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Abstract: We consider a target tracking problem in which, in addition to sensing some information about the
position of a mobile target, the tracker must also ensure that the privacy of that target is preserved, even in the
presence of adversaries that have complete access to the tracker’s sensor data. This kind of problem is important
for many kinds of robot systems that involve communication systems or agents that cannot be fully trusted. In
this paper, we (1) introduce a formal, quantitative definition for privacy, (2) describe algorithms that allow a robot
to maintain conservative estimates of its performance in terms of tracking and privacy, (3) give strategies for the
tracker to maximize its tracking performance, subject to constraints on the allowable privacy levels, and (4) present
an implementation of these methods along with some experimental results.

1 Introduction

Robots must deal continually with uncertainty. The general problem of sensing and acting to reduce uncer-
tainty is well-studied and continues to receive attention. This paper considers the related but complementary
problem of sensing and acting in order to maintain uncertainty, rather than eliminating it. To motivate this
(perhaps counterintuitive) idea, consider the following problem (inspired by [9,10]):

Panda tracker problem: A giant panda moves unpredictably through a wilderness preserve. A mo-
bile robot tracks the panda’s movements, periodically sensing partial information about the panda’s
whereabouts and transmitting its findings to a central base station. At the same time, poachers at-
tempt to exploit the presence of the tracking robot — either by eavesdropping on its communications
or by directly compromising the robot itself — to locate the panda. We assume, in the worst case,
that the poachers have access to any information collected by the tracking robot, but they cannot
control its motions. The problem is to design the tracking robot so that the base station can record
coarse-grained information about the panda’s movements, without allowing the poachers to obtain
the fine-grained position information they need to harm the panda. See Figure 1.

In this problem, the tracking robot must collect some information about the panda’s location, but cannot
collect too much information without endangering the privacy (and therefore, the safety) of the panda. More
generally, this sort of privacy concern is relevant in at least three kinds of robotics applications:

(1) Applications which require communication over an untrusted channel.
(2) Applications which require communication with an untrusted recipient.
(3) Applications in which the robot itself cannot be fully trusted.

For each of these classes of problems, it is essential to design a robot and its programming to ensure that the
information it collects or transmits is not harmful to disclose. We emphasize that the goal is to ensure that
privacy is preserved even when the best possible use is made of all the available information. This approach
specifically precludes the possibility of getting a “free ride” by intentionally forgetting. It also allows us
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Fig. 1. Basic components of the panda tracker problem. The tracking robot needs to sense the panda’s location and
communicate this information to the base station, while preventing the poacher from exploiting this information to
locate the panda.

eavesdropping

to avoid explicitly considering the actions and knowledge of the poachers — we simply ensure that it is
acceptable for them to know everything that the tracker knows.

In this paper, we consider one version of the panda tracker problem, in which a target moves in the
plane unpredictably but with bounded velocity. A tracker monitors that target’s motions using a sensor that
reports very coarse information about the direction from the tracker to the target. A crucial first observation
is that the ability to maintain privacy is closely related to the informative value of the robot’s sensors. A
tradeoff exists between strong sensors (which make tracking easy but privacy difficult) and weak sensors
(which make privacy easy to maintain at the expense of tracking accuracy). We present results suggesting
that a reasonable balance between tracking and privacy can be obtained using sensors that provide relatively
little information.

Our approach is based on analyzing the tracker’s information states as they change over time. In this
context, the information state at a particular time is simply the set of states that are consistent with the
history of actions executed and sensor readings obtained by the tracker up to that time. A distinctive feature
of this work is that we maintain upper and lower bounds on the extent of the information state, without
needing to compute the information states themselves.

The primary goal of this work is to investigate the role that privacy concerns can play in robotic tracking
problems. After reviewing related prior work in Section 2, this paper makes several new contributions.

1. We give quantitative definitions for tracking and privacy, in terms of the tracker’s information states.
These definitions appear in Section 3.

2. We describe representations and algorithms for the tracker to maintain a lower bound on privacy and an
upper bound on the tracking accuracy achieved throughout its execution. These algorithms, which are
introduced in Section 4, require O(1) storage and O(1) update time, so they are well-suited to implement,
for example, on extremely simple mobile sensor platforms.

3. We derive reactive strategies, in Section 5, for planning the motions of the tracker that keep privacy and
tracking within acceptable bounds. Implementations of these algorithms are presented.

Concluding discussion appears in Section 6.

2 Relationship to prior work

The panda tracker problem was first proposed in the context of wireless sensor networks. Both temporal [9]
and spatial [10] privacy of an observed target can be protected by careful design of the network’s routing
protocols. Crucial to both of these works is their application of Kerckhoffs’ Principle, under which it is
assumed that the adversaries have complete knowledge of the protocol used by the network. This view is
paralleled by our assumption that the adversaries have access to all of the information the tracker does.



We encompass both forms of privacy by considering how position information changes over time. To our
knowledge, the present work is the first to directly examine the effects of sensing and action on privacy.

Our work is also closely related to the lines of research that seek to understand tasks by solving them in
spite of severe sensing limitations. Problems in manipulation [3,5], localization [4,21], navigation [11,12,15-
17,22], mapping [8], and pursuit-evasion [6,7] have been solved for such systems. These examples are meant
to be representative, rather than exhaustive. A common thread through much of this work is a two-step
approach, based on solving the passive information state update problem before considering how to choose
actions actively. In each case, the solution depends on representing and updating the robot’s knowledge in
ways that make this active planning manageable. This work follows the same approach.

More specifically, target tracking problems have also been studied in the literature. Much of this work
is focused on maintaining visibility between the tracker and the target within a cluttered environment.
Specific methods have used dynamic programming [14], sampling-based [20], and reactive [19] approaches.
The novelty of our work is that we are the first to explicitly include privacy in the formulation. One closely
related variation is the stealth tracking problem, in which the tracker must maintain visibility of the target,
while remaining near the boundary of the target’s visibility polygon to avoid possible detection [1]. Our
work differs primarily because we are concerned with the privacy of the target’s location, rather than that
of tracker’s location, and because we consider a much weaker sensor.

3 Problem statement

This section formalizes the panda tracker problem. We begin in Section 3.1 with a general formulation for
which we give a quantitative definition of privacy, then in Section 3.2 apply this formulation to the specific
version of the panda tracker problem solved in this paper.

3.1 General formulation

Consider a formulation with the following elements:*

e A division of time into a sequence of discrete, but not necessarily equal length, stages, numbered k =
1,2,... . In each stage, the robot can both sense and act.

e A state space X. In stage k, the relevant information about the situation in the world is modeled by a
state xp € X.
A distance function d : X x X — R for pairs of states, under which X is a metric space.
An initial condition ny C X representing a set of possible starting states. Unless 7 is a singleton set, the
actual starting state is unknown to the robot.
An observation space Y, so that y € Y models the sensor information collected by the robot at stage k.
An observation function h : X — Y, under which y, = h(zy). That is, h describes how the observation
Y is determined by the current state x.2
An action space U. The robot chooses one action u; € U to execute in each stage.
A nature action space ©. The nature action 8, € @ at stage k models the effects of noise, actions by
other decision makers, or both.

o A state transition function f: X x U x ©® — X that describes how the stage changes. The state xy41 at
stage k + 1 is given by zx11 = f(xk, uk, O)-

From these basic ingredients, we can make two additional definitions for convenience. First, define an iterated
transition function to apply multiple transitions at once:

! A more complete treatment of this type of formulation appears in Chapter 11 of [13].

2 Note that, for simplicity, this formulation implicitly assumes that sensing is deterministic. We briefly discuss the
implications of this assumption in Section 6. Note that this is uniquely interesting for our problem because sensor
noise, with the increased uncertainty it brings, may actually be helpful.
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Second, denote the preimage of each observation y by H(y), so that

H(y) ={z € X | h(z) =y} (2)
The robot does not necessarily know its state, but instead must rely on its sensor-action history to make its
decisions. At stage k, this information consists of y1,...,ys and uq,...,ugr_1. This history can be used to

determine the set of possible states at stage k. The following two definitions make this notion precise.

Definition 1. A state x € X is consistent with a sensor-action history (yi,u1, ..., Ysk—1,Ur—1,Yk) if there
exists some x1 € 19 and a sequence of nature actions 01, ...,0;_1 such that
v = f(xi,u1,01,. .., up—1,0r1) (3)
and
Yj :h(f(‘/l"huhela7u]7170]71)) (4)

foreachj=1,... k.

Definition 2. The information state (I-state) ni at stage k is the set of all states consistent with the robot’s
sensor-action history. The information space (I-space) T is the powerset of X, which contains all possible
I-states.

The intuition is that a state x is a member of an I-state 7 if and only if the robot cannot conclusively
rule out x as a possible state at stage k. Such I-states are useful because the robot can always keep track
of its I-state, even when there is insufficient information to determine the underlying true state. Let F' :
I x U xY — T denote an information transition function that describes how the I-state changes over time.
Given an information state 7y, and action uy, and an observation yxy1, we have ng1 = F(ng, uk, Yer1). We
can describe this information transition in terms of f and H:

F(nr,ur, yeg1) = {f(x,ur,0) | 2 € me, 0 € O} N H (ypy1). (5)

How are these I-states related to privacy and tracking? Informally, privacy is preserved whenever the I-state is
a relatively large set; conversely good tracking depends on keeping the I-state relatively small. This intuition
leads us to the following quantitative definitions of privacy and tracking.

Definition 3. A closed ball B is a privacy disk for an I-state ng if B C cl(n). The privacy margin of an
I-state ny, is the largest radius over all privacy disks of .

Definition 4. A closed ball B is a tracking disk for an I-state ny if cl(ng) C B. The tracking margin of an
I-state ny is the smallest radius over all tracking disks of ny.

Figure 2 illustrates these definitions, which depend on the metric function d. The intuition is that the
privacy and tracking disks form inner and outer circles around the boundary of 7. A privacy disk is a region
within which no states can be ruled out; a tracking disk is a region outside of which every state can be
ruled out. The radii of these two disks provide a quantitative measures of privacy and tracking. Note that
the privacy disk of maximal radius is not necessarily unique (for example if 7y is the region between two
concentric circles), but the minimal tracking disk is unique.

One might imagine an alternative to Definitions 3 and 4 based directly on the area or volume of the
I-state. Such an approach would not use separate measures for privacy and tracking, but instead quantify
the robot’s uncertainty by the volume of its I-states and work to ensure that this value remains within given
bounds. Our decision to use Definitions 3 and 4 rather than this type of volume-based approach is motivated
by several considerations. First, our definitions are more strict than the volume-based alternative — an
I-state will, in general, have volume greater than or equal to that of its largest privacy disk and less than
or equal to that of its smallest tracking disk. Therefore, the performance bounds we obtain are valid for the
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Fig. 2. An illustration of Definition 3. The boundary of the tracker’s I-state must lie between the boundaries of the
privacy and tracking disks.

volume-based definitions as well. Second, the fact that we are concerned only with the largest ball contained
within and the smallest ball around the I-state allows us to maintain bounds on tracking and privacy that do
not require computing the I-state’s exact shape. Finally, for tracking in particular, the volume of the I-state
may not represent the tracking accuracy very well. In extreme cases, the I-state may consist of several small
regions distant from one another. Such an I-state would have small volume, but would require a large amount
of travel to search completely.

3.2 The panda tracker problem

Now we can state the panda tracker problem as a specific instance of the general formulation from Section 3.1.

Problem formulation

A single target moves unpredictably in an obstacle-free plane. Its motions are continuous and are constrained
by a known maximum velocity, but nothing else is known about its trajectory. A single tracker, modeled by a
point with orientation in the plane, monitors the movements of the target using a low-speed, low-resolution
bearing sensor that reports, in a coordinate system attached to the tracker, which quadrant contains the
target. The tracker is able to move very quickly in comparison to the target. Each stage models a period of
motion by both the target and the tracker, followed by a sensor reading by the tracker. Formally, we can
describe this system as follows:

e The state space is X = R2. A single state represents the target’s position relative to the tracker, in
coordinate frame with the tracker’s position at its origin and its positive y-axis in the direction the
tracker faces. We denote the individual coordinates of a state using superscripts, so that x = (x(l), ZC(Q))
for each x € X. Note, however, that it will sometimes be more straightforward to consider a global frame,
specifying the position and orientation of the tracker and the position of the target relative to a stationary
reference point.

The distance metric d is the standard Euclidean metric over R2.

The initial condition 7y is a disk known to contain the target. This includes, as a special case in which
the disk is centered at the origin, the situation where the tracker starts with an upper bound on the
distance to the target.

e The action space U is the set of rigid body transformations achievable by the tracker within one stage (that
is, between two consecutive sensor readings). For concreteness, we consider a robot that can translate
and rotate freely with maximal velocity v, and maximal angular velocity wy,k.

e The nature action space © is the set of translations of magnitude at most vy, the displacement achievable
by the target in a single stage.

e The state transition function f : X x U x ©® — X applies the motion wu of the tracker and the motion
0y, of the target to the current state zj to compute the new state 11 = f(k, uk, O)-



Fig. 3. Observation preimages for the panda tracker problem. The sensor reports which quadrant contains the
target.

Fig. 4. An iRobot Create differential drive robot, equipped with a 4 infrared beacons and 4 infrared sensors. When
deployed in pairs, such robots can track one another by sensing which quadrant contains the other robot.

o The observation space is Y = {0,1} x {0,1}.
e The observation function i : X — Y returns the quadrant containing the target, according to

h(zg) =h (ac,(cl),:vg)) = ([xﬁj) > 0] ) [:p}f) > D ;

in which [-] is the indicator function that returns 1 if its argument is true and 0 otherwise. See Figure 3.
Although we do not emphasize any particular hardware implementation, Figure 4 shows one possible
realization of this kind of sensor.

Goal conditions

For purposes of comparison, we consider two specific, mutually independent choices for the tracker’s goal:

G1: Minimize tracking margin — Keep the tracking margin as small as possible, without
regard for the privacy margin.

G2: Maintain privacy bound — Keep the tracking margin as small as possible, while ensur-
ing that the privacy margin is no smaller than a given minimum, denoted p.
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Fig. 5. Computing explicit information transitions for the panda tracker problem. (a) Rigid body transformation by
uk. (b) Minkowski sum with ©. (c) Intersection with H (yx41).
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In each case, we are concerned with the worst-case tracking and/or privacy margins, taken over all possible
trajectories of the target. We discuss strategies to achieve these two goals in Section 5. One motivation for
considering both goals is that the difference in tracking performance between G1 and G2 can be viewed, in
some sense, as a measure of the amount of tracking granularity that must be sacrificed in order to maintain
privacy. Section 5.3 presents experiments that quantify this tradeoff.

4 Passive updates

This section presents algorithms for maintaining a lower bound on the privacy margin and an upper bound
on the tracking margin for the panda tracker problem defined in Section 3.2. These techniques are passive
in the sense that we defer (to Section 5) the question of how to choose actions for the tracker, considering
for now only how to estimate the performance during a given execution. We present two approaches to this
problem: an optimal algorithm based on computing the I-state itself, and a second approach that is more
efficient, but produces only upper and lower bounds on the tracking and privacy margins, respectively.

4.1 Updates directly from the I-state

For the first approach, consider how the tracker might maintain an explicit representation of the I-state
Nk- The initial I-state ny is a disk. In subsequent stages, to compute 11 from 7, we must perform three
transformations on 7y (recalling that states are represented in a coordinate frame attached to the tracker):

1. Rigid body transformation by uy, reflecting the motion of the tracker.

2. Minkowski sum of the resulting region with ©, which is a disk of radius v.4, reflecting all possibilities
for the unknown motion 6 of the target.

3. Intersection of the resulting region with a quarterplane®(the observation preimage H (yx+1)), reflecting
the new information supplied by the sensor.

Brute force algorithms for these operations would take time linear in the complexity of boundary of 7. In
practice, the circular arcs arising in Step 2 can be approximated by polygonal chains.

With this information, the exact privacy margin can be computed by finding the largest disk inside 7.
The center of this largest disk must be equidistant from at least three distinct points on the boundary of
Nk, and therefore it must be located at one of the vertices of the Voronoi diagram of the boundary of 7.
Algorithms are known to compute this Voronoi diagram in O(n) time [2]. Likewise, the exact tracking margin
can be found by computing, in O(n) time [18], the smallest enclosing disk around n.

4.2 Indirect updates with limited memory

For some applications, including those in which the tracker is a very simple mobile sensor platform, compu-
tation and memory resources are at a premium. This section presents passive update algorithms appropriate

3 We use the term quarterplane to refer to the planar intersection of two halfplanes with orthogonal boundary lines.



Fig. 6. Four cases that arise in updating P to Px4+1 and Tk to Th41.

for such situations, which maintain estimates on the tracking and privacy margins but require only relatively
small, constant amounts of time and space. The central idea is to define two sequences of disks, P; ..., Py,
and T1,...,Tx, so that, at each stage ¢, we have P; C n; C T;. Note that these need not necessarily be the
largest privacy disks or the smallest tracking disks for their respective I-states. In the initial condition, the
I-state itself is a disk, so we start with P; = T1 = 19. In subsequent stages, we use Py to compute Py
and Ty, to compute Tj41. The following sections describe this process. After the tracker computes Py41 and
Tk+1, it discards Pk and Tk.

Updating the privacy disk

Given a privacy disk P C 7, an action ug, and an observation yx41, we want to compute a new privacy disk
Pry1 € mia1. Accounting for the motions of the tracker and the target is straightforward. As in Section 4.1,
we perform a rigid body transformation on Py by uy, followed by a Minkowski sum with ©. Since Py is a
disk, these operations can be realized by a translation of the center of P, and an increase of its radius by
vtgt. Let P/ denote the disk resulting from these operations.

It remains to consider the effects of the observation yi+1. At stage k, no states within P can be ruled
out. Therefore, we choose for Py the largest disk inside of P] N H(yx+1), resulting in a region in which
no states in Py can be ruled out for stage k + 1. The problem remains to find the largest disk inside the
region of intersection between a disk and a quarterplane. Depending on the position of P}, relative to the
axes of the quarterplane H(y41), we have one four cases (Figure 6):

1. P/ is fully inside H(yx+1). The resulting intersection is P;, itself, so no change is needed and P11 = Pj.

2. P} is fully outside H(yx+1). The resulting intersection is empty, so Pyy1 is undefined. If this situation
occurs, the tracker can no longer make any privacy guarantees. See Section 5 for a strategy that provably
prevents this case from occurring.

3. P/ is partially inside H(yx41), crossing only one of the quarterplane axes. In this case, we can ignore
the other quarterplane axis and consider only the intersection between a halfplane and a disk. Use a
coordinate frame in which P}, is centered at the origin, and the relevant halfplane boundary is a vertical
line x = b. See the left portion of Figure 7. The largest disk in this intersection region has radius
(b+ radius(P}))/2 and center ((b — radius(Fy))/2,0).

4. PJ is partially inside H (yg41), crossing both quarterplane axes. For this case, choose a coordinate frame
whose horizontal axis bisects the observation preimage quarterplane and whose vertical axis passes
through the center of Pj. See the right portion of Figure 7. Let (s,0) denote the position of the quarter-
plane vertex and let (0, c) denote the position of the center of P} in this frame. The largest disk in the
intersection region has its center on the z-axis in this coordinate system, so let (a,0) denote the center
of Py1. For a fixed a, the distance to the nearest point on the boundary of P, is radius(P}) —v/¢? + a?.
Notice also that the nearest point on each of the quarterplane axes has distance v/2(a — s) from (a, 0).
The resulting radius is maximized with these distances are equal, so we solve

radius(P}) — v/¢2 + a2 = V2(a — s) (6)
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Fig. 7. Updating P}, to Pr+1. The algorithm computes the largest disk inside the shaded region. [left] Case 3. The
center of P, is at the origin, and the relevant axis of H(yx+1) is a vertical line z = b. [right] Case 4. The horizontal
axis bisects H(yr+1) and the vertical axis bisects P,.

for a, using standard analytical techniques. The resulting a can be used to compute Py 1.

Note that we are computing the largest privacy disk consistent with both the privacy disk retained from the
previous stage and the new information obtained at stage k.

Updating the tracking disk

Computing a new tracking disk Tjy1 from T}, ug, and yg41 is similar to the procedure for privacy disk
updates, but instead requires finding the smallest disk around the quarterplane/disk intersection region.
Let T}, denote the tracking disk T} translated and dilated to account for the motion of tracker and target,
analogous to the computation of P} from Py in Section 4.2. The same four cases (Figure 6) arise:

1. Ty is fully inside H (yg+1). No change is needed, so Ti+1 = TJ.

2. T} is fully outside H(yg+1). This never occurs, because both 7} and H(yx4+1) contain the system’s true
state xg.

3. Tj is partially inside H (yx+1), crossing only one of the quarterplane axes. Here, the intersection region
is simply between a disk and a halfplane. As in the privacy case, use a coordinate frame in which T},
is centered at the origin, and the relevant halfplane boundary is a vertical line x = b. If b > 0, no disk
smaller than 7} will suffice, so Ty41 = 7. If b < 0, then choose for Tj4+1 the smallest enclosing disk,
which has center (b,0) and radius y/radius(7})? — b?.

4. T is partially inside H(yg41), crossing both quarterplane axes. If the intersection region contains the
quarterplane vertex, the smallest enclosing disk is the circumcirle of the quarterplane vertex and the two
points on both the boundary of H(yg4+1) and the quarterplane axes. If the intersection region does not
contain the quarterplane vertex, then the smallest enclosing disk is 77}, itself.

See Figure 8. Using these methods, the tracker can maintain Py and T} throughout its execution, giving a
lower bound on the privacy margin and an upper bound on the tracking margin.

5 Active tracking

In this section we build on the passive update methods from Section 4 by introducing techniques to actively
control the tracker to achieve goal conditions G1 (Section 5.1) and G2 (Section 5.2). In Section 5.3 we discuss
an implementation of these algorithms and present some experimental results.

Throughout this section, we use a global coordinate frame, considering the motions of the tracker and
target relative to an arbitrary but fixed external reference point. Since the observation received is determined
by the tracker’s position and orientation, we can view the active tracking problem as a problem of deciding
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Fig. 8. The new tracking disk Tj+1 is the smallest disk enclosing the shaded region. [left] Case 3. The center of T,
is at the origin, and the relevant axis of H(yk+1) is a vertical line z = b. [right] Case 4. The horizontal axis bisects
H(yx+1) and the vertical axis bisects Py.

Fig. 9. [left] Positioning the tracker at the center of T} minimizes the worst-case tracking margin at stage k + 1.
[right] Other positions for the tracker lead to larger worst-case tracking margins. In this case, the tracker is positioned
below and to the left of the center of T, and the worst case occurs if the target is in the top right quadrant.

where, and in what orientation, to place the tracker, thereby indirectly positioning the boundaries of the
observation preimages. Throughout this section, we assume that the tracker has access at each stage to the
privacy disk Py and the tracking disk T}, computed as described in Section 4.2. The strategies we derive
are expressed by prescribing the destination of the tracker, relative to Py and Ty. Note, however, that if the
tracker has sufficient computation power, it can instead use the explicit passive update method described
in Section 4.1, and replace Py and T}, with the smallest enclosing and largest enclosed disks of 7. In either
case, we retain from Section 4 the convention that P} denotes a circle with the same center as Py, with a
radius larger by v;4 (the translation is not needed in this coordinate frame); T}, is defined similarly in terms
of Tk.

5.1 Minimizing the tracking margin (G1)

Goal condition G1 requires the tracker to keep the tracking margin as small as possible, without regard for
privacy. Thus, G1 refers to a typical target-tracking application. Our approach to achieving this goal is based
on the following observation:

Lemma 1. For a given T}, the worst-case tracking margin for stage k + 1 is minimized when the tracker
moves to the center of Ty.

Proof. If the tracker positions itself at the center of T}, the sensor preimage boundaries divide T} into four
parts that are identical up to a rotation. Regardless of the target’s position, the resulting T},1 will have
the same radius. In contrast, if the tracker is not at the center of T}, then for at least one of the four
possible observations, the resulting Ty, will be larger, thereby degrading the worst-case tracking margin.
See Figure 9.
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This observation leads directly to a strategy to achieve G1:
Strategy for G1 Mowve to the center of T}.

What tracking performance does this strategy achieve? If the tracker executes this strategy, the tracking
radii achieved can be expressed recursively:

(radius(Tx) + vige)
; (7)

V2
as described in Section 4.2. This sequence of worst-case tracking margins is monotone, and converges to
(1+ \/i)vtgt. To execute this strategy, the tracker must be fast enough to move in a single stage between the
centers of successive tracking disks T} and Tj41. Since center of Ty will lie on the boundary of Ty, this
distance is equal to the radius of Tj1. Therefore, (1 + ﬂ)vtgt is the maximum useful speed for the tracker,

in the sense that increasing the tracker’s maximum speed beyond this value will not improve the tracking
margins.

radius(Ty41) =

5.2 Maintaining a privacy bound (G2)

Next, we consider G2, in which the tracker wants to keep the tracking margin as small as possible, subject to
the constraint that the privacy margin can become no smaller than a given minimum, denoted p. Our basic
approach is to compute at each stage a “safe region” of destinations for the tracker, within which the privacy
bound is maintained, while collecting some information. If this region is empty, the tracker instead chooses
a position from which only one observation is possible, preventing any reduction of the privacy margin. The
following lemma makes this idea more precise.

Lemma 2. For given Ty and Py, the privacy margin at stage k + 1 will be at least p if, at the end of stage
k, either

(a) the radius of P}, is at least (1++/2)p, and the tracker is within distance \/radius(P})2 — 2 radius(P})p—p,
of the center of Py, facing the center of Py, or

(b) the tracker is farther than v/2radius(T}) from the center of Ty, oriented so that none of the observation
preimage boundaries cross the interior of T}.

Proof. First consider condition (a). Notice that for a fixed distance from the center of Py, the worst-case
privacy is maximized when the tracker faces the center of P;. Assuming the tracker takes this orientation,
we consider (as in Section 4.2) a coordinate system in which the center of Py lies on the vertical axis, and
the horizontal axis bisects H (yr+1). Let (0,¢) denote the center of Py and let (s,0) denote the vertex of
H (yr+1)- Note that because the tracker faces (0, ¢), we have ¢ = s. It remains to find the value of ¢ such that
the resulting largest enclosed disk has radius p. Let (a,0) denote the position of the center of the largest
enclosed disk. The distance from this point to observation preimage boundary is (a — ¢)/ V/2; the distance
to the boundary of Py is radius(P;) — v/¢2 + a?. The radius of the largest enclosed disk is maximized when
these values are equal, which occurs at ¢ = \/radius(P})2/2 — radius(P})p — p/+/2. Finally, for the tracker
to generate this ¢ (and, therefore, to maintain privacy margin p), it must have distance v/2c of the center of
Py. For condition (b), notice that both P, and 7 will be fully contained within H(yj1). In this case, only
one observation is possible, and neither Pyy1 nor Ty will be affected the observation.

Lemma 2 provides two options for the tracker: To stay near the center of P (condition (a)), or to move far
from the center T} (condition (b)). Recalling the proof of Lemma 1, note that whenever the former option
is available, it results in a smaller tracking margin in stage k + 1. As a result, we can state the following
motion strategy for the tracker:

Strategy for G2 If r > (1 4+ v/2)p, move to the point in the disk described in condition (a) of Lemma 2
closest to the center of Ty, facing the center of Py. Otherwise, move distance \@radius(T,é) from the center
of Ty, facing an angle of m/4 away from the line between the center of T}, and the tracker’s destination.*

4 Under a different (and perhaps slightly more realistic) model in which the robot can choose whether or not to use
its sensor at each stage, this second option can be replaced by simply choosing not to sense.
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Fig. 10. Execution snapshots the Strategy for G1 described in Section 5.1. (a) The initial condition, in which the
tracking disk and the true information state are identical. (b) After the first observation is received, the tracking disk
encloses the information state (which the tracker does not compute). The tracker’s destination is the center of this
tracking disk. (c) Before sensing in stage 28 of this execution. The information state 125 and tracking disk Thg are
shown. (d) After sensing in stage 28. Notice that in this example, the tracking disk 7% is only a poor approximation
of the smallest tracking disk.

0
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Fig. 11. Execution snapshots the Strategy for G2 described in Section 5.2. Shown left to right are the situations
after sensing for k = 1,2, 3,4. Notice that the safe region is empty for k = 1 and k = 4.

In either case, the tracker’s destination is straightforward to compute using circle-line intersection methods.

5.3 Simulation and experimental results

To evaluate our approach, we have implemented these algorithms in simulation. Figures 10 and 11 show
several stages of example executions of G1 and G2, respectively. In these figures, the target’s position is
shown with a small circle. The tracker’s current position and orientation are shown with a shaded triangle;
the destination for the tracker is shown as an unshaded triangle. The large outer circle is the boundary of
T}, and the shaded region is the I-state n. Figure 11 also shows the boundary of Pj.

One natural question is to ask how much the tracking performance is degraded when the tracker’s goal
is G2 with nonzero p, compared to the “pure tracking” performance of G1.> That is, how much tracking
accuracy must be sacrificed in order to guarantee a given level of privacy? To answer this question, we
performed experiments with v;g; = 2.5 and values of p varying between 0.1 and 2.5 in increments of 0.1. In
each trial, the target moved through a sequence of randomly-selected destination points and we recorded the
tracking radius achieved for each of these 25 values of p. Each trial lasted for 1,000 stages, and we averaged
the results over 1,000 trials. Figure 12 summarizes the results of this experiment. The results, as one might
expect, illustrate a tradeoff between tracking and privacy. When p = 0.1, the average results are similar

® Note, however, that G1 is not simply a special case of G2 in which p = 0. The former allows P, to become an
empty set, but the latter requires Pj to remain at least a disk with radius 0, that is, a single point.
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Fig. 12. Comparison of tracking radii for various tracker goals, including G1, and G2 with varying values of p.

to those for G1, and for larger values of p, the tracking radii increase roughly linearly. More substantial
differences can be seen when comparing the maximum tracking radius that occurred in each trial.

We also performed experiments to assess the performance advantage gained by using the explicit updates
of Section 4.1 compared to the constant time and space indirect updates of Section 4.2. We used v;g¢ = 1.5,
two different motion patterns for the target: a random walk and repeated circuits around a square of radius
10, and three motion strategies for the tracker: random movements, our strategy for G1, and our strategy for
G2 with p = 1.5. For each of these six combinations, we performed 100 trials of 1,000 stages each, computed
the ratios of tracking radii for explicit compared to implicit updates, and computed similar ratios for the
privacy margins. For both tracking and privacy, we divided the smaller value by the larger one, so that a
result of 1.0 would indicate optimal performance. Figure 13 shows the results. Privacy results are shown only
for the cases in which the tracker’s goal is G2; for the other two goals, Py is quickly eliminated, leading to
average ratios very close to 0.

Several interesting phenomena can be observed in the results. For tracking, implicit updates generate
the best results when the tracker’s goal is G1. This reflects the fact that, in general, the I-states achieved
in this condition have the approximate shape of a right isosceles triangle, with the center of 7; on the
hypotenuse. This leads to similar results for both implicit and explicit updates. Observe also that, across
all tracker strategies, the approximation is superior for random motions of the target than for the square
pattern. This reflects that fact that, whenever the target makes a long motion in a single direction, implicit
updates repeatedly make the same kinds of over- or underestimates. The issue is especially visible for G2, in
which the tracker is frequently “held back” by a need to stay within Pj.

6 Discussion and Conclusion

This paper presented an initial investigation of the role that a geometric view of privacy can play in
robotic tracking problems. Unsurprisingly, many important questions have been left unanswered. This section
presents some discussion and briefly reviews a few of these open problems.

6.1 Other goal conditions

It may be tempting to consider other goal conditions. Two possibilities that are somewhat analogous to the
G1 and G2 that we have considered in detail are:
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Tracking Tracker motion
random G1 G2
Target random 0.596 0.838 0.619
motion square 0.352 0.770 0.386
Privacy Tracker motion
G2
Target random 0.789
motion square 0.696

Fig. 13. Comparison of implicit versus explicit update methods for various motion strategies. In each table, a value
of 1 would indicate that the performance of the implicit algorithm perfectly matches the explicit (optimal) algorithm.
[top] Ratio of exact tracking margins for explicit updates to tracking margin upper bounds for implicit updates
[bottom] Ratio of privacy margin lower bounds for implicit updates to exact privacy margins for explicit updates.

G3: Maximize privacy margin — Keep the privacy margin as large as possible, without
regard for the tracking margin.

G4: Maintain tracking bound — Keep the privacy margin as large as possible, while ensuring
that the tracking margin is no larger than a given maximum, denoted 7.
Note, however, that for G3, ideal results can be achieved simply by powering down the robot! For G4,
an obvious reactive strategy would choose between a “run away” action (to allow Py to grow unimpeded)
whenever T}, is sufficiently small, and evenly divide Py otherwise.

6.2 Sensor models

In this paper we considered only one particular kind of sensor for the tracker, one in which the preimages
are quarterplanes. Alternatives we contemplated in the development of this work include sensors whose
preimages are disks and their planar complements (that is, the plane with a disk deleted), halfplanes, and
annuli. Each requires its own method for passively updating the tracker’s information and its own unique
active motion strategies. Note, however, that depending on the sensor models used, it may be challenging or
impossible to design active strategies to satisfy G1 or G2. For example, if the observation preimages are a
disk and its complement (such as would be the case if the sensor reported only whether the target was within
a certain radius), then regardless of the tracker’s strategy, the worst-case tracking margin would increase
without bound, corresponding the case in which the target moves far away from the tracker throughout its
execution. Similar difficulties occur if the observation preimages are halfplanes.

Recall also that the sensor models used in this work are deterministic, not allowing for sensor noise. The
primary effect that sensor noise would have on our formulation is that the observation preimages would
overlap, allowing the observation to be chosen in some unknown way whenever the state is in an overlap
region. See Figure 14. This enlargement of the preimages can be expected to make privacy easier to maintain
at the expense of increased difficulty in tracking. For the particular case of our quadrant sensor, the update
algorithms would require only slight generalizations, and we expect the resulting active strategies to be quite
similar as well.

6.3 Strategies that exploit explicit updates

The strategies introduced in Section 5 depend on having access to a privacy disk and a tracking disk at each
stage, and can not directly make use of additional information to which the tracker may have access. One
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Fig. 14. Introducing sensor noise would allow the observation preimages to overlap.

obvious possibility is to use the I-state directly to choose actions, rather than using its smallest enclosing and
largest enclosed disks. As an example, for G1 this approach would require the tracker to choose a position
and orientation for the observation preimage boundaries so that the smallest enclosing disk of the resulting
I-states is minimized.

6.4 Broader extensions

Several other extensions merit additional research, the most interesting of which include the presence of
obstacles; related problems with multiple trackers, multiple targets, or both; and nontrivial mobility con-
straints.
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