentQk

in which q could be “hiding”. If K2 exists, thenp eventually
“catches”q.

Now we can prove the algorithm’s correctness.
Theorem 12: The sequenceuK1+1, . . . , uK2

is a localizing
sequence for{p, q}.

Proof: If K2 exists, it follows from Lemma 9 that
uK1+1, . . . , uK2

is a localizing sequence for{p, q}. To show
that K2 exists, note that eachpk is in a different cell of the
visibility cell decomposition [2] ofW . There are onlyO(n2)
such cells on the boundary, soK2 = O(n2). �

Finally, we must consider the special case whentkvk is a
bitangent. This case is problematic because choosinguk =
(tk − pk)/||tk − pk|| is no longer sufficient to ensure that
Qk+1 ⊂ Qk. The algorithm as stated would alternate between
the actionstk − vk andvk − tk. This problem can be avoided
by rotatinguk by a sufficiently smallǫ ensuring thatqkqk+1

does not intersecttkvk. Then selectuk+1 = (vk−pk+1)/||vk−
pk+1||. Figure 14 illustrates this situation. This modification
adds an additional action each timepk falls at the endpoint
of a bitangent complement, but does not substantially change
the analysis.

Now we can finally return to the general case withm points.
If m > n (recall n is the complexity of∂W), then by the
pigeonhole principle, at least two points must lie on the same
edge of∂W . This pair of points can see each other, and one
motion collapses them to a single point. In this way, we can
reduce the information state to a set of at mostn points using

tk

vk

qk

pk

ǫ

qk+1

pk+1

qk

pk+2
qk+2

pk

Fig. 14. The special case whentkvk is a bitangent.

Fig. 15. [top] An environment with many regularities. Algorithm 2 generates
a 5-step localizing sequence for this environment, running in approximately
0.4 seconds. [bottom] A modified version of this environment in which the
regularities have been broken. Our algorithm generates a 26step localizing
sequence for this environment, running in approximately 1.0 seconds.

only m−n actions. Then select an arbitrary pair of pointsp and
q from the current information stateηk. We have shown how to
mergep andq in O(n2) steps. Repeating this process at most
n times results in a plan of lengthO(n3) to map{p1, . . . , pm}
to a single point. Combining this with theO(n3) steps from
the first part of the algorithm (Section V-C) yields a total plan
length ofK = K1 + K2 = O(n3).

E. Computed examples

We have implemented this algorithm in simulation. The
top portion of Figure 15 shows an environment with many
regularities for which Algorithm 2 generates a 5-step local-
izing sequence. In contrast, our algorithm needs 28 steps for
the similar but irregular environment in the bottom portion
of Figure 15. This is in sharp contrast to visibility based
localization, in which such regularities are precisely what
make localization problems difficult. Figure 16 shows a very
irregular environment for which our algorithm generates a 30
step localizing sequence. This sequence is executed from six
different initial positions. The robot’s final position is in the
lower right.

TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 11

Fig. 16. [top] An irregular environment for which the localizing sequence
computed by our algorithm requires 30 steps. The computation took about
1.9 seconds. [bottom] Execution traces of this localizationsequence for 6
different starting positions. For each starting position,the final position is the
lower right corner of the environment.

VI. L OCALIZATION WITH AN ANGULAR ODOMETER AND

CONTACT SENSOR

In Section V, we showed that robot model R2, a robot
with only a compass and a contact sensor, is capable of
localizing itself within its environment. In this section we
consider R3, a weaker version of R2 in which the compass
has been replaced by an angular odometer. This model is
identical to that of Section V, except that we now consider
actions specified relative to an unknown initial orientation,
rather than a global reference direction. Equivalently, wecan
consider the environment to have been rotated through an
unknown angleθ, representing the difference between the
global reference direction and the robot’s initial orientation.
A localizing sequence must map everyx ∈ W to the same
xf , regardless ofθ. We show that, under this model, every
sequence of actions fails.

Definition 13: An information state-action pair(η, u) is a
collapsing transitionif u is parallel to some segment inη.

Lemma 14: Every localizing sequence contains at least one
collapsing transition.

Proof: Suppose there exists some localizing sequence
u1, . . . , uK with no collapsing transitions. Arbitrarily pick a
segments1 ⊆ η1 = ∂W . Because of Lemma 7, at every step
1 ≤ k ≤ K, F (sk, uk) contains at least one segmentsk+1.
We have constructed a segmentsK ⊆ ηK . Therefore|ηK | is
infinite, a contradiction. �

Theorem 15: For a robot with only angular odometry and a
contact sensor in any polygonal environmentW , no localizing
sequence exists.

Proof: Suppose such a sequenceu1, . . . , uK exists. Let
e1, . . . en denote the set of edges of∂W , and letRot(v, φ)
denote the rotation ofv ⊆ R

2 by angleφ. If there exists no
action-edge pair(ui, ej) with ui andRot(ej , θ) parallel, then
u1, . . . , uK contains no collapsing transitions. The sequence
is required to work for allθ ∈ S1 but the subset ofS1 in
which someui coincides with someRot(ej , θ) has measure
0. Thereforeu1, . . . , uK fails for almost everyθ. �

The intuition is that reaching a finite cardinality information
state requires at least one motion parallel to some environment
wall. No finite length localizing sequence can achieve this for
all possible initial orientations.

VII. D ISCUSSION AND CONCLUSIONS

This paper presented a localization techniques for several
robots with severely limited sensing capabilities. In thisfinal
section, we discuss these results and mention several problems
we have left open.

A. Comparison of results

There are also some subtle but perhaps illustrative differ-
ences with the results we have presented for R1 and R2. The
algorithm for R1 is effective only up to symmetry, whereas
symmetries are not relevant to R2. This difference can be
directly attributed to the fact that, for R1, angular information
is only local, rather than global. Likewise, the algorithm for
R2 can only guarantee a knownfinal configuration. For R1,
each motion is precisely measured. This provides sufficient
information to determine the initial configuration and indeed
the robot’s entire path.

B. Comparison between sensing models

Perhaps the most closely related localization model is that
of [14], in which the robot uses an omnidirectional range
sensor. The two phase approach described in that work – that
of finding a finite set of candidates (hypothesis generation)
followed by determination of the true configuration from
among these candidates (hypothesis elimination) – is similar
to the approach of both Algorithm 1 and Algorithm 2.

Model R1 is strictly weaker than the visibility based model
used in [14]. The visibility polygon available to the robot in
that work can be viewed as an omnidirectional measure of the
distance to the environment boundary. By ignoring all of these
distances except the distance to the boundary directly forward,
their robot can accurately simulate R1. Moreover, the work of
[14] is mainly concerned withminimum distancelocalization,
a problem we have not addressed.

TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 12

Observe also that R1 and R2 are not directly comparable.
Comparing R1 to R2, we exchange the compass for an angular
odometer and the contact sensor for a linear odometer. In
doing so we have strengthened the linear (distance) sensing
while reducing the robot’s angular sensing. More broadly, we
can imagine a partial ordering on robot systems, in which
a comparison relation is defined by the ability of one robot
to simulate another. In this context, the minimalist approach
can be described as a search for minima in this partial order.
We address comparisons of this type more formally and more
generally in [36].

C. Relationship to probabilistic methods

There is a large body of research on Bayesian methods for
mobile robot localization (for example, [9, 17, 18, 37, 38]).
One way to interpret the our results is as a special case of
techniques based on POMDPs (for example, [38]) in which
sensing is perfect. However, our use of set-based uncertainty
allows us to treat the continuous state space exactly, but
existing POMDP methods generally require discretization to a
finite state space. This sort of Bayesian approach is a very
natural way of extending our robot models to account for
errors in sensing and motion. Progress has already been made
on probabilistic models for the some sensing capabilities con-
sidered here. For example, [37] presents probabilistic models
for local odometry information. Our algorithms themselves,
however, would require substantial adaptation. There is no
clear analog to Lemma 7, so R2 could not “collapse” intervals
of probability mass to single points in the same way. Another
consideration is that, because we would be forced to settle
for accumulating a sufficiently large portion of the probability
mass in a sufficiently small region, the basic argument of
Theorem 15 fails.

D. Open questions

This work is based on an idealization in which the robot’s
internal map is perfect. If the robot’s map is imperfect or
absent, we may consider a spaceE of potential environments.
The robot’s state would be defined by its environmentW ∈ E
and its configurationx ∈W × S1. The complete information
space is the power set ofE×C. If |E| is finite, we can compute
candidates within each possible environment and continue
until only one environment-configuration pair remains. IfE
is a richer set, perhaps defined by allowing tolerances in the
positions of vertices, the extension is not as straightforward.

We have also assumed that the robot moves in a simply-
connected environment. This assumption is not needed for R1.
For R2, it is needed primarily in Section V-D to ensure that
p eventually “catches”q. However, because the motions ofp
andq have the same directions, it seems plausible that a very
similar method would apply whenW has holes.

Lastly, in this paper we have only considered the question
of existence of localization strategies. It remains an open
problem to generate optimal localization strategies for our
sensing-limited models. One relevant optimality criterion is
the maximum distance travelled over all initial states inW .
For R1, it may be possible to adapt the techniques used in

[14] to show, by reduction from the Abstract Decision Tree
problem, that computing an optimal localization strategy is
NP-hard. For R2, it is less clear how to proceed, because R2
does not admit branching in the localizing sequence.

ACKNOWLEDGMENTS

Portions of this work have been supported by ONR grant
N00014-02-1-0488, by NSF-CONACyT award 0296126 and
by DARPA grant #HR0011-05-1-0008.

REFERENCES

[1] I. J. Cox, “Blanche – an experiment in guidance and navigation of an
autonomous robot vehicle,”IEEE Trans. Robot. and Autom., vol. 7, no. 2,
pp. 193–204, 1991.

[2] L. J. Guibas, R. Motwani, and P. Raghavan, “The robot localization
problem,” in Proc. Workshop on Alg. Found. of Robot., K. Goldberg,
D. Halperin, J.-C. Latombe, and R. Wilson, Eds. Wellesley, MA: A.K.
Peters, 1995, pp. 269–282.

[3] G. Dudek, K. Romanik, and S. Whitesides, “Localizing a robot with
minimum travel,” in SODA: ACM-SIAM Symposium on Discrete Al-
gorithms (A Conference on Theoretical and Experimental Analysis of
Discrete Algorithms), 1995.

[4] D. Avis and H. Imai, “Locating a robot with angle measurements,” J.
Symb. Comput., vol. 10, no. 3-4, pp. 311–326, 1990.

[5] E. D. Demaine, A. Ĺopez-Ortiz, and J. I. Munro, “Robot localization
without depth perception,” inScandinavian Workshop on Algorithm
Theory, 2002.

[6] K. Sugihara, “Some location problems for robot navigationusing a
simple camera,”Comp. Vis., Graphics, & Image Proc., vol. 42, no. 1,
pp. 112–129, 1988.

[7] J. M. O’Kane, “Global localization using odometry,” inProc. IEEE Int.
Conf. Robot. and Autom., 2006.

[8] J. M. O’Kane and S. M. LaValle, “Almost-sensorless localization,” in
Proc. IEEE Int. Conf. Robot. and Autom., 2005.

[9] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo localization
for mobile robots,” inProc. IEEE Int. Conf. Robot. and Autom., 1999.

[10] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by
tracking geometric beacons,”IEEE Trans. Robot. and Autom., vol. 7,
no. 3, pp. 376–382, June 1991.

[11] K. T. Sutherland and W. B. Thompson, “Inexact navigation,” in Proc.
IEEE Int. Conf. Robot. and Autom., 1993, pp. 1–7.

[12] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and
paging rules,”Comm. of the ACM, vol. 28, pp. 202–208, 1985.

[13] J. M. Kleinberg, “The localization problem for mobile robots,” in IEEE
Symposium on Foundations of Computer Science, 1994, pp. 521–531.

[14] G. Dudek, K. Romanik, and S. Whitesides, “Localizing a robot with
minimum travel,”SIAM J. Comput., vol. 27, no. 2, pp. 583–604, 1998.

[15] M. Rao, G. Dudek, and S. Whitesides, “Randomized algorithms for
minimum distance localization,” inProc. Workshop on Algorithmic
Foundations of Robotics, 2004, pp. 265–280.

[16] S. Koenig, A. Mudgal, and C. Tovey, “An approximation algorithm for
the robot localization problem,” inProc. ACM-SIAM Symposium on
Discrete Algorithms, 2006.

[17] D. Fox, W. Burgard, and S. Thrun, “Active markov localization for
mobile robots,”Robotics and Autonomous Systems, vol. 25, pp. 195–
207, 1998.

[18] P. Jensfelt and S. Kristensen, “Active global localisation for a mobile
robot using multiple hypothesis tracking,”IEEE Trans. Robot. and
Autom., vol. 17, no. 5, pp. 748–760, Oct. 2001.

[19] D. E. Whitney, “Real robots don’t need jigs,” inProceedings of the IEEE
International Conference on Robotics and Automation, 1986.

[20] M. A. Erdmann and M. T. Mason, “An exploration of sensorless
manipulation,”IEEE Trans. Robot. and Autom., vol. 4, no. 4, pp. 369–
379, Aug. 1988.

[21] K. Y. Goldberg, “Orienting polygonal parts without sensors,” Algorith-
mica, vol. 10, pp. 201–225, 1993.

[22] S. Akella, W. Huang, K. M. Lynch, and M. T. Mason, “Parts feeding
on a conveyor with a one joint robot,”Algorithmica, vol. 26, no. 3, pp.
313–344, Mar. 2000.

[23] I. Kamon and E. Rivlin, “Sensory-based motion planning with global
proofs,” IEEE Trans. Robot. and Autom., vol. 13, no. 6, pp. 814–822,
Dec. 1997.

TO APPEAR AS A REGULAR PAPER TO IEEE TRANSACTIONS ON ROBOTICS 13

[24] I. Kamon, E. Rivlin, and E. Rimon, “Range-sensor based navigation in
three dimensions,” inProc. IEEE Int. Conf. Robot. and Autom., 1999.

[25] V. Lumelsky and S. Tiwari, “An algorithm for maze searching with
azimuth input,” inProc. IEEE Int. Conf. Robot. and Autom., 1994, pp.
111–116.

[26] V. J. Lumelsky and A. A. Stepanov, “Path planning strategies for a point
mobile automaton moving amidst unknown obstacles of arbitrary shape,”
Algorithmica, vol. 2, pp. 403–430, 1987.

[27] B. Tovar, L. Guilamo, and S. M. LaValle, “Gap Navigation Trees:
Minimal representation for visibility-based tasks,” inProc. Workshop
on Alg. Found. of Robot., 2004.

[28] E. U. Acar and H. Choset, “Complete sensor-based coverage with
extended-range detectors: A hierarchical decomposition interms of
critical points and voronoi diagrams,” inProc. of IEEE IROS, Int’l
Conference on Intelligent Robots and Systems, 2001.

[29] H. Choset and J. Burdick, “Sensor based planning, part I: The general-
ized Voronoi graph,” inProc. IEEE Int. Conf. Robot. and Autom., 1995,
pp. 1649–1655.

[30] S. M. LaValle,Planning Algorithms. Cambridge University Press (also
available at http://msl.cs.uiuc.edu/planning/), 2006.

[31] B. Chazelle and L. G. Guibas, “Visibility and intersection problems in
plane geometry,”Disc. and Comp. Geom., vol. 4, pp. 551–589, 1989.

[32] L. J. Guibas and J. Hershberger, “Optimal shortest path queries in a
simple polygon,”J. Comput. Syst. Sci., vol. 39, no. 2, pp. 126–152,
1989.

[33] J. Hershberger, “A new data structure for shortest pathqueries in a
simple polygon,”Inform. Process. Lett., vol. 38, pp. 231–235, 1991.

[34] J. S. B. Mitchell, G. Rote, and G. Woeginger, “Minimum-link paths
among obstacles in the plane,”Algorithmica, vol. 8, pp. 431–459, 1992.

[35] J. D. Wolter, T. C. Woo, and R. A. Volz, “Optimal algorithmsfor
symmetry detection in two and three dimensions,”The Visual Computer,
vol. 1, pp. 37–48, July 1985.

[36] J. M. O’Kane and S. M. LaValle, “On comparing the power of robots,”
Submitted toInternational Journal of Robotics Research, 2007, under
review.

[37] H. Shatkay and L. P. Kaelbling, “Learning topological maps with weak
local odometric information,” inProc. International Joint Conference
on Artificial Intelligence, 1997, pp. 920–927.

[38] R. Simmons and S. Koenig, “Probabilistic robot navigation in partially
observable environments,” inProceedings International Joint Confer-
ence on Artificial Intelligence, 1995, pp. 1080–1087.

Jason M. O’Kane earned the B.S. degree in com-
puter science from Taylor University in 2001 and the
M.S. degree in computer science from the University
of Illinois at Urbana-Champaign in 2005. He is cur-
rently a Ph.D. candidate at the University of Illinois
at Urbana-Champaign. His research interests include
algorithmic robotics, planning under uncertainty,
artificial intelligence, computational geometry, and
motion planning.

Steven M. LaValle Steven M. LaValle received the
B.S. degree in computer engineering, and the M.S.
and Ph.D. degrees in electrical engineering, from
the University of Illinois at Urbana-Champaign in
1990, 1993, and 1995, respectively. From 1995-1997
he was a postdoctoral researcher and lecturer in
the Department of Computer Science at Stanford
University. From 1997-2001 he was an Assistant
Professor in the Department of Computer Science at
Iowa State University. He is currently an Associate
Professor in the Department of Computer Science at

the University of Illinois. His research interests includeplanning algorithms,
motion planning, computational geometry, and control theory.He authored
the book Planning Algorithms, Cambridge University Press, 2006 (which is
available online for free).

