
© 2007 by Jason Matthew O’Kane. All rights reserved.

A THEORY FOR COMPARING ROBOT SYSTEMS

BY

JASON MATTHEW O’KANE

B.S., Taylor University, 2001
M.S., University of Illinois at Urbana-Champaign, 2005

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2007

Urbana, Illinois

To everyone who has loved and

supported me along the way.

iii

Acknowledgment

Completing this thesis would never have been possible without generous assistance from

many different people. I gratefully acknowledge the mentoring of Steve LaValle, who acted

as a powerful catalyst for my development as a researcher and provided inestimably valuable

advice along the way. I also offer sincere thanks to my colleagues Peng Cheng, Hamid

Chitsaz, Steve Lindemann, Benjamı́n Tovar, and Anna Yershova for critiquing my ideas and

pushing me to do my very best work. My committee members Mike Erdmann, Jeff Erickson,

David Forsyth, and Rob Ghrist offered helpful guidance and unique perspectives on my work.

Many other teachers and professors, including Leon Adkison, Felix Aguilar, Stefan Brandle,

Tim Diller, George Lepsch, Richard Malay, Anne Marie Nucci, Frau Diana O’Donnell, Janet

Robb, Wally Roth, Bill Toll, and Art White, have had immense influence on my development

as computer scientist and as a person. Thanks for the unique contributions you each have

made to my life.

More personally, I am thankful for the support I have received from my parents, other

family, and my friends throughout my time in graduate school. Thanks to Greg Mackey,

Naomi Caldwell, Abby Rigdon, Abe Millar, Steve and Lynn Rigdon, Karin Knapp, and

Blake Johnson, who have each been friends to me in various ways and at various times.

Finally, it would be impossible to fully describe the steadfast patience and loving encour-

agement I’ve received from my wife, Heather. Thank you.

Financial support for this work was provided by DARPA under awards HR0011-05-1-0008

and HR0011-07-1-0002, by ONR under award N00014-02-1-0488, by NSF and CONACyT

under award 0296126, and by a Roy J. Carver fellowship.

iv

Abstract

As robots interact with the physical world, their usefulness depends directly on how effec-

tively they can sense and move through their environments. Unfortunately, sensors provide

only limited (and sometimes incorrect) information. In extreme cases, no sensors at all

will be available. Therefore, for robots to be useful, they must act effectively in spite of

uncertainty about the current state. This reality motivates a careful study of the informa-

tion requirements of the problems we intend to solve. What sensing and actuation abilities

are needed to complete a given task? Are some robot systems provably “more powerful,”

in terms of the tasks they can complete, than others? Can we find meaningful equivalence

classes of robot systems? This thesis presents two related lines of research that make progress

toward answering these questions.

First, we introduce a new technique for comparing the power of robot systems based

on how they progress through their information spaces, which encapsulate the robots’ state

uncertainty. The goal is to understand the relative power of different sets of sensors and

actuators and to determine which of these sets enable the robot to complete its task. This line

of research is inspired by the theory of computation, which has produced similar results for

abstract computing machines. The central idea is a dominance relation over robot systems,

formalizing the idea that some robots are more powerful than others. This comparison

induces a partial order over the set of robot systems. We prove some basic properties of this

partial order, show that it is directly related to the robots’ ability to complete tasks, and

give several examples.

Second, we apply these ideas to the problem of active, global localization for mobile

v

robots. Sensor systems of varying ability have been proposed and successfully used to com-

plete this task. We probe the lower limits of this range by describing three extremely simple

robot models and addressing the active localization problem for each. The robot, whose state

includes its position and orientation, moves in a fully known, simply connected polygonal

environment. We pose the localization task as a planning problem in the robot’s information

space. We consider robots equipped with (1) angular and linear odometers, (2) a compass

and contact sensor, and (3) an angular odometer and contact sensor. We present local-

ization algorithms for models 1 and 2 and show that no algorithm exists for model 3. An

implementation with simulation examples is presented. These three results, combined with

the comparison results mention above, allow us to fully classify a set of 15 robot models

according to their ability to complete the localization task.

vi

Table of Contents

List of Figures . x

List of Tables . xiv

List of Symbols . xv

Chapter 1 Introduction . 1
1.1 The challenge of autonomy . 3
1.2 Core ideas . 4

1.2.1 Information spaces . 4
1.2.2 Minimalism . 6
1.2.3 Feasible feedback planning . 8

1.3 Thesis overview . 8
1.3.1 Comparing the power of robot systems 9
1.3.2 Localization with limited sensing . 11

Chapter 2 Basic definitions . 13
2.1 Basic ingredients . 13

2.1.1 The state space . 14
2.1.2 Actions and transitions . 17
2.1.3 Observations . 19

2.2 Information spaces . 20
2.2.1 The history information space . 21
2.2.2 Information maps and derived information spaces 22

2.3 Tasks and solutions . 26

Chapter 3 Comparing the power of robots 30
3.1 Related work . 33
3.2 Defining a set of robot systems . 34
3.3 The information preference relation . 38
3.4 A dominance relation over robot systems . 39

3.4.1 Dominance examples . 41
3.4.2 Properties of the dominance relation 43

3.5 Extended example: Global localization . 45
3.5.1 Task definition . 45

vii

3.5.2 Equivalences and dominances . 46
3.5.3 Completing the localization task . 47
3.5.4 The value of initial information . 49

3.6 Extensions and generalizations . 50
3.6.1 Imperfect sensing and control . 50
3.6.2 Continuous time . 54

3.7 Dominance and reachable sets . 62
3.8 Discussion . 66

Chapter 4 Localization with limited sensing 69
4.1 Related work . 71

4.1.1 Passive localization . 71
4.1.2 Active localization . 72

4.2 Problem statement . 73
4.2.1 Actions, transitions, and observations 73
4.2.2 Planning in the information space . 75

4.3 Localization with odometry . 76
4.3.1 Algorithm overview . 76
4.3.2 Generating a finite set of candidates 77
4.3.3 If some boundary edges are parallel 82
4.3.4 Localization from a finite set . 83
4.3.5 Complexity . 84
4.3.6 Environment symmetries . 85
4.3.7 Computed examples . 88

4.4 Localization with a compass and contact sensor 89
4.4.1 Computing the information transition function 90
4.4.2 Algorithm overview . 92
4.4.3 From all the entire environment boundary to a finite subset 92
4.4.4 From a finite subset to a single point 95
4.4.5 Computed examples . 100

4.5 Localization with an angular odometer and contact sensor 101
4.6 Discussion . 102

4.6.1 Comparison of results . 103
4.6.2 Comparison between sensing models 103
4.6.3 Relationship to probabilistic methods 104

Chapter 5 Discussion and conclusion . 108
5.1 Lessons learned . 108

5.1.1 Solve the passive problem first . 108
5.1.2 Use abstraction to model robot systems 109
5.1.3 Use partial orders instead of linear orders 110
5.1.4 Don’t use unnecessarily specific uncertainty models 110

5.2 Open problems . 111
5.2.1 Probabilistic uncertainty . 111

viii

5.2.2 Selecting the catalog of primitives . 111
5.2.3 Efficiency and optimality . 112
5.2.4 Parameterization of time . 112

5.3 Future directions . 113
5.3.1 Communication, cooperation, and disposable robots 113
5.3.2 Unknown and unstructured environments 114
5.3.3 Necessary computation power . 114

Appendix A Hardness of minimum distance localization with odometry 115

Appendix B Execution examples . 119

References . 134

Author’s Biography . 146

ix

List of Figures

1.1 A Roomba robotic vacuum cleaner. Roombas inexpensive and commercially
available, but their sensing capabilities are very weak. 2

1.2 Organization of this thesis. Arrows indicate dependencies. 9
1.3 A dominance hierarchy for a collection of simple robot models. Arrow indicate

that one robot model dominates the other, in the sense of Definition 3.3.
Details are in Section 3.5. 10

1.4 There are many options for mobile robot sensing. [top left] A compass reports
the robot’s orientation with respect to a global reference direction. [top right]
A linear odometer measures the distance the robot travels. [bottom left] A
landmark detector identifies relevant features of the environment. [bottom
right] A range sensor measures the distance to nearby obstacles. 12

1.5 A localizing sequence generated by Alg. 4.2. A robot starting with no in-
formation about its position localizes itself to the top right corner of the
environment. Possible states after each motion are shaded. Details of the
robot model and the algorithm appear in Chapter 4. 12

2.1 A robot interacts with its environment by executing actions and receiving
observations. 14

2.2 A robot in a planar environment E. Its state space is X = E × S1. 15
2.3 Three states of a system modeling a mobile robot in the plane with environ-

ment uncertainty. When the environment is uncertain, the identity of the
environment becomes part of the state of the system. 16

2.4 A robot in a planar environment E, along with a collection of 7 movable
objects. The state space of the complete system is X = (E × S1)× E7. . . . 17

2.5 A simple system in which a robot’s action directly specify the magnitude and
direction of the robot’s motion. A sample 5-stage execution is shown. 18

2.6 A robot that can sense the distance to a stationary landmark. 20
2.7 Under nondeterministic uncertainty, the derived information state is a subset

of the state space, indicating a minimal set of “possible states”. 23
2.8 A goal region in Indet, in which the robot must enter XG in state space and

recognize this goal. 27
2.9 A visitation problem. The robot, without knowing its configuration or envi-

ronment ahead of time, must visit CT . 28
2.10 A single execution stage for a robot with uncertainty in its state. 29

x

3.1 Sample executions of the primitives of Examples 3.1 and 3.2. [top] PA allows
the robot rotate relative to its current orientation. [bottom] PC allows the
robot to rotate relative to a globally defined “north” direction. 36

3.2 Sample executions of the primitives of Examples 3.3-3.5. [top] PT allows the
robot to translate forward until it reaches an obstacle. [middle] PL allows
a robot to specify a distance to translate. [bottom] PR allows the robot to
measure the distance forward to the nearest obstacle, but does not change the
robot’s state. 37

3.3 A sample execution of the primitive of Example 3.6. The robot senses its
position, but its state does not change. 37

3.4 An illustration of Definition 3.3. If R2 can always reach an I-state better than
the one reached by R1, then R1 ER2. 40

3.5 An illustration of Example 3.9. The robot R2 = {PA, PL} dominates the
robot R1 = {PR} because the former can simulate the latter. [left] A distance
measurement made directly by R1. [right] Distance is measured indirectly by
R2 using its linear odometer. 42

3.6 Fifteen robot models grouped into their eight equivalence classes. 47
3.7 Classification of robot models under which the localization task can be com-

pleted. Shaded models do not admit a solution. Arrows indicate dominances. 48
3.8 Equivalence classes, dominance, and ability to solve the localization problem

when the robot’s initial orientation is given. Compare to Figures 3.6 and 3.7. 49
3.9 As the robot interacts with its environment, an artificial decision maker nature

generates disturbances. 50
3.10 [left] The robot in Example 3.14 gives displacement inputs that determine

a nominal trajectory. [right] Nature interferes with this motion, but error
bounds ensure that the final state is contained in a circle of radius kθmax. . . 51

3.11 [left] The robot in Example 3.15 has a sensor that reports a noisy estimate of
the distance to the origin. [right] Accounting for noise bounded by ψmax, the
observation confines the robot’s state to an annulus of width 2ψmax. 52

3.12 Effects of varying error bounds on dominance between two otherwise identical
robots. The horizontal axis shows the difference in actuation error bounds.
The vertical axis shows the difference in sensing error bounds. 54

3.13 An illustration of Definition 3.5. Compare to Figure 3.4. 58
3.14 The lost cow of Example 3.22 searching for a gate. 60
3.15 The relationship between dominance, reachable sets, and preference closure. 63
3.16 An illustration of the proof of the forward part of Lemma 3.11. 64
3.17 Two transition systems from Example 3.23 demonstrating the importance of

the directedness transitions in I. 65
3.18 A sample decision problem. What sensing is required to decide if a planar

environment is simply connected? What robots can distinguish the annulus
environment on the left from the helix on the right? 67

4.1 A robot in a serpentine environment. What sensing is required for the robot
to eliminate uncertainty in is position? . 70

xi

4.2 Although AL and CT have only slightly stronger sensing than AT, they are
capable of localization whereas AT is not. 71

4.3 [left] Two boundary-to-boundary motions in a square shaped environment,
separated by a turn of 90°. [right] The 8 possibilities for these motions in this
environment. 79

4.4 Three fixed segments p1p2, p3p4, and p5p6 and translations of length d1 and
d2 between them. 79

4.5 [top] Parallel edges of the environment admit continua of candidate states.
[bottom] A motion parallel to one of these segments leaves only a single can-
didate point. 82

4.6 [left] Two states in an L shaped environment. [right] Two overlaid copies
of the environment shown in the local frame of those states. Attempting to
execute the path shown (which consists of one rotation and one translation)
shown will result in different odometry readings for these two states. 84

4.7 Sample environments with, from left to right, 6, 2, and 1 rotational symmetries. 86
4.8 With nontrivial symmetries, the robot can reach a known position, but is

unable to fully determine its orientation. [left] Four symmetric states in a
square environment. [right] Motions from those symmetric states to a position
fixed by the symmetries. 87

4.9 A sample execution of Algorithm 4.1 generated by our implementation in
approximately 0.03 seconds. Top row: (a) The robot in its initial state. (b)
The motions generated by InitialActions. (c) There are 7 states consistent
with these initial motions, so |η6| = 7. Bottom row: (d) One disambiguation
results in |η12| = 2. (e) The robot is fully localized after 13 commands, with
final information state |η14| = 1. 88

4.10 A robot localizing itself in an environment with 5 symmetries. From top
to bottom: (a) The robot’s initial state. (b) Executing InitialActions

results in an information state η8 containing 15 states. (c) One disambiguation
iteration fully localizes the robot, leaving 5 states in η10. Our implementation
took approximately 0.1 seconds to solve this problem. 89

4.11 A robot localizing itself in a serpentine environment. From top to bottom:
(a) The robot’s initial state. (b) Executing InitialActions results in an
information state η6 containing 48 states. (c) After 2 iterations of the disam-
biguation algorithm, only 6 states remain in η10. (d) There are only two states
in η20. (e) The robot is fully localized after 25 motions. Our implementation
took approximately 3.8 seconds to solve this problem. 90

4.12 A localizing sequence generated by Alg. 4.2 for CT in a nonconvex polygon.
The information state at each step is shaded. Compare to Fig. 4.9. 91

4.13 Computing fI(ab, u) by a line sweep algorithm. The diagram shows a snapshot
of the algorithm as it runs. The sweep line l moves from left to right. 92

4.14 [left] A motion along ab collapses ab to a single point. [right] No motion not
parallel to ab can collapse ab. 94

4.15 A sample execution of the first half of Algorithm 4.2. 95

xii

4.16 [left] A visibility polygon. Spurious edges are dashed. [right] The shortest
path to any point not in the visibility polygon begins with a motion in the
direction of a spurious edge. 97

4.17 [left] The spurious edge tkvk hides pk from qk. [right] The point qk+1 cannot
cross tkvk because its motion is parallel to tkvk. 97

4.18 A sample execution of the second half of Algorithm 4.2. 99
4.19 The special case when tkvk is a bitangent. An extra motion is needed. 100
4.20 [left] An environment with many regularities. Algorithm 4.2 generates a 5-

step localizing sequence for this environment, running in approximately 0.4
seconds. [right] A modified version of the environment from Figure 4.20 in
which the regularities have been broken. Our algorithm generates a 26 step lo-
calizing sequence for this environment, running in approximately 1.0 seconds.
. 101

4.21 [top] An irregular environment for which the localizing sequence computed
by our algorithm requires 30 steps. The computation took about 1.9 seconds.
[bottom] Execution traces of this localization sequence for 6 different starting
positions. For each starting position, the final position is the lower right
corner of the environment. 105

4.22 A plan must work for any initial orientation, but any plan can only work for
finitely many of them, because there must always be at least one collapsing
transition. 106

4.23 Probabilistic error models for a Roomba robot moving from the interior of its
environment to the boundary. The variance of the distribution is exaggerated
for illustration purposes. 106

4.24 Two synthetic environments for which the algorithm of [64] allows a Roomba
to solve the active global localization problem. Photos by Lars Erickson. . . 107

5.1 Good strategies for coordinating teams of unreliable robots may lead to sys-
tems that are reliable as a whole. 113

A.1 Constructing a localization problem from an instance of ADT. Not to scale. . 116

xiii

List of Tables

4.1 Experimental results on the performance of Algorithm 4.1. One hundred
initial states were randomly selected from the state space of the environment
depicted in Figure 4.11. 89

B.1 A localizing sequence computed by Algorithm 4.2 for a highly symmetric
environment. 119

B.2 A modified version of the environment from Table B.1 in which the symmetries
have been broken. Our algorithm generates a 28 step localizing sequence for
this environment. 120

B.3 An irregular environment for which the localizing sequence computed by our
algorithm requires 30 steps. 126

xiv

List of Symbols

X state space . 13

E environment space . 15

E environment . 15

C robot configuration space .16

M external world state space . 16

U action space . 16

k current stage index . 17

uk action at stage k . 17

xk state at stage k . 17

f state transition function . 18

Y observation space . 19

h observation function .19

yk observation at stage k . 19

Ihist history information space .21

ηk I-state at stage k . 21

π policy over history I-space . 22

Fm m-fold policy application . 22

I derived information space . 22

κ information mapping . 22

Indet nondeterministic derived I-space .23

κndet nondeterministic I-map .23

xv

κpw possible worlds I-map . 24

fI information transition function for sufficient I-maps . 25

IG goal region . 25

π policy over derived I-space . 26

CT target region for visitation problems . 26

RP catalog of primitives .34

R̂ master robot equipped with every primitive in RP . 35

PA a certain primitive implementable with an angular odometer35

PC a certain primitive implementable with a compass . 35

PT a certain primitive implementable with a contact sensor . 36

PL a certain primitive implementable with a linear odometer . 36

PR a certain primitive implementable with a unidirectional range sensor36

PG a certain primitive implementable with a GPS client .36

� information preference relation . 38

E robot dominance . 39

≡ robot equivalence . 39

ED robot incomparability . 39

Θ nature action space . 50

θk nature action at stage k . 50

Ψ nature observation action space . 50

ψk nature observation action at stage k . 50

Ũ space of all continuous-time action histories . 55

Ũt space of all continuous-time action histories of length t . 55

ũ robot’s complete action history . 55

ũt robot’s action history up to time t .55

uT termination action . 55

Φ continuous time state transition function . 55

xvi

Ỹ space of all continuous-time observation histories . 56

Ỹt space of all continuous-time observation histories of length t 56

ỹ robot’s complete observation history .56

ỹt robot’s observation history up to time t . 56

T policy termination time . 56

F final state after executing policy . 56

Itime time elapsed derived I-space . 57

Iobs most recent observation derived I-space .57

Z(R, η) reachable set for R starting at η . 62

Pc−(N) reverse preference closure of N . 62

∂E boundary of E . 73

⊔ disjoint union . 74

∼ rotational symmetry between states . 85

Vis(x,E) visibility polygon of x in E . 96

xvii

Chapter 1

Introduction

These are exciting times in robotics. After decades of research, robot technology is poised

to have profound near-term impact on many aspects of society. Evidence of this promise

includes:

1. The growing popularity and mainstream commercial availability of household robots

like iRobot’s Roomba1 (see Figure 1.1) or the RoboMower from FriendlyRobotics.2 As

prices decrease and functionality is enhanced, such household robots can be expected

to integrate more completely into everyday life.

2. The DARPA Grand Challenge races, in which 5 different vehicles navigated autonomously

across a 212km desert course [35, 110]. Such autonomous vehicles could drastically re-

duce the need for human presence in some dangerous military contexts. The upcoming

Urban Challenge.3 may result in similar progress for autonomous driving on congested

urban settings and eventually lead to improved highway safety for civilians.

3. The increasing robustness and autonomy of humanoid robots such as Honda’s Asimo.4

Since their physical characteristics mimic those of humans, humanoid robots are well-

suited to operation in human living spaces. Such robots may soon be used to provide

assistance and companionship to the elderly.

1http://www.irobot.com
2http://www.friendlyrobotics.com
3http://www.darpa.mil/grandchallenge/
4http://asimo.honda.com/

1

http://www.irobot.com
http://www.friendlyrobotics.com
http://www.darpa.mil/grandchallenge/
http://asimo.honda.com/

Figure 1.1: A Roomba robotic vacuum cleaner. Roombas inexpensive and commercially
available, but their sensing capabilities are very weak.

These examples suggest that, for the first time, truly autonomous robots are becoming prac-

tical. In addition, general-purpose software tools such as the Microsoft Robotics Studio5 and

the Player/Stage framework6 along with the maturing collection of prebuilt research plat-

forms such as the Pioneer7 and Khephera8 suggest that experimental robotics research will

accelerate even more. Planning techniques developed in robotics are even having increasing

impact on manufacturing [13, 101], animation [100], and computational biology[41].

5http://msdn.microsoft.com/robotics/. See also [69].
6http://playerstage.sourceforge.net/
7http://www.activrobots.com/
8http://www.k-team.com/

2

http://msdn.microsoft.com/robotics/
http://playerstage.sourceforge.net/
http://www.activrobots.com/
http://www.k-team.com/

1.1 The challenge of autonomy

In spite of this potential, autonomous robots are not yet widely deployed. What are the

remaining roadblocks? Loosely defined, a robot is a device that couples computation of

some kind with some type of direct, substantive interaction with the physical world. The

distinguishing feature of robots, therefore, in comparison to other computing machines,

is that is that robots interact purposefully with the physical world. This reality presents

a major challenge because the physical world is unstructured, unpredictable, and complex.

Consequently, we claim that finding effective ways to collect and act upon information about

the external world will be crucial for robot technology to continue its advance.

Historically, most approaches to dealing with the challenge of interacting with the physi-

cal world fall into one of two general categories. The first approach attempts to skirt the issue

by limiting the robot to operate only under closely controlled conditions. In some cases, the

environment is modified (or even designed from scratch) specifically for a certain task. This

approach has been especially successful in industrial settings, but its usefulness is ultimately

limited to contexts where the environment is very well-modeled and very predictable. A

more complete criticism of this approach appears in [161].

Other systems attempt to deal with a larger subset of the world’s complexity using elab-

orate sensor systems. A typical example might include some combination of laser range

sensors, sonars, cameras, GPS receivers, wheel and joint encoders, and other sensors. Al-

though such sensors are capable, in principle, of providing a wealth of information about the

environment, they also increase the cost and energy consumption of the resulting system.

Dealing robustly with noise in these sensors also increases the modeling burden and can

drastically increase the complexity of the system’s software. Mason gives an insightful (and

amusing) critique of this approach in [117]. On a more fundamental level, designing sys-

tems with an excess of sensors generally sheds little light on which of those sensors provides

information that is necessary, rather than merely sufficient, to complete a given task.

3

In this thesis, we argue for a third approach characterized by robots that interact with

their environments using a small set of sensors that provide only limited information. This

approach is motivated by at least three potential benefits. First, it may lead directly to

simpler robot designs and algorithms for some tasks. Second, we expect to gain a better

understanding of robotic problems by understanding the information requirements of those

problems – the conditions on sensing under which those problems can and cannot be solved.

Third, knowledge of how to solve relevant problems in spite of sensing limitations can be

useful in failure modes of more complex robots, particularly for cases, such as space robotics,

in which the deployment cost is very high.

In the remainder of this chapter, we review the main ideas that guide the work (Sec-

tion 1.2) before previewing the primary results and structure of the thesis (Section 1.3).

1.2 Core ideas

The arguments of this thesis are built on the philosophy that sensing and uncertainty are

core, defining issues in robotics and that the key to understanding robotics problems is to

understand how these problems can be solved when sensing is limited and uncertainty is

great. This philosophy leads us to explore three interrelated themes in this work.

1.2.1 Information spaces

Many existing methods in robotics focus on the robot’s progression through a space of

states, assuming that the robot has full knowledge of the current state at all times during its

execution. What happens when the robot has insufficient information to determine its state?

One approach is to use state estimation, in which the robot uses the information available

to it to make an “educated guess” about its state. The robot can treat this estimated state

as its true state and ignore the uncertainty. In some extremely limited contexts, this is

4

provably optimal. (See, for example, Section 6.1 of [22].) For many tasks, however, accurate

state estimation is impossible.

The central technical tool we use to account for this difficultly is the information space,

which naturally encodes the robot’s knowledge. Rather than attempting to estimate the

current state, the robot instead relies on its history of actions and sensor readings. These

histories, together called the robot’s information state, are always fully known. The twofold

challenge is to devise efficient ways to represent, update, and query this information, and to

develop plans defined in terms of this information state, rather than the robot’s unknown

true state.

Information spaces are analogous to the configuration spaces that arise in mechanics and

classical motion planning, in the sense that they provide a unified way of approaching many

different problems. Therefore, we claim that a deep understanding of the information space is

essential to effective methods for planning in the presence of uncertainty. Information spaces

in various forms appear in game theory [16, 94], control theory [22, 95], artificial intelligence

[124, 138, 167], and robotics [52, 53, 62, 73, 111]. Unfortunately, the information spaces

themselves, particularly as they arise in robotics, are not yet well understood.

Note also that the raw sensor and action histories recorded by the robot’s history I-state

usually are not directly informative. This motivates our study of information mappings into

derived information spaces. These mappings, in their most general form, were introduced by

LaValle in [102]. A derived information space can be viewed as a “compression” or “interpre-

tation” of the histories. Such a mapping could be based on probabilistic or nondeterministic

models of the robot’s sensors and environment. Other more drastic or problem-specific map-

pings are also possible. The choice of an information mapping determines the conclusions

the robot can make about its state and indirectly determines the problems the robot can

solve. Consequently, the choice of an information mapping and a derived information space

are crucial modeling decisions.

5

1.2.2 Minimalism

Both sensors and actuators are subject to significant errors in precision and accuracy. Ef-

fective robots must be robust to these errors. Starting, perhaps, with Whitney’s critique

of mid-1980’s robotics research [161], an approach has arisen in which these difficulties are

dealt with by designing extremely simple robots that exploit the conformant properties of

the system to complete their tasks. In industrial settings, complex tasks can be solved by

sequences of these simple robots [37]. Other work has explored the more general question

of the minimal sensing requirements to complete a given task [29, 52, 63]. This minimalist

approach, which we take throughout this thesis, has been applied to several different kinds

of robotics problems.

Many effective systems for manipulation have used a minimalist approach. Akella and

Mason [6] give a complete planner for pushing objects on a planar surface while avoiding

obstacles. A broader focus of research has been on part orienting systems, in which parts

with unknown initial orientation are manipulated into some known final orientation. This

has been accomplished with limited sensing using tilting trays [59, 60, 74, 123], parallel jaw

grippers [72, 73], vibratory bowl feeders [4, 21, 31], linear pushes [7], and active [5, 7] or

passive [36, 162] fences over conveyor belts. These methods are surveyed in [158]. For some

of these cases, the problem of planning to orient parts can be reduced to that of finding a

sequence that resets a finite state machine from an unknown initial state to a known final

state [58]. Another approach is to consider carefully the effects of initial conditions, for

example in the context of dropping parts onto a designed surface [121]. More generally,

the preimage planning framework [111] has been used for manipulation planning under

uncertainty [61, 63].

Others have considered certain navigation and exploration tasks for mobile robots with

limited sensing. An analysis of the basic requirements for navigation in an unknown three

dimensional environment appears in [96, 97]. Bug algorithms [87, 88, 114, 115] and related

6

methods [27, 51] are used for navigation by robots capable of moving toward their goals and

discovering obstacles, usually by coming in contact with them, along the way. In [156, 157],

the robot has an extremely crude range sensor that can only detect discontinuities in depth

information. As the robot explores its environment, this information is used to construct a

data structure that allows for optimal navigation between previously visited locations. More

explicit maps based on metric measurements can be built with a range sensor by traversing

the generalized Voronoi graph of the environment boundaries [2, 3, 43, 44, 125]. Another

approach is to assume that the robot can move reliably only when it is near certain known

landmarks. Lazanas and Latombe give a method for navigation under such constraints [104].

The robot model used in [164] is even simpler, capable only of following walls and “jumping”

across the interior of the environment at reflex vertices of the environment boundary. Many

of these results are surveyed in [135].

More abstractly, one may think of the universal traversal sequences that arise in graph

theory [8, 9] as a minimalist approach to the coverage problem. Let g denote a d-regular

graph. For each vertex of g, we may bijectively label the incident edges with the labels

{1, . . . , d}. Fixing a start vertex v, a string s ∈ {1, . . . , d}∗ can be considered a path in g

by following edges in the indicated order. If s visits every vertex in g, we call s a traversal

sequence for g starting at v. Now consider the family G(n, d) of all connected n-vertex d-

regular graphs. A sequence s is a (n, d)-universal traversal sequence if s, for each g ∈ G(n, d)

and each v ∈ g, s is a traversal sequence for g starting at v. Universal traversal sequences can

be considered as solutions to planning problems with uncertainty both in environment space

(that is, the selection of g from G(n, d)) and in state space (that is, the selection of a start

vertex v ∈ V (g)). More concretely, observe that G(n, 4) contains all grid-like environments

in the plane with n unoccupied cells, so that an (n, 4)-universal traversal sequence will visit

every square of any n-element planar grid. Borodin et al. [33] give several lower bounds on

the lengths of universal traversal sequences. In [10], the problem is addressed for complete

graphs. Bounds for other special cases appear in [38, 85, 151].

7

This collection of work can be interpreted in at least two different ways. At the sur-

face level, it can be construed as a collection constructive proofs that certain tasks can be

completed with limited sensing. More deeply, these results can be understood as revealing

something about the information required for the tasks they address.

1.2.3 Feasible feedback planning

Most classical formulations of planning assume that the desired output is a sequence of

actions that achieves a goal while minimizing some cost criterion. We consider formulations

that differ in two important ways. First, since the sensor data received cannot, in general,

be predicted ahead of time, we expand the notion of a plan from a sequence of actions to

allow feedback. Such a plan takes the form of a function mapping from a derived information

space into the space of actions available to the robot. Second, we emphasize feasibility over

optimality. That is, we ask “Can the robot complete its task?” rather than “How efficiently

can the robot complete its task?”.

One informal way to view this approach is to envision some space of robot systems

ranging from very simple to very complex, arranged so that robots with similar abilities are

near one another. For a given task, some robot systems are capable of completing the task

whereas others are not. Our goal is to search the space of robot systems for the boundary

between the “can solve” and “cannot solve” regions. This boundary gives an indication of

necessary conditions on robot models for that task. By neglecting the possibility of tradeoffs

between the robot’s capabilities and the quality of solutions that can be achieved, we create

a crisp boundary for this solvability region.

1.3 Thesis overview

We conclude this introductory chapter with a preview of the remainder of the thesis. Basic

definitions appear in Chapter 2. Chapters 3 and 4 contain original contributions, for which

8

4. Localization with limited sensing

B. Execution examples

1. Introduction

2. Basic definitions

5. Discussion and conclusions

3. Comparing robot systems

3.5

A. Hardness of minimum distance localization

Figure 1.2: Organization of this thesis. Arrows indicate dependencies.

previews appear in Sections 1.3.1 and 1.3.2 respectively. We make some concluding remarks

in Chapter 5. The structure and dependencies between chapters are shown in Figure 1.2.

1.3.1 Comparing the power of robot systems

The localization work described above identifies, in some informal sense, the part of boundary

in a space of robot systems between regions containing robots that can complete the task

from those that cannot. Can this notion of a space of robot models and a feasibility boundary

within it be made more precise?

This line of inquiry is inspired by the theory of computation, which asks similar questions

about its precisely defined, abstract models of computation. Can a given machine solve a

given problem? If so, how efficiently? Are some machines strictly more powerful than

others? Are there apparently dissimilar machines with provably equivalent computation

power? In mainstream computer science, there are well-established formalisms (asymptotic

9

CL

CTATAL

L T A C

Figure 1.3: A dominance hierarchy for a collection of simple robot models. Arrow indicate
that one robot model dominates the other, in the sense of Definition 3.3. Details are in
Section 3.5.

analysis, complexity theory, formal models of computation, etc.) for measuring the difficulty

of a problem and for assessing the effectiveness of solutions. Although these measures are

sometimes at odds with contemporary practice – witness, for example, problems reduced

to boolean satisfiability [91] in spite of the theoretical hardness of SAT [46, 109] – they

are a universally accepted foundation for the study of algorithms. Unfortunately, standard

models of computation are fundamentally ill-suited for robotics problems, in which sensing

and uncertainty are unavoidable. As a result, current robotic science lacks a unified theory

in which meaningful statements can be made about the complexity of robotic tasks and the

robot systems we build to complete these tasks.

This thesis begins to address this weakness by presenting an analysis technique for com-

paring robot systems. The result is a formal definition of dominance of one robot system

over another. This definition accounts for sensing and uncertainty by considering how the

robots move through their information spaces. The intuition is that one robot dominates

another if the former can “simulate” the actions of the latter in a certain way. This dom-

inance relation is useful because we show that it is consistent with the ability of robots to

complete tasks: If R2 dominates R1, then with certain technical conditions, R2 can complete

every task that R1 can. Moreover, if the robots are defined as sets of independent robotic

primitives, several results about combinations of these primitives follow that are reminiscent

10

of the axioms of rationality in decision theory. By combining these techniques with the

localization results discussed below, we grouped a collection of 15 simple robot models into

8 equivalence classes, determined the dominances between these classes, and classified each

with regard to its ability to complete the localization task. See Figure 1.3. This work is

presented in Chapter 3.

1.3.2 Localization with limited sensing

Consider a mobile robot with access to map of its environment, but ignorant its position

within that environment. The problem of global localization is to command the robot so

that, at the end of its execution, the position uncertainty has been eliminated and the

robot knows its location. Many different sensing modalities are available for mobile robots

(Figure 1.4), but little is known about the necessary conditions for solving the problem. How

simple a robot can complete this task? What are the simplest collections of sensors that

enable the robot solve the problem?

This thesis presents results in an idealized setting with a point robot, a polygonal map,

and perfect control. In this context, a robot with only a contact sensor and a compass is

able to solve the global localization problem (Figure 1.5), but a similar robot with only

angular odometry rather than a compass cannot. If the contact sensor is augmented with

an odometer for measuring translations, the problem is once again solvable. In combination,

these results give a rough indication of the “feasibility surface” that divides robots that can

complete the task from those that cannot. We also describe adaptations of these techniques

to an experimental setting using probabilistic reasoning. This work is presented in detail in

Chapter 4.

11

N d

Figure 1.4: There are many options for mobile robot sensing. [top left] A compass reports the
robot’s orientation with respect to a global reference direction. [top right] A linear odometer
measures the distance the robot travels. [bottom left] A landmark detector identifies relevant
features of the environment. [bottom right] A range sensor measures the distance to nearby
obstacles.

0

1

2

3

Figure 1.5: A localizing sequence generated by Alg. 4.2. A robot starting with no information
about its position localizes itself to the top right corner of the environment. Possible states
after each motion are shaded. Details of the robot model and the algorithm appear in
Chapter 4.

12

Chapter 2

Basic definitions

All of the problems considered in this thesis can be classified as planning problems with

uncertainty in the current state. In this chapter, we present a general formulation for such

problems. These definitions give a common foundation to the remainder the thesis. We

describe the most basic model in Section 2.1. In this model, which is depicted in Figure 2.1,

a robot affects its environment by executing actions. In response to those actions, the robot

receives observations that provide information about the current situation in the world. This

basic structure is found throughout the literature in control theory [48], artificial intelligence

[98], and elsewhere [113]. Our notation is largely borrowed from control theory. Next,

we define the notion of an information space, a concept essential to explicitly managing

state uncertainty. By planning in the information space, we sidestep the problem of state

uncertainty. The tradeoff is that the information space is generally much larger and more

complex than the underlying state space. Definitions and notation for information spaces

appear in Section 2.2. Finally, we use these concepts to define general notions problems and

solutions in Section 2.3.

2.1 Basic ingredients

We begin by defining a few important spaces and describing the relationships between them.

13

u

y

Observations

Actions

EnvironmentRobot

Figure 2.1: A robot interacts with its environment by executing actions and receiving ob-
servations.

2.1.1 The state space

The robot moves in a state space X. To maximize the generality of the model, we make

no assumptions about X, except that a single state x ∈ X describes the situation of the

world in sufficient detail to model all problems of interest. One typical choice is the robot’s

configuration space [112].

Example 2.1 (Point robot in the plane) Many problems we consider in this thesis will

be for mobile robots with orientation in the plane. In this context, we use the configuration

space X = E × S1, in which E ⊂ R
2 is the robot’s environment and S1 = [0, 2π]/∼, where

∼ is an equivalence relation identifying 0 and 2π, represents the robot’s orientation. See

Figure 2.2. ⋄

In other cases, a more complex state space is needed. For example, formulations like

those of Examples 2.1 silently assume that the robot operates in a single environment whose

geometric details are known a priori. What happens when the robot begins with limited or

no knowledge about its environment, in the sense that positions and geometry of obstacles,

map topology, navigability of terrain, and so on are unknown? Such imperfect knowledge

about the environment is a more drastic instance of the general issue of state uncertainty.

If the state is defined to include a description of the environment in addition to the robot’s

configuration, then uncertainty in the environment can be represented as an additional

dimension of state uncertainty.

14

Figure 2.2: A robot in a planar environment E. Its state space is X = E × S1.

Example 2.2 (Environment space) Choose an environment space E of which each el-

ement E ∈ E is a potential environment for the robot. The environment E is unknown, but

remains fixed throughout the robot’s execution. Possibilities for E with varying degrees of

realism, interest, practicality, and amenability to analysis, include:

1. the set of bounded planar grids with occupancy maps,

2. the set of simple polygons in the plane

3. the set of compact regions in R
2 or R

3 with connected interiors and piecewise analytic

boundaries, and

4. the set of terrain maps from R
2 to R, giving the elevation or navigability at each point

in the plane.

The state space is formed by combining the robot’s configuration space C with E, so that

X = C × E. See Figure 2.3. ⋄

In defining the state space, it may be important to make a clear distinction between

the state of the robot (its configuration along with other variables that describe its internal

15

Figure 2.3: Three states of a system modeling a mobile robot in the plane with environment
uncertainty. When the environment is uncertain, the identity of the environment becomes
part of the state of the system.

state) and the external state of the world (for example, configurations of other agents or

manipulable objects within the environment).

Example 2.3 (Factored state space) Suppose a robot is charged with a delivery task,

in which a collection of n manipulable objects must be moved about within the environment.

Model this situation with a state space factored into the robot state C and the world state

M, and let X = C ×M. In this way, the state of the robot is kept distinct from the state of

the complete system. Figure 2.4 shows an example in which C = E × S1 and M = En. We

revisit this type of formulation in Example 3.13 in the context of analyzing the power of robots.

This decomposition will allow the comparison to be made independent of configurations of

the robots themselves. ⋄

These examples represent only a small sampling of the issues to be considered in selecting

a state space. Other state spaces are also quite reasonable to consider, including the phase

spaces that arise in the analysis of dynamical systems. Ultimately, the choice of a state

space is a subjective process driven by concerns of modeling and abstraction.

16

Figure 2.4: A robot in a planar environment E, along with a collection of 7 movable objects.
The state space of the complete system is X = (E × S1)× E7.

2.1.2 Actions and transitions

The robot influences its state by selecting actions. The action space U represents the set

of actions available to the robot. As with the state space, we minimize as much as possible

the assumptions made on U . We do, however, assume that same actions are available at

every state. Under another reasonable formulation, the actions at each state x are limited

to a subset U(x) ⊆ U of the complete action space. Such limitations make sense, for

example, at the physical limits of the machine or when the robot is in contact with an

obstacle. Ultimately, of course, the robot would need to use some form of sensing – either

proprioceptive or exteroceptive – to determine that this is the case. Therefore, in this thesis

we model this phenomenon directly through observations (defined in Section 2.1.3) and define

state transitions accordingly.

Throughout most of this thesis, we divide time into discrete stages1. The sequence

of stages is indexed by consecutive integers starting with 1. Each stage represents a time

interval during which the robot makes only a single decision. As such, the stages need not

1Continuous models of time certainly have a more direct correspondence with reality than any discretiza-
tion. We consider continuous-time models in Section 3.6.2.

17

x4

x3

x5

x6

x1

x2

u1

u2

u3

u4
u5

Figure 2.5: A simple system in which a robot’s action directly specify the magnitude and
direction of the robot’s motion. A sample 5-stage execution is shown.

have equal physical duration. The robot’s state at stage k is denoted xk; its action at stage

k is uk. We describe the change made to the state by each action by way of a state transition

function

f : X × U → X. (2.1)

The relationship between states and actions as time progresses is given by

xk+1 = f(xk, uk). (2.2)

An iterated version of f that applies several actions in succession will also be useful:

f(f(x, u1, . . . , uk) = f(· · · f(f(x, u1), u2) · · · , uk−1), uk). (2.3)

The next example is a simple realization of this kind of system.

Example 2.4 Let X = R
2, U = {u ∈ R

2 | ||u|| < 1}, and f(x, u) = x + u. This system

models a kinematic omnidirectional robot in a planar environment, where the actions specify

a direction and magnitude of motion. See Figure 2.5. Note that to account for environment

obstacles would require a more complex transition function. ⋄

We emphasize that f need not have a clean, closed-form representation. In Section 4.2,

for example, we define several transition functions that depend directly on the geometry of

18

the environment. In an extreme case, one might imagine an f that is not even computable,

although the implications of such a model are not immediately clear.

2.1.3 Observations

Next, we include in the model a notion of sensing by allowing the robot to receive observa-

tions. At the conclusion of each stage, the robot’s sensors provide an observation y from an

observation space Y , according to the observation function

h : X × U → Y. (2.4)

Each observation can be viewed as providing a “hint” to the robot about its true state. The

robot’s observation at stage is denoted yk and determined by xk and uk:

yk = h(xk, uk). (2.5)

Again we illustrate with a simple example.

Example 2.5 Suppose a mobile robot in the plane has a sensor that detects the distance

(but not the direction) to a landmark at a known, fixed position p ∈ R
2. This situation can

be modelled by setting Y = R, with h(x, u) = ||x− p||. See Figure 2.6.

Combined with the action space and transition function from Example 2.4, this forms a

complete sensing-actuation system. ⋄

An important special case of (2.5) occurs when the observation depends only on the

current state, rather than on the action taken in the current stage. In this case, we can

simplify the observation function to h : X → Y , with yk = h(xk). Models of this kind are of

19

x4

x3

x5

x6

x1

x2

y5

y1

y6

y2

y3

y4

Figure 2.6: A robot that can sense the distance to a stationary landmark.

interest because the preimages

h−1(y) = {x ∈ X | y = h(x)} (2.6)

form a partition of X, indicating sets of states that are indistinguishable by a single ob-

servation. This is the view of sensing taken, for example, by [63] and elsewhere. We use a

formulation in which the observations depend on actions to model faithfully situations where

sensing must be active, that is, when the robot must explicitly query its sensors (perhaps

at some cost), rather than passively reading from them as time passes. This subtlety is

particularly important to the robotic primitives we introduce in Section 3.2.

Although we are assuming in this section that both state transitions and observations

are deterministic, we acknowledge that in realistic contexts, managing unpredictability in

motion and sensing is a crucial issue. We omit such uncertainty here because of the addi-

tional complications it would introduce. The extensions needed to relax this assumption are

introduced in Section 3.6.1.

2.2 Information spaces

In the formulation presented in Section 2.1, the robot’s true state is hidden, so the robot

must make its decisions based on the limited information available to it. In this section, we

20

present the notion of information spaces, which are the most natural spaces for studying such

systems. A much more complete treatment of information spaces and their use in robotics

appears in Chapters 11 and 12 of [102].

2.2.1 The history information space

In the absence of perfect state information, what information is available to the robot? In

our formulation, the robot has access only to the histories of actions it has selected and

observations it has received. The space of such histories is the robot’s history information

space (history I-space), denoted Ihist and defined in terms of U and Y :

Ihist =
∞⋃

i=0

(U × Y)i. (2.7)

After the completion of stage k, the robot’s history information state is a sequence of length

2k given by

ηk+1 = (u1, y1, . . . , uk, yk) ∈ Ihist. (2.8)

We occasionally abuse notation by writing (ηk−1, uk, yk) for the history I-state formed by

appending uk and yk to ηk−1.

How is the state space related to the robot’s history I-space? One connection is by way

of the notion of states consistent with an I-state:

Definition 2.1 A state x ∈ X is consistent with a history I-state ηk = (u1, y1, . . . , uk, yk) if

there exists some x1 ∈ X such that x = f(x1, u1, . . . , uk) and yj = h(f(x1, u1, . . . , uj−1), uj)

for each j = 1, . . . , k.

The intuition is that the consistent states xk are those for which there is some starting

state from which executing the given action sequence would produce the given observation

21

sequence and leave the robot at xk. The set of consistent states provides a concise way of

describing the information available to the robot.

We may define a policy π : Ihist → U over history I-space. Note that, given a state

xk and a history I-state ηk, the history I-states reached by repeatedly executing π are fully

determined. As a shorthand, we define a function F that applies a policy several times in

succession, so that m applications of a policy π, starting at state xk and information state

ηk, lead to a new history I-state given by

ηm+k = Fm(ηk, π, xk). (2.9)

Note that Fm(ηk, π, xk) depends on the true state xk (which is unknown to the robot) because

xk influences the observation sequence the robot receives.

2.2.2 Information maps and derived information spaces

The history I-space is not particularly useful by itself, because it provides no insight into

the conclusions that the robot might make based on the action and observation histories.

Furthermore, the length of a history I-state grows linearly with the number of stages, po-

tentially causing complications for storage and computation. For these reasons, we consider

information mappings (I-maps) of the form

κ : Ihist → I (2.10)

that “compress” history I-states in some way. The target space I is called a derived infor-

mation space (derived I-space). In an informal sense, κ indicates how the robot “interprets”

its sensor information. An important special case is the value of κ for an empty history,

which gives an initial condition for the robot. This initial condition reflects any knowledge

the robot may have before its execution begins.

22

xi xi+1 xi+2

κ(ηi) κ(ηi+1) κ(ηi+2)

X

Figure 2.7: Under nondeterministic uncertainty, the derived information state is a subset of
the state space, indicating a minimal set of “possible states”.

In principle, we may select I and κ arbitrarily. The usefulness of a derived I-space

depends on its ability to capture the information relevant to the task of interest. Example 2.6

presents a derived I-space that we revisit frequently.

Example 2.6 In one useful derived I-space, the nondeterministic I-space Indet, derived

I-states are nonempty subsets of X. The derived I-state is the set of states consistent with

the history I-state. The interpretation is that the robot’s derived I-state is a minimal subset

of state space guaranteed to contain the true state. The I-map κndet : Ihist → Indet can be

expressed recursively in terms of f and h:

κndet() = X (2.11)

κndet(η, u, y) = {f(x, u) | x ∈ κndet(η), y = h(x, u)} (2.12)

See Figure 2.7.

Note the initial condition. In Equation 2.11, we assume the robot initially has no infor-

mation about its state. One might form similar I-maps by using smaller sets for κndet(),

corresponding to situations in which the robot starts its execution with some knowledge about

its state. ⋄

23

The next two examples show how other well-known approaches can be understood as

particular kinds of I-maps.

Example 2.7 Consider I-maps of the form Ihist → X. By mapping the history I-state

into the underlying state space, the robot performs state estimation, a technique used, for

example, in some forms of control [22]. The advantage of such an approach is that, after

estimating its state, the robot can make use of all of the tools and algorithms designed for

the perfect information case. ⋄

Example 2.8 Another possibility is to use probability models to map the history I-state to

a posterior distribution over X. This approach has proven very successful in robotics. (See,

for example, [49, 79, 99, 107, 136, 152, 153, 160].) Note that such techniques are most

interesting when the robot’s motions and sensing are subject to stochastic noise, for which

the extensions described in Section 3.6.1 are needed. ⋄

Finally, in some situations, certain parts of the available information may be of more

interest than others. In such cases, choosing the right I-map allows us to isolate the relevant

information.

Example 2.9 Recall the formulation given in Example 2.3. The completion of some tasks,

such as delivery or clean up tasks, can be defined in terms of the world state inM, regardless

of the robot’s configuration in C. Given a state space X = C ×M, let ω : X →M denote a

map that “forgets” the robot’s configuration, so that (q,m) maps to m. Then set of possible

world states is given by an I-map κpw : Ihist → pow(M) under which

κpw(ηk) = {ω(x) | x ∈ κndet(ηk)}. (2.13)

With this I-map, the robot’s configuration is ignored in the derived I-state. ⋄

24

We conclude our presentation of I-maps by identifying and defining a certain class of these

maps that is particularly relevant for reasoning about planning problems. For a given I-map

κ : Ihist → I, suppose there exists an information transition function fI : I × U × Y → I,

such that for any ηk ∈ Ihist, uk ∈ U , and yk ∈ Y ,

fI(κ(ηk), uk, yk) = κ(ηk, uk, yk). (2.14)

If such a function exists, then κ is a sufficient I-map. The intuition is that the I-states derived

by κ retain enough information about the history to determine future derived I-states. This

concept is closely related to the idea of a sufficient statistic [20]. The practical importance

is that the robot can then “live in” the derived I-space, discarding the histories.

Example 2.10 The nondeterministic I-map from Example 2.6 is a sufficient I-map. The

information transition function can be defined directly in terms of f and h:

fI(ηk, uk, yk) =
⋃

x∈κ(ηk)

{f(x, uk)} ∩ {f(x, uk) | x ∈ X, yk = h(x, uk)}. (2.15)

As a result, the robot is able to maintain the set of states consistent with its sensor and

action histories, without recording the histories themselves. ⋄

Example 2.11 For most systems, the “possible world states” I-map κpw from Example 2.9

is not a sufficient I-map, because changes in the world state cannot generally be predicted

without some knowledge of configuration of the robot. ⋄

25

2.3 Tasks and solutions

The traditional definitions for planning problems, in which a subset of the state space is given

as a goal region, are inadequate in this context. Instead, we define a goal region IG ⊂ Ihist

in the history I-space. Goal regions of this form can express, for example, problems for

which the goal is to reduce uncertainty, without regard for the final state. A goal region

fully defines a task for the robot.

A solution to such a task is policy over a derived I-space:

π : I → U. (2.16)

If, for any starting state, repeated applications of π lead the I-state into IG, then π is said

to be a solution to the problem.

Example 2.12 Suppose the robot’s task is to reach a certain region XG in state space, and

to recognize the achievement of this goal. This task can be represented as a goal region in

Ihist by choosing

IG = {η ∈ Ihist | κndet(η) ⊆ XG}. (2.17)

See Figure 2.8. ⋄

Example 2.13 As an example of the expressive power of forming goal regions in I-space,

suppose a robot must visit a certain, known target region CT in its configuration space C.

The robot, however, need not recognize that it has achieved this goal until potentially after

it has left CT . The state space is X = C × E, with the environment is chosen from some E.

No other information about the environment is available at the start. See Figure 2.9. This

situation might arise, for example, in some surveillance or delivery tasks. How can this type

of goal be expressed as a region in the history I-space?

26

κ(ηi+1)
κ(ηi)

X

κ(ηi+2)

Figure 2.8: A goal region in Indet, in which the robot must enter XG in state space and
recognize this goal.

Start with a derived I-space I = pow(X− (CT ×E)). The intuition is that derived I-state

contains the final states of all histories that (1) are consistent with the robot’s history I-state

and (2) have not yet visited CT . The I-map can be defined recursively:

κ() = X − (CT × E) (2.18)

κ(η, u, y) = {f(x, u) | x ∈ κ(η), y = h(x, u)} − (CT × E) (2.19)

At each step, κ discards any possibilities that have visited CT . Note the similarity to the

recursive definition of κndet (Equation 2.11) but the difference from the (similar but incorrect)

definition κ(η) = κndet(η)− (CT ×E). Observe that κ is a sufficient I-map. The relevance of

this I-map is that the goal region in Ihist is precisely

IG = {η ∈ Ihist | κ(η) = ∅} . (2.20)

Therefore, to recognize completion of this sort of visitation problem, it suffices to track the

robot’s I-state in I and report when this set becomes empty. ⋄

Example 2.14 An important special case occurs when the observation space Y is a single-

27

?

?

?
?

?

X

CT

Figure 2.9: A visitation problem. The robot, without knowing its configuration or environ-
ment ahead of time, must visit CT .

ton, perhaps containing only a single observation returned at every stage regardless of the

current state or the action chosen. The action sequence alone fully determines the I-states

reached. This situation models a sensorless planning task for which it is sufficient to specify

a sequence of actions

u1, . . . , uK (2.21)

rather than a complete policy. ⋄

Figure 2.10 summarizes the basic model presented in this chapter.

28

κ
uk−1

ηk−1

yk−1

κ(ηk)ηk uk

Robot

yk

xk+1xk

h

f
π

Environment

Figure 2.10: A single execution stage for a robot with uncertainty in its state.

29

Chapter 3

Comparing the power of robots

Suppose we want a robot to complete some task, such as navigating to a goal, manipulating

an object, or localizing itself within its environment. Many different combinations of sensing

and motion modalities have been used to complete each of these tasks. Indeed, much of

the robotics literature is concerned with finding sufficient conditions on the sensing and

actuation capabilities needed to complete such tasks.

In this chapter we take a complementary approach. For a given task, we are interested

in determining the necessary conditions : What sensors and actuators are needed? What

are the information requirements of robotic tasks? The long-term goal of this research is to

develop a theory of robots and sensing that helps in answering such questions. Answers to

these questions are important because we expect that a deep understanding of the difficulty

of tasks in terms of their information requirements will lead to simpler and less expensive

robot designs.

This work is inspired in part by the theory of computation, which begins with precisely

defined models of abstract machines, such as finite automata, Turing machines, and so on

[80, 144]. In this context, a problem is usually a language of strings; to solve the problem

is to accept strings in this language and reject all others. The theory of computation gives

answers to several kinds of basic questions about these machines and problems.

1. Solvability : Can a given machine solve a given problem?

2. Complexity : If the machine can solve the problem, how efficiently (in terms of time or

space, for example) can it do so?

30

3. Comparison: Are some machines strictly more powerful, in terms of the problems they

can solve, than others? It is known, for example, that pushdown automata can accept

a strictly larger set of languages than can finite automata. Likewise, Turing machines

are more powerful than pushdown automata.

4. Equivalence: Are there apparently dissimilar machines that can solve the same set of

problems? For example, it is a standard result that a Turing machine with multiple

tapes is functionally equivalent to an ordinary single-tape Turing machine. Less ob-

viously, Turing machines and recursive functions have been shown to have equivalent

computation power.

These ideas are well understood. In the sense that they form the formal foundation of the

discipline, they are part of the core of computer science. Current robotic science lacks a

comparable foundation; the field needs a unified theory in which meaningful statements can

be made about the complexity of robotic tasks and the robot systems we build to complete

these tasks.

Can we adapt standard models of computation to the robotics context? Unfortunately,

these models are fundamentally ill-suited for studying robotics problems, because they as-

sume that all of the relevant information is supplied ahead of time on the machine’s tape.

Sensing and uncertainty are central, defining issues in robotics; this structure is destroyed

by an a priori encoding of the problem on a machine’s tape. Traditional models of on-

line computation (see, for example, [32, 90, 145]) are also inadequate, because they assume

that some fixed encoding of the problem is revealed incrementally. In contrast, robotics

problems are generally interactive, in the sense that the robot’s decisions influence the infor-

mation that becomes available in the future. Others study robotics problems using similar

tools [51, 68, 133], but do not explicitly consider the effects of varying sensing and motion

capabilities.

The aim of this chapter is to develop a “sensor-centered” theory for analyzing and com-

31

paring robot systems. The central idea we present is a notion of dominance of one robot

model over another. In informal terms:

A robot R2 dominates another robot R1 if R2 can “simulate” R1, collecting

at least as much information as R1.

We make three primary contributions in developing this idea. First, we present the idea

of robotic primitives for modeling robot systems as collections of independent components.

A single robotic primitive represents a self-contained “instruction set” for the robot that

may involve sensing, motion, or both. A robot model is defined by a set of primitives that

the robot can use to complete its task. By selecting a “catalog” of primitives from which

complete robot systems are constructed, we effectively determine a set of robot systems to

consider. For clarity, we define these models in an idealized setting in which time is modeled

as a series of discrete stages and the robot has perfect knowledge of its environment, perfect

control, and perfect sensing. Second, we give a definition for dominance of one robot system

over another that formalizes the imprecise definition above. This definition is based on

comparing reachability in a derived information space. By mapping sensor-action histories

from a variety of robots into the same derived information space, we can compare the abilities

of these robots in a concrete, formal way. We prove some basic properties of this dominance

relation and give some examples, including a detailed investigation of the global localization

problem. Third, we demonstrate the generality of our ideas by showing how to remove

several of the simplifying assumptions we make in the initial presentation.

The challenge of robotics lies in the interactions between sensing, actuation, and com-

putation. In this paper, we focus the effects of varying choices for the robot’s sensing and

actuation capabilities. The robot’s computational abilities (as measured, for example, by

processing power or memory limitations) are also relevant, but we do not consider them

here.

The remainder of this chapter is organized as follows. Section 3.1 reviews related research.

Section 3.2 introduces the concept of robotic primitives and defines the set of robots induced

32

by a catalog of primitives. In Section 3.3, we describe the information preference relation.

The definition of dominance and some basic properties thereof appear in Section 3.4. In

Section 3.5, we apply the results from Sections 3.2-3.4 to the global localization task. In

Section 3.6, we present several generalizations our basic results to account for environment

uncertainty, imperfect control and sensing, and continuous time. We explore the relationship

between dominance and reachable sets in Section 3.7. Section 3.8 discusses the limitations

of this work and describes some open problems.

This work appears in its current form in [130]. Preliminary versions appear in [128] and

[131].

3.1 Related work

Our goals are similar to those of Donald [52]. The reductions in that work are similar to our

dominance relation; Donald’s notion of calibration is related to our idea of initial conditions.

The most fundamental difference is that our analysis is rooted in the information space. We

claim that for robotic problems in which sensing is a crucial issue, the information space is

the space in which the problem can most naturally be posed. The work of Erdmann [63] is

grounded in the preimage planning ideas due to Lozano-Perez, Mason, and Taylor [111]. In

Erdmann’s work, sensors are modeled by giving a partition of state space. The problem of

sensor design is to choose a partition so that from each region in the partition, the robot

knows what action to select in order to make progress toward its goal. Others in artificial

intelligence [34] and control theory [1, 57, 71] have addressed related issues.

Although the examples in this chapter use nondeterministic uncertainty, which is based

on set membership, the basic structure of our analysis is compatible with probabilistic un-

certainty models like those of [154]. Many probabilistic methods (for example, [14, 106])

can be characterized as operating in an information space whose members are probability

distributions over state space. Our methods can be viewed as axiomatic because they can be

33

applied in any situation that satisfies the definitions. In this sense, the model of uncertainty

used is orthogonal to the questions addressed in this work.

3.2 Defining a set of robot systems

In this section we discuss how a set of robots can be defined in terms of a set of independent

components.

At the most concrete level, a robot is a collection of motors and sensors connected to

some sort of computer. Between these components there may be interactions via open- or

closed-loop controls. We abstract this complexity by defining the notion of a robotic primi-

tive. Each robotic primitive defines a “mode of operation” for the robot. When primitives

are implemented, they may draw on one or more of the robot’s physical sensors or actua-

tors. Every kind of motion or sensing available to the robot must be modeled as a robotic

primitive. Robotic primitives correspond roughly to the oracles that appear in the theory of

computation [144, 146], in the sense that they provide the ability to make certain transitions

and collect certain observations, without specifying how these abilities are implemented.

Formally, we define robotic primitives in terms of the action and observation abilities

they provide.

Definition 3.1 A robotic primitive (or simply a primitive) Pi is a 4-tuple

Pi = (Ui, Yi, fi, hi) (3.1)

giving an action set Ui, an observation set Yi, a state transition function fi : X × Ui → X,

and an observation function hi : X × Ui → Yi.

Let RP = {P1, . . . , PN} denote a catalog of primitives. We may form a robot model by

selecting nonempty subset ofRP. A robot defined by the primitive set R = {Pi1 , . . . , Pim} ⊆

RP has action set UR = Ui1 ⊔ · · · ⊔ Uim and observation set YR = Yi1 ⊔ · · · ⊔ Yim . The ⊔

34

notation indicates a disjoint union operation, under which identical elements from different

source sets remain distinct. The state transition function fR : X×UR → X, and observation

function hR : X × UR → YR, are formed by unioning the f and h maps from the relevant

primitives. When it can be done without ambiguity, we use the phrase robot model to

refer directly to the set of primitives, rather than to the 5-tuple (X,U, Y, f, h) formed by

these primitives. With this usage, it is meaningful to apply set operations such as union or

intersection directly to robots.

Note that, given a catalog of primitives RP, we can form a “master” robot model R̂

that includes every primitive in RP. Then the history I-space of R̂ contains as a subset the

history I-space of every other robot model that can be formed from RP. As a result, any

I-map for R̂ can also be used as an I-map for any robot model formed from RP.

We now give several examples to illustrate the intuition of Definition 3.1. Examples 3.2-

3.6 apply to a point robot with orientation in a bounded planar environment E, so X =

E×S1. Illustrations of these primitives appear in Figures 3.1-3.3. We revisit these examples

in Sections 3.4 and 3.5.

Example 3.1 Let PA = (S1, {0}, fA, hA). Let fA compute relative rotations, so that from

a state x = (x1, x2, θ), we have fA(x, u) = (x1, x2, θ + u). Since YA = {0} contains only a

dummy element, hA is a trivial function always returning 0. This primitive can be imple-

mented with an angular odometer on a mobile robot capable of rotating in place. ⋄

Example 3.2 Let PC = (S1⊔{0}, S1, fC , hC). Define fC(x, u) to set the rotation coordinate

of x to equal u if u ∈ S1 or to leave x unchanged if u ∈ {0}. The observation function hC

returns the robot’s final orientation. This primitive amounts to allowing the robot to orient

itself with respect to a global reference frame, or to sense its current orientation without

rotating. One might implement this primitive using a compass on a robot that can rotate in

place. ⋄

35

PC

PA

u = π

2

u = π

2

y = π

2

y = 0

Figure 3.1: Sample executions of the primitives of Examples 3.1 and 3.2. [top] PA allows
the robot rotate relative to its current orientation. [bottom] PC allows the robot to rotate
relative to a globally defined “north” direction.

Example 3.3 Let PT = ({0}, {0}, fT , hT). Define fT to compute a forward translation to

the obstacle boundary. This primitive can be implemented with a contact sensor on a mobile

robot that can reliably move forward. ⋄

Example 3.4 Let PL = ([0,∞), [0,∞), fL, hL). For x ∈ X and u ∈ U , define fL(x, u) to

compute a forward translation of distance at most u, stopping short only if the robot reaches

an obstacle first. The observation hL(x, u) is the actual distance traveled. This primitive can

be implemented with a linear odometer on a robot that can move forward reliably. Depending

on implementation issues, a contact sensor may also be needed. ⋄

Example 3.5 Let PR = ({0}, [0,∞), fR, hR). For all x ∈ X, fR(x, 0) = x, so that this

primitive never changes the robot’s state. The observation hR(x, u) is the distance to the

nearest obstacle directly in front of the robot. This primitive models the capabilities of a

forward-facing unidirectional range sensor. ⋄

Example 3.6 Let PG = ({0},R2, fG, hG). Again, fG(x, u) = x for all x and u. For a state

x = (x1, x2, θ), let hG(x, 0) = (x1, x2). This primitive roughly corresponds to a GPS device

that the robot can periodically poll to determine its location in the plane. ⋄

36

PT

PL

PR

d2

y = d2

y = 0

y = d1

u = 0

u = d1

u = 0

d1

Figure 3.2: Sample executions of the primitives of Examples 3.3-3.5. [top] PT allows the
robot to translate forward until it reaches an obstacle. [middle] PL allows a robot to specify
a distance to translate. [bottom] PR allows the robot to measure the distance forward to
the nearest obstacle, but does not change the robot’s state.

(x, y)PG

y = (x, y)u = 0

Figure 3.3: A sample execution of the primitive of Example 3.6. The robot senses its position,
but its state does not change.

Other possibilities for primitives include landmark detectors, wall followers, visibility

sensors, and so on. A more complete listing of sensors suitable for adaptation into robotic

primitives appears in Section 11.5.1 of [102].

There are several benefits to modeling robot systems as collections of primitives. First,

we claim that robotic primitives represent the right level of abstraction at which planning

problems are interesting but manageable. If we consider sensors at too fine a level of detail,

the problem takes on the character of a closed-loop control system. If the primitives are too

37

sophisticated, we risk trivializing the planning problem while creating an unbearable model-

ing burden. Second, by dividing time into discrete stages, we avoid the technical difficulties

of describing the robot’s progression through I in continuous time. This consideration is in-

creasingly important if we allow noise to affect state transitions or observations. We address

issues related to the modeling of time more completely in Section 3.6.2.

3.3 The information preference relation

Our goal is a dominance relation under which we can declare one robot “better than” another.

To do so, we need a formal notion of one I-state being superior, in the sense of encoding

better information, than another. To that end, choose a derived I-space I and an I-map

κ into I. Equip I with a partial order, which we call an information preference relation.

Write κ(η1) � κ(η2) to indicate that κ(η2) is preferred to κ(η1). We require that for any

η1, η2 ∈ Ihist, and for any u ∈ U and y ∈ Y ,

κ(η1) � κ(η2) =⇒ κ(η1, u, y) � κ(η2, u, y). (3.2)

This is a consistency property requiring preference for one I-state over another to be pre-

served across transitions in I-space.

Example 3.7 Regardless of I or κ, it is well-defined (but perhaps unhelpful) to use a trivial

relation under which κ(η1) � κ(η2) if and only if κ(η1) = κ(η2). ⋄

Example 3.8 Under nondeterministic uncertainty, we can define κndet(η1) � κndet(η2) if

and only if κndet(η2) ⊆ κndet(η1). To show that (3.2) is satisfied, suppose κndet(η1) �

κndet(η2). Let x ∈ κndet(η2, u, y). The definition of κndet ensures that there exists some

38

x′ ∈ κndet(η2) such that f(x′, u) = x and h(x′, u) = y. However, because κndet(η2) ⊆ κndet(η1),

we have x′ ∈ κndet(η1). It follows that x ∈ κndet(η1, u, y). ⋄

The information preference relation we choose affects the goal regions that are sensible to

consider. We should select a region in which, for every I-state in the region, we also include

any I-states preferable to it. This formalizes the intuition that a robot in the goal region

should not prefer to be outside the goal. Definition 3.2 codifies this idea of a sensible goal

region.

Definition 3.2 Consider a set I ⊂ I of derived I-states. If, for any κ(η1) ∈ I and κ(η2) ∈ I

with κ(η1) � κ(η2), we have κ(η2) ∈ I, then I is preference closed.

Alternatively, one can view preference closure as a constraint on �. Fixing a space G

of potential goal regions, we admit a partial order � only if every region in G is preference

closed under �. Note that the trivial definition of � in Example 3.7 always passes this test,

regardless of G.

3.4 A dominance relation over robot systems

Now we turn our attention to a definition of dominance of one robot system over another.

This dominance relation induces a partial order over robot systems, according to their sensing

and actuation abilities. The intuition is that dominance is based on one robot’s ability to

“simulate” another.

Definition 3.3 (Robot dominance) Consider two robots

R1 = (X(1), U (1), Y (1), f (1), h(1)), and (3.3)

R2 = (X(2), U (2), Y (2), f (2), h(2)). (3.4)

39

u1

R1 R2

κ(1)(η1) � κ(2)(η2)

π2

κ(1)(η1, u1, h
(1)(x1, u1)) � κ(2)(F l(η2, π2))

Figure 3.4: An illustration of Definition 3.3. If R2 can always reach an I-state better than
the one reached by R1, then R1 ER2.

Choose a derived I-space I and I-maps κ(1) : I(1)
hist → I and κ(2) : I(2)

hist → I. If, for all

• η1 ∈ I
(1)
hist,

• η2 ∈ I
(2)
hist for which κ(1)(η1) � κ(2)(η2), and all

• u1 ∈ U
(1),

there exists a policy π2 : I
(2)
hist → U (2) such that for all x1 ∈ X

(1) consistent with η1 and all

x2 ∈ X
(2) consistent with η2, there exists a positive integer l such that

κ(1)(η1, u1, h
(1)(x1, u1)) � κ(2)(F l(η2, π2, x2)), (3.5)

then R2 dominates R1 under κ(1) and κ(2), denoted R1 ER2. If R1 ER2 and R2 ER1, then

R1 and R2 are equivalent, denoted R1 ≡ R2. If R1 6E R2 and R2 6E R1 then R1 and R2 are

incomparable, denoted R1 EDR2.

Informally, Definition 3.3 means that, for any transition made by R1, there exists some

strategy for R2 to reach an information state at least as good, in the sense of information

preference, as that reached by R1. This is what we mean when we describe the statement

R1 ER2 as meaning that R2 can simulate R1. See Figure 3.4.

40

3.4.1 Dominance examples

Several examples will clarify the definition.

Example 3.9 Let R1 = {PR} and R2 = {PA, PL}. Recall the definitions of these primitives

from Examples 3.2, 3.4, and 3.5. We argue under nondeterministic uncertainty that R1 ER2

by showing that R2 can simulate R1 in the precise sense of Definition 3.3. Let η1 ∈ I
(1)
hist and

η2 ∈ I
(2)
hist with κndet(η1) � κndet(η2). Since U (1) = {0}, there is only one choice for u1. Let

l = 4 and define π2 so that R2, starting from η2, executes these actions in succession:

(1) Use PL with a very large input to move forward to the nearest obstacle. Let d =

h(x, u) denote the distance moved.

(2) Use PA with u = 180° to perform a half turn.

(3) Use PL with u = d to return the robot to its initial position.

(4) Use PA with u = 180° to perform a half turn, returning the robot to its original

orientation.

This policy is illustrated in Figure 3.5. It is easy to verify that from any x ∈ X, we have

κndet(η1, u1, h(x, u1)) � κndet(F
4(η2, π2, x)),

and therefore R1 E R2. Since R1, which is completely immobile, cannot simulate the trans-

lations or rotations of R2, we have R2 6E R1.

Note that these relationships are based on the robots’ ability to move through Indet, and

do not consider any notion of the cost of motion or sensing. The introduction of such a cost

function would likely lead to Pareto optima that express tradeoffs between the complexity of

sensing built into the robot and the execution costs of particular plans executed by the robot.

We do not consider such tradeoffs here. ⋄

41

d d

R2R1

Figure 3.5: An illustration of Example 3.9. The robot R2 = {PA, PL} dominates the robot
R1 = {PR} because the former can simulate the latter. [left] A distance measurement made
directly by R1. [right] Distance is measured indirectly by R2 using its linear odometer.

Example 3.10 Let R1 = {PT} and R2 = {PL}. We show under nondeterministic uncer-

tainty that R1ER2. Let η1 ∈ I
(1)
hist and η2 ∈ I

(2)
hist with κ(η1) � κ(η2). There is only one choice

for u1. Choose l = 1 and define π2 to choose an input for PL larger than the diameter of the

environment. This causes the motions of R1 and R2 to be identical. The resulting derived

I-states κ(η′1) and κ(η′2) for R1 and R2 are the same, except that R2 receives a meaningful

sensor reading that may reduce the resulting nondeterministic I-state. This sensor informa-

tion only makes κ(η′2) smaller, so the preference κ(η′1) � κ(η′2) is maintained. Conclude that

R1 ER2. ⋄

It bears emphasis that the relation induced by Definition 3.3 depends on the I-maps used.

The next three examples illustrate this.

Example 3.11 Let R1 = {PA} and R2 = {PC}. We argue that R1 E R2 under the usual

nondeterministic I-map with the initial condition of total uncertainty. Let η1 ∈ I
(1)
hist and

η2 ∈ I
(2)
hist with κndet(η1) � κndet(η2). Let u1 ∈ U1 = S1. Choose l = 2 and define π2 to select

the following two actions:

(1) Use PC with u = 0 to sense the robot’s orientation without changing the state. Let

θ denote this orientation.

(2) Use PC to rotate the robot to orientation θ + u in the global frame.

42

As in Example 3.10, the resulting states for R1 and R2 are identical but, since R2 knows

its orientation, it may be able to eliminate some candidate states that R1 cannot. This

establishes that R1 E R2. Are R1 and R2 equivalent under this I-map? No, because R2 can,

with a single action, sense its orientation, but this information can never be gathered by R1.

Therefore R2 6E R1 and R1 6≡ R2. ⋄

Example 3.12 Consider a situation identical to that of Example 3.11, but modify κndet for

a different initial condition κndet() = R
2 × {π/2}. That is, the robot begins its execution

knowing its initial orientation. At every step, R1 knows its orientation in the global frame,

and can simulate R2 using angle addition. Therefore we have R2 E R1. But using the

same reasoning as in Example 3.11, we know R1 E R2. Therefore, for this I-map, we have

R1 ≡ R2. ⋄

Example 3.13 Recall the state space formulation from Example 2.3, which expresses the

system state as a combination of the robot’s configuration in C along with the relevant external

state of the world inM. Recall also the “possible worlds” I-map κpw : Ihist → pow(M) from

Example 2.9. In this context, the statement that R1ER2 under κpw implies that any change in

the world state made by R1 can be mimicked by R2. This formulation is interesting because,

under κpw, dominance is related only to results in the external world, without considering

the intermediate or final configurations of the robots themselves. ⋄

3.4.2 Properties of the dominance relation

We conclude this section with some basic properties that follow from Definition 3.3.

Lemma 3.1 The dominance relation E is a partial order. Likewise ≡ is indeed an equiva-

lence relation.

43

Lemma 3.2 Consider three robots R1, R2, and R3 formed from primitives in RP and an

I-map κ for the master robot model R̂ of RP. If R1 ER2 under κ, we have:

(a) R1 ER1 ∪R3 (Adding primitives never hurts)

(b) R2 ≡ R2 ∪R1 (Redundancy doesn’t help)

(c) R1 ∪R3 ER2 ∪R3 (No unexpected interactions)

Proof: (a) Let η1 ∈ I
(1)
hist, η13 ∈ I

(13)
hist , and u1 ∈ U1. Assume κ(η1) � κ(η13). Choose

l = 1 and π13(η) = u1 for all η. For all x, we have κ(η1, u1, h(x, u1)) � κ(η13, u1, h(x, u1)) =

κ(F l(η13, π13, x)), completing the proof.

(b) It follows from part (a) that R2 E R1 ∪ R2. It remains to show that R1 ∪ R2 E R2.

Let η12 ∈ I
(12)
hist , η2 ∈ I

(2)
hist, and u12 ∈ U2 ∪ U1. Assume κ(η12) � κ(η2). Either u12 ∈ U1 or

u12 ∈ U2. If u12 ∈ U1, then because R1 E R2 there exist π2 and l satisfying the definition

for R1 ∪ R2 E R2. If u12 ∈ U2, choose l = 1 and π2(η) = u12 for all η. For all x, we have

κ(η12, u12, h(x, u12)) � κ(η2, u12, h(x, u12)) = κ(F l(η2, π2, x)), completing the proof.

(c) Let η13 ∈ I
(13)
hist , η23 ∈ I

(23)
hist , and u13 ∈ U1 ⊔ U3. Assume κ(η13) � κ(η23). Either

u13 ∈ U1 or u13 ∈ U3. If u13 ∈ U1, then because R1 E R2 there exist π23 and l satisfying

the definition for R1 ∪ R3 E R2 ∪ R3. If u13 ∈ U3, then choose l = 1 and π23(η) = u13

for all η. For all x, we have κ(η13, u13, h(x, u13)) � κ(η23, u13, h(x, u13)) = κ(F l(η23, π23, x)),

completing the proof. �

Corollary 3.3 If R1 ≡ R2, then R1 ∪R3 ≡ R2 ∪R3.

Proof: Apply Lemma 3.2c twice. �

Lemma 3.2c might be misleading. Certainly, hardware components can be made to interact

in interesting ways. For example, a control system might combine information from linear

and angular odometers to execute circular arc motions. This apparent contradiction results

from the definition of robotic primitives, which execute serially, rather than in parallel. In

44

this sense, robotic primitives model sensing and actuation strategies as complete “packages,”

rather than the individual sensors or motors themselves.

Lastly, we connect the idea of dominance to the ability of robots to complete tasks.

Lemma 3.4 (Solution by imitation) Consider two robots R1 and R2 with R1 E R2 and

a preference-closed goal region IG. If R1 can reach IG, then R2 can reach IG.

Proof: Use the policy π2 implied by Definition 3.3 to complete the task with R2. �

This tight connection between dominance and task-completing ability provides some

motivation for the form of dominance we propose.

3.5 Extended example: Global localization

In this section we present a detailed example using the definitions of Sections 3.3 and 3.4.

We preview the global localization task of Chapter 4, in which the robot has an accurate

map of its environment but has no knowledge of its position within that environment. The

purpose of this example is to show how the results of Section 3.4 can be used to discover the

information requirements of this particular problem in robotics. An analogy can be made to

the classification of languages in the theory of computation. It is known, for example, that

to accept the language of palindromes requires a machine with computation abilities at least

as powerful as a pushdown automaton. In this section, we derive similar results regarding

the sensing and motion abilities needed to complete the active global localization task.

3.5.1 Task definition

Let E ⊆ R
2 denote a planar environment in which a point robot moves. Assume that E is

polygonal, bounded, closed, and simply-connected and that the rotational symmetry group

of E is trivial. As in previous examples, the robot’s state space is X = E×S1. We consider

a catalog RP = {PA, PC , PT , PL} of four primitives from Examples 3.1-3.3. From these

45

primitives we can form 15 distinct robots. For brevity, we use concatenation to indicate the

primitives with which a robot is equipped, so that CT refers to a robot with primitive set

{PC , PT}. Similar names apply to the other 14 robot models.

Use nondeterministic uncertainty, so that I = Indet. The initial condition is total un-

certainty, so κ() = X. For the information preference relation, use the definition from

Example 3.8, in which information preference is defined by subset containment. The goal

region for the localization task is

IG = {η ∈ Ihist | |κ(η)| = 1}. (3.6)

That is, we want to command the robot so that only a single final state is consistent with its

history I-state. If the robot can complete the task for any E consistent with the assumptions

above, we say that the robot can localize itself.

3.5.2 Equivalences and dominances

Although RP generates 15 robot models, we can use the results of Section 3.4 to group them

into equivalence classes.

Lemma 3.5 The following equivalences hold:

(a) CA ≡ C

(b) CTA ≡ CT

(c) TL ≡ L

(d) TAL ≡ AL

(e) CAL ≡ CTL ≡ CTAL ≡ CL

The three remaining robot models, A, T, and AT, are in singleton equivalence classes.

Proof: (a) Combine Example 3.11 and Lemma 3.2b. (b) Combine Example 3.11, Lemma 3.2b,

and Corollary 3.3. (c) Combine Example 3.10 and Lemma 3.2b. (d) Combine Example 3.10,

46

CAL CTL CTAL CL

TLL

ALTAL

ATCTA CT

C CA TA

Figure 3.6: Fifteen robot models grouped into their eight equivalence classes.

Lemma 3.2b, and Corollary 3.3. (e) Combine Examples 3.10 and 3.11, Lemma 3.2b, and

Corollary 3.3. �

These equivalences are illustrated in Figure 3.6. From each, select the unique robot with

the fewest primitives and discard the remaining 7 robots. We can state several dominances

between these classes.

Lemma 3.6 Between representatives of the equivalence classes from Lemma 3.5, the follow-

ing dominances hold:

(a) C E CT E CL

(b) A E AT E AL E CL

(c) L E AL E CL

(d) T E AT E CT E CL

Proof: Combine Examples 3.10 and 3.11 with Lemma 3.2a. �

3.5.3 Completing the localization task

Which equivalence classes contain robots that can complete the localization task? First,

notice that some robot models are so simple that we can rule them out immediately.

Lemma 3.7 None of C, A, L, and T can localize themselves.

47

CL

CTATAL

L T A C

Figure 3.7: Classification of robot models under which the localization task can be completed.
Shaded models do not admit a solution. Arrows indicate dominances.

Proof: For C and A, notice that no action changes the robot’s position and no observation

is influenced by position. Therefore neither robot can ever gather information about its

position. For L and T, notice that the robot can never change its orientation. Information

available to the robot is limited to the ray extending from its initial state to the nearest

obstacle forward. Since E may contain continua of starting states consistent with this

information, neither robot can localize itself. �

The next chapter, which considers this localization problem in greater detail for AL, CT,

and AT, provides the following result.

Lemma 3.8 (Chapter 4) AL and CT can localize themselves but AT cannot.

Finally, we can finish the classification. The results of Lemmas 3.7-3.9 are summarized in

Figure 3.7.

Lemma 3.9 CL can localize itself.

Proof: Combine Lemma 3.4 with Lemma 3.8. �

The result is a complete classification of the solvability of the localization problem over this

hierarchy.

48

TLL

C CA A

CAL CTL CTAL CL

CTA CT AT

TAL AL

T

CL

T

CT

C L

Figure 3.8: Equivalence classes, dominance, and ability to solve the localization problem
when the robot’s initial orientation is given. Compare to Figures 3.6 and 3.7.

3.5.4 The value of initial information

These results depend heavily on the assumption that the robot starts with no information

about its initial state. What happens if this initial condition is improved? Examples 3.11 and

3.12 showed that knowledge of the initial orientation makes the difference between AEC and

A ≡ C. Figure 3.8 shows how this initial condition affects the equivalence and dominance

for the 15 robot models we generated from RP = {PC , PA, PL, PT}. The eight equivalence

classes are collapsed into only five. Note especially that AT can localize itself with knowledge

of its initial orientation, but not without it.

This inquiry is in the same spirit as existing work that considers the competitive ratio

[116, 145] of online algorithms with respect some optimality measure. There are at least

two important differences. First, existing work makes only a binary distinction in the initial

information: Either the robot has an accurate map of its environment, or it starts with no

information. We are are able to consider a broader range of initial conditions, including those

that are unrelated to the environment. Second, rather than studying how the performance

of a single robot changes by the introduction of new information, we can examine how the

requirements on the robot itself change. Does a simpler robot suffice if we provide additional

initial information?

49

Disturbances

θ, ψ
Nature

u

y

Observations

Actions

EnvironmentRobot

Figure 3.9: As the robot interacts with its environment, an artificial decision maker nature
generates disturbances.

3.6 Extensions and generalizations

This section contains a series of extensions and generalizations to the techniques presented in

Section 3.4. The intention is to illustrate that, although the preceding results are for a certain

class of highly idealized systems, the general structure of our analysis is useful for a wider

variety of problems with greater degrees of realism and generality. We propose methods

for dealing with sensing and control uncertainty (Section 3.6.1), and with continuous time

(Section 3.6.2). Although we present each method separately, the extensions are orthogonal

in the sense that it is straightforward to apply both of them at once.

3.6.1 Imperfect sensing and control

We have assumed so far that the robot can execute all of its actions with perfect precision and

complete reliability. The motions of real robots are imprecise and unpredictable. Moreover,

although we have accounted for the importance of sensing by assuming that the robot is

uncertain of its current state and must rely on sensing, we have assumed that sensor readings

are uncorrupted by noise. A more realistic sensor model would allow information from sensors

to be subject to error.

We propose to follow the approach used in game theory [26, 132] and some robotics

research [150] by envisioning an abstract external decision maker called “nature.” The

current state, the action chosen by the robot, and the choices made by nature combine

50

Figure 3.10: [left] The robot in Example 3.14 gives displacement inputs that determine a
nominal trajectory. [right] Nature interferes with this motion, but error bounds ensure that
the final state is contained in a circle of radius kθmax.

to determine how the state changes; given this information, the state trajectory is fully

determined. See Figure 3.9. Formally, define a nature action space Θ and augment the

state transition function f to depend on nature’s choice of θ ∈ Θ at each stage, so that

f : X × U × Θ → X. Nature affects the robot’s observations in a similar way. Define a

nature observation action space Ψ and redefine the observation function h : X×U×Ψ→ Y .

The policy application function F must be generalized to account for nature actions, so that

ηm+k = Fm(ηk, π, xk, θk, . . . , θk+m, ψk, . . . , ψk+m). (3.7)

Note that, in contrast to the simpler formulation of Equation 2.9, the robot’s current state,

history I-state, and policy are no longer sufficient to predict future history I-states.

The next examples illustrate how nature might interfere.

Example 3.14 Consider a point robot that can move freely in the plane by issuing dis-

placement commands, but whose motion is subject to noise. Let umax denote a bound on

the magnitude of the displacement in each stage, and let θmax denote a bound on magni-

tude of the error in this displacement. Let X = R
2, U = {u ∈ R

2 | ||u|| ≤ umax},

Θ = {θ ∈ R
2 | ||θ|| ≤ θmax}, and f(x, u, θ) = x+ u+ θ. At stage k, the robot can be certain

that its state lies within a closed disk of radius kθmax, centered at the nominal (error free)

final point. See Figure 3.10. ⋄

51

(0, 0)

x

(0, 0)

x

Figure 3.11: [left] The robot in Example 3.15 has a sensor that reports a noisy estimate of
the distance to the origin. [right] Accounting for noise bounded by ψmax, the observation
confines the robot’s state to an annulus of width 2ψmax.

Example 3.15 Suppose a mobile robot has a sensor that reports the distance to some land-

mark. Let X = R
2 and Y = [0,∞). Without loss of generality, position the landmark at the

origin. Assume that the sensor has bounded additive error, so that Ψ = [−ψmax, ψmax] and

h(x, ψ) = ||x|| + ψ. See Figure 3.11. At each stage, the robot knows that its state is within

an annulus of width 2ψmax, centered at the origin. ⋄

In the presence of interference from nature, there are at least two relevant solution concepts.

1. A strategy π : Ihist → U is a possible solution if there exists some stage k and choices

of θ1, . . . , θk and ψ1, . . . , ψk for which the robot reaches a derived I-state ηk ∈ IG. The

robot may reach IG, but it is also possible that control or sensing errors will prevent

it from achieving this goal.

2. A strategy π : Ihist → U is a guaranteed solution if there exists some stage k such that

for all choices of θ1, . . . , θk and ψ1, . . . , ψk, the robot reaches a derived I-state ηk ∈ IG.

The robot can always reach its goal, regardless of any interference by nature.

Other solution concepts, such as those based on performance bounds or on probabilistic

guarantees of reaching the goal, are possible but we do not consider them here. In this

context, Definition 3.3 must be generalized to include universal quantifiers over nature’s

actions.

52

Definition 3.4 (Robot dominance with sensing and control error) Consider two robot

systems

R1 = (X(1), U (1), Y (1),Θ(1),Ψ(1), f (1), h(1)), and (3.8)

R2 = (X(2), U (2), Y (2),Θ(2),Ψ(2), f (2), h(2)). (3.9)

Choose a derived I-space I and I-maps κ(1) : X(1) → I and κ(2) : X(2) → I. If, for all

• η1 ∈ I
(1)
hist,

• η2 ∈ I
(2)
hist for which κ(1)(η1) � κ(2)(η2), and all

• u1 ∈ U
(1),

there exists a policy π2 : I
(2)
hist → U (2) such that for all x1 ∈ X

(1) consistent with η1 and all

x2 ∈ X
(2) consistent with η2, there exists a positive integer l such that for all

• θ1 ∈ Θ(1),

• ψ1 ∈ Ψ(1),

• θ2,1, . . . , θ2,l ∈ Θ(2),

• ψ2,1, . . . , ψ2,l ∈ ψ
(2),

we have

κ(1)(η1, u1, h
(1)(x1, u1, ψ1)) � κ(F l(η2, π2, x2, θ2,1, . . . , θ2,l, ψ2,1, . . . , ψ2,l)) (3.10)

then R2 dominates R1 under κ(1) and κ(2), denoted R1 ER2.

The next example demonstrates that Definition 3.4 behaves reasonably.

Example 3.16 (Varying error bounds) Recall the incompletely specified models in Ex-

amples 3.14 and 3.15. Consider two robot systems R1 and R2 with state transitions as in

Example 3.14 and observations as in Example 3.15; R1 and R2 differ only in their error

53

θ
(2)
max

− θ
(1)
max

ψ
(2)
max

− ψ
(1)
max

R1 EDR2

R2 E R1

R1 E R2

R1 ≡ R2

R1 EDR2

Figure 3.12: Effects of varying error bounds on dominance between two otherwise identical
robots. The horizontal axis shows the difference in actuation error bounds. The vertical axis
shows the difference in sensing error bounds.

bounds θ
(1)
max, ψ

(1)
max, θ

(2)
max, and ψ

(2)
max. We compare these robots under κndet. Comparing θ

(1)
max

to θ
(2)
max, and ψ

(1)
max to ψ

(2)
max, there are four cases:

1. If θ
(1)
max = θ

(2)
max and ψ

(1)
max = ψ

(2)
max, then R1 ≡ R2.

2. If θ
(1)
max ≤ θ

(2)
max and ψ

(1)
max ≤ ψ

(2)
max, then R2 ER1.

3. If θ
(2)
max ≤ θ

(1)
max and ψ

(2)
max ≤ ψ

(1)
max, then R1 ER2.

4. Otherwise, R2 EDR1.

See Figure 3.12. These results follow in a straightforward manner from Definition 3.4. The

intuition is that one robot system dominates the other if and only if its error bounds are not

larger. ⋄

3.6.2 Continuous time

The models presented to this point manage time in discrete stages, in which the robot makes

a single decision at each stage. This discretization of time may be unsatisfactory for many

54

kinds of systems, especially those that require complicated control strategies. Continuous-

time models have a more direct correspondence with reality. To make the appropriate

generalizations, we replace the discrete sequences of states, actions, and observations with

functions of a continuous time parameter t.

The state space X, action space U , and observation space Y remain unchanged

from the discrete stage formulation. At each instant t, the robot chooses some u(t) ∈ U .

Let Ũt denote the space of all functions from [0, t) into U , and let Ũ =
⋃

t∈[0,∞) Ũt. For

simplicity of notation, adopt the convention that [0, 0) = ∅. Define ũ : [0,∞) → U as the

robot’s complete action history, and let ũt ∈ Ũ denote the robot’s action history up to (but

exclusive of) time t. We include a special termination action uT ∈ U . The robot selects uT

to indicate that it has finished its task and intends to terminate execution. We require that

if u(t) = uT , then u(t′) = uT for all t′ > t. We describe changes in the state with a state

transition function

Φ : X ×
⋃

t∈[0,∞)

Ũt → X. (3.11)

The intuition is that, given a starting state x(0), and an action history ũt, the state transition

function computes the resulting state

x(t) = Φ(x(0), ũt). (3.12)

This notation of a “black box” state transition function follows notation employed in control

theory, for example by Chen [40].

Example 3.17 A familiar special case of (3.12) occurs if ũ is a smooth function and there

exists a function f such that

Φ(x(0), ũt) = x(0) +

∫ t

0

f(x(s), u(s))ds. (3.13)

In this case, the system dynamics can be described by the differential equation ẋ = f(x, u). ⋄

55

As time passes, the robot’s sensors provide feedback in the form of observations drawn

from an observation space Y . Let Ỹt denote the space of functions mapping [0, t] into Y

and let Ỹ =
⋃

t∈[0,∞) Ỹt. The robot’s complete observation history is ỹ : [0,∞) → Y . The

observation history up to t (inclusive) is ỹt ∈ Ỹt. The observations received by the robot are

governed by the observation function1 h : X → Y . The history I-state becomes

Ihist =
⋃

t∈[0,∞)

Ũt × Ỹt, (3.14)

and the history I-state at time t is η(t) = (ũt, ỹt) ∈ Ihist. A state x is consistent with

an I-state η(t) = (ũt, ỹt) if and only if there exists some starting state x(0) such that

Φ(x(0), ũt) = x and h(x(t′)) = y(t′) for t′ < t.

We describe the robot’s strategy as a feedback policy π : Ihist → U that specifies an

action for each history I-state. We assume that a given strategy is executed until it selects

uT . The time when this occurs, the resulting final state, and the observations received along

the way are all affected by the strategy π itself and the starting state x(0). Assuming that

the robot executes π, the termination time is

T (π, x(0)) = inf{t ∈ [0,∞) | π(η(t)) = uT}. (3.15)

The final state, denoted F (π, x(0)), is

F (π, x(0)) = Φ(x(0), ũT (π,x(0))). (3.16)

1In our discrete-stage formulation, we used a slightly different observation model, in which h : X×U → Y .
In a continuous-time adaptation, the time period over which observations are available is the half-open
interval [0, t); ỹt would be undefined at t itself. As a result, the closest we could come to a memoryless
strategy is to use the left-hand limit of ỹt at t, κobs(η(t)) = limt′→t− y(t′), provided the limit exists. (Compare
to Example 3.19.) This technicality is part of the motivation for preventing y from depending directly on
u, as we have done in this section. A more complete treatment of these kinds of sensor models appears in
Section 11.1.1 of [102].

56

The next three examples illustrate that feedback over a derived I-space can be a natural way

to express familiar kinds of strategies.

Example 3.18 (Open loop strategy) Let Itime = [0,∞) and consider the I-map κtime(η(t)) =

t. In this case, the derived I-state is simply the time elapsed. If the robot has an intended

open loop action trajectory ω : [0, tf)→ U , a strategy to execute γ is π(η(t)) = ω(κtime(η(t))

if t < tf and π(η(t)) = uT otherwise. ⋄

Example 3.19 (Memoryless strategy) Another possibility is that it is enough to know

the “most recent” observation, so Iobs = Y and κobs(η(t)) = y(t). Given a memoryless plan

γ : Y → U , the composed function κobs ◦ γ : Ihist → U is a memoryless information feedback

strategy. ⋄

Example 3.20 (Concatenating strategies) Given two strategies π1 and π2, a new strat-

egy that concatenates them (that is, executes them in sequence) is expressed by π(η(t)) =

π1(η(t)) if π1(η(t)) 6= uT and π(η(t)) = π2(η(t)) otherwise. By nesting this construction,

arbitrarily many strategies can be chained together. ⋄

Definition 3.3 generalizes in a natural way.

Definition 3.5 (Robot dominance in continuous time) Consider two continuous-time

robot systems

R1 = (X(1), U (1), Y (1),Φ(1), h(1)), and (3.17)

R2 = (X(2), U (2), Y (2),Φ(2), h(2)). (3.18)

If, for all

• η(1)(t1) ∈ I
(1)
hist,

57

R2R1

eu
(1)

t′
1

eu
(2)

t′
2

κ(1)(η(1)(t′1)) � κ(2)(η(2)(t′2))

κ(1)(η(1)(t1)) � κ(2)(η(2)(t2))

Figure 3.13: An illustration of Definition 3.5. Compare to Figure 3.4.

• η(2)(t2) ∈ I
(2)
hist for which κ(1)(η(1)(t1)) � κ(2)(η(2)(t2)),

• t′1 ∈ [0,∞), and all

• ũ
(1)

t′1
∈ Ũ

(1)

t′1
,

there exists an information feedback strategy π2 : I
(2)
hist → U (2), such that for all x(1) ∈ X(1)

consistent with η(1)(t1) and x(2) ∈ X(2) consistent with η(2)(t2), there exists t′2 ∈ [0,∞) such

that if R1 executes ũ
(1)

t′1
from time t1 to t′1 and R2 executes π(2) from time t2 to t′2, we have

κ(1)(η(1)(t′1)) � κ(2)(η(2)(t′2)) (3.19)

then R2 dominates R1 under κ(1) and κ(2), denoted R1 ER2.

See Figure 3.13. The next two examples illustrate some implications of Definition 3.5.

Example 3.21 (Omniscient sensing and perfect control) Consider a degenerate case

with Y = X, and h(x) = x. This situation gives the robot complete information about

its state. Choose I = X and κ(η(t)) = y(t) = x(t). Let κ(η1) � κ(η2) if and only if

κ(η1) = κ(η2), as in Example 3.7. In this context, Definition 3.3 becomes a statement about

the regions of state space reachable by different control systems.

58

Suppose three such systems R1, R2, and R3 differ only in their action spaces U (1), U (2),

and U (3). Let Z(A) denote the subset of state space reachable by a robot with action space

A, starting from some initial state x(0). Suppose R1 E R2. R3 need not be comparable to

either R1 or R2. Note that additional robot models can be constructed from unions of U (1),

U (2), and U (3). We have the following results:

Z(U (1)) ⊆ Z(U (2) ∪ U (3)) (3.20)

Z(U (1)) = Z(U (1) ∪ U (2)) (3.21)

Z(U (1) ∪ U (3)) ⊆ Z(U (2) ∪ U (3)) (3.22)

These results are analogous to Lemma 3.2. Note that in combining action spaces in this way,

we allow the robot to choose sequentially the action set from which to choose its action. The

results fail if the robot is somehow allowed to choose actions from each constituent set in

parallel. We discuss reachable sets in greater detail in Section 3.7. ⋄

Example 3.22 (A Lost Cow) A well-known problem in online algorithms is the lost cow

problem [17, 89] in which a near-sighted cow moves along a fence searching for a gate, as

illustrated in Figure 3.14. The difficulty under the standard sensing model is that the cow

must systematically search in both directions from its initial position without any information

about the distance or direction to the gate. The interest in this problem derives from potential

applications in (or at least the potential for better understanding of) exploration in unbounded

environments.

We formulate the lost cow problem and consider how the sensing model affects the cow’s

searching ability. Let X = R, in which x(t) is the position of the gate relative to the cow at

time t. Let the action space be U = [−1, 1] with Φ(x(0), ũt) = x(0)+
∫ t

0
u(s)ds. We compare

three distinct models C1, C2, and C3 under κndet.

59

Figure 3.14: The lost cow of Example 3.22 searching for a gate.

1. C1: Let Y (1) = R and h(1)(x) = x. Here the cow can determine both the direction and

distance to the gate.

2. C2: Let Y (2) = {−1, 0, 1} and h(x) = sign(x). This allows the cow to determine the

direction it must move to reach the gate, but not the distance.

3. C3: Let Y (3) = {0, 1} and h(2)(x) = 1 if x = 0 and h(2)(x) = 1 otherwise. This is the

standard lost cow sensing model, in which the cow cannot see the gate from a distance,

but can detect the gate when it arrives.

Perhaps surprisingly, these three models are equivalent in the sense of Definition 3.5. This

is because each can eventually determine its state (by finding the gate) and after the state is

known, state uncertainty cannot recur. To simulate C1 with C3, first execute the algorithm

of [17], then move to the state occupied by C1.

Note, however, that this result fails if the cow’s motion is subject to control error, as

described in Section 3.6.1. In this case, for example, C1 can reach states arbitrarily far

from the gate without state uncertainty, whereas the uncertainty for C3 increases as it moves

farther from the gate, its only reference point. Observe also that allowing the cow to give

a precisely-executed velocity input is essentially equivalent to giving the cow a precise linear

odometer. LaValle and Egerstedt address this issue in [103]. ⋄

We conclude our discussion of continuous-time models by showing how a discrete stage

model in the form of Chapter 2 can be constructed from a continuous-time model in the

60

form presented above. Consider a division of time into variable length stages, in which, in

each stage, the robot executes a single information feedback strategy to completion. We

require of each of these strategies the following special property:

Definition 3.6 (History invariance) If, for all η(t) ∈ Ihist, all x ∈ X consistent with

η(t), and all y(0) ∈ Y , we have F (π, x, η(t)) = F (π, x, η(0)), then π is a history-invariant

strategy.

The intuition of the definition is that the robot executing π is free to use the observation and

action history generated during its own execution, but it cannot peer into the past before

its execution began in order to make decisions. Given a continuous-time robot system

R = (X,U, Y,Φ, h) (as defined in this section) and a set Π of history-invariant information

feedback strategies, construct a discrete-stage system (as in Chapter 2) R = (X,U, Y , f , h)

as follows:

1. The state space X is the same.

2. The action space is U = Π.

3. The observation space is Y = Ỹ .

4. The state transition function is f : X × U → X, with f(x, π) = F (π, x, η(0)).

5. The observation function is h : X × U → Y .

The system starts at some (unknown) initial state x1 ∈ X. Let xk ∈ X, uk ∈ U , and

yk ∈ Y , denote the appropriate values at stage k. These sequences are related to each

other by xk+1 = f(xk, uk) and yk = h(xk, uk). The history I-state consists of the action and

observation histories: ηk = (u1, y1, . . . , uK−1, yK−1). This construction gives a discrete-stage

system faithful to the dynamics in both state space and I-space of the underlying continuous

time system.

61

Lemma 3.10 Any action sequence u1, . . . , uK executed by R reaches the same final state x

and the analogous final history I-state as does R.

Note, however, that in making this transformation, we must choose a set Π of strategies and

may therefore restrict the space of plans that the robot can execute. If Π does not contain a

sufficiently rich selection of information feedback strategies, there may be regions of I-space

that are no longer reachable under the discretized model. In this way, Π is analogous to the

catalog of robotic primitives RP introduced in Section 3.2.

3.7 Dominance and reachable sets

Definition 3.3 is local in an important sense. Comparisons are made based on a robot’s

ability to simulate another robot’s trajectory in I, step by step. This section explores a

more global view, defined in terms of reachable sets and preference closure. We begin with

a few definitions.

Definition 3.7 The reachable set for a robot R starting at history I-state η, denoted

Z(R, η), is the set of all history I-states that (1) are consistent with at least one state and

(2) can be formed by appending actions and observations to η.

Definition 3.8 The reverse preference closure Pc−(N) of a set N ⊆ Ihist is the set of all

I-states η1 ∈ Ihist for which there exists an η2 ∈ N with κ(η1) � κ(η2). Equivalently, we can

define

Pc−(N) =
⋃

η2∈N

{η1 ∈ Ihist | κ(η1) � κ(η2)}. (3.23)

Now we can establish the relationship between dominance and reachable sets. See Fig-

ure 3.15.

Lemma 3.11 R1 ER2 if and only if, for all η1 ∈ I
(1)
hist and η2 ∈ I

(2)
hist such that κ(η1)Eκ(η2),

we have Z(R1, η1) ⊆ Pc−(Z(R2, η2)).

62

Z(R2, η2)

Pc−(Z(R2, η2))

Z(R1, η1)

Figure 3.15: The relationship between dominance, reachable sets, and preference closure.

Proof: Let η1 ∈ I
(1)
hist and η2 ∈ I

(2)
hist with κ(η1) � κ(η2).

Forward direction: SupposeR1ER2 and let η′1 ∈ Z(R1, η1) to show that η′1 ∈ Pc
−(Z(R2, η2)).

Since η′1 is reachable byR1 from η1, there exists an action-observation sequence uk, yk, . . . , uk+m, yk+m

such that η′1 = (η1, uk, yk, . . . , uk+m, yk+m). We argue that there exists η′2 ∈ Z(R2, η2) such

that κ(η′1) � κ(η′2). See Figure 3.16. Use induction on m:

• When m = 0, choose η′2 = η2. Then we have κ(η1) � κ(η2) and trivially η′2 ∈ Z(R2, η2).

• Assume the statement holds for m − 1 to show for m. By this inductive hypothesis,

there exists η′′2 ∈ I
(2)
hist such that

κ(η1, uk, yk, . . . , uk+m−1, yk+m−1) � κ(η′′2). (3.24)

Equation 3.24, combined with R1 ER2, implies that for all x, there exist π2 and l such

that

κ(η1, uk, yk, . . . , uk+m, yk+m) � κ(F l(η′′2 , π2, x)). (3.25)

63

κ(η1)

� � �

κ(η2)

κ(η′

1)

��

κ(η′

2)κ(η′′

2)

. . .

. . .

Figure 3.16: An illustration of the proof of the forward part of Lemma 3.11.

Choose η′2 = F l(η′′2 , π2, x), so that κ(η′1) � κ(η′2) and η′2 ∈ Z(R2, η2).

Given such an η′2, it follows immediately that η1 ∈ Pc
−(Z(R2, η2)).

Backward direction: Suppose that η′1 ∈ Pc
−(Z(R2, η2)) to show that R1 E R2. Let η1 ∈

I
(1)
hist, η2 ∈ I

(2)
hist, with κ(η1) � κ(η2), u1 ∈ U

(1), x ∈ X, and η′1 = (η1, u1, h(x, u1)). By the

definition of Z, we have η′1 ∈ Z(R1, η1). This implies η′1 ∈ Pc
−(Z(R2, η2)), which in turn,

implies that there exists η′2 ∈ Z(R2, η2) such that κ(η′1) � κ(η′2). Since η′2 is reachable by R2

from η2, there exists an action-observation sequence uk, yk, . . . , uk+m, yk+m such that

η′2 = (η2, uk, yk, . . . , uk+m, yk+m). (3.26)

Let l = m and construct an policy π2 that executes the actions uk, . . . , uk+m in sequence.

Conclude that R1 ER2. �

It may be tempting to use a simpler definition that omits the universal quantifiers over

η1 and η2, and instead considers reachability only from the initial condition. That is, one

might consider situations in which

Z(R1, ()) ⊆ Pc−(Z(R2, ())). (3.27)

Note, however, that this condition is strictly weaker than the dominance relation of Defini-

tion 3.3. See Example 3.23.

64

ba

q2

q1

q3

ba

a, b

a, b

q5

a, b

q4

a, b

q2

q1

q3

ba

a, b

a, b

q5

a, b

q4

Figure 3.17: Two transition systems from Example 3.23 demonstrating the importance of
the directedness transitions in I.

Example 3.23 Consider a five-state system with X = {q1, q2, q3, q4, q5} and complete sens-

ing, that is, h(x, u) = x. Let U = {a, b} and define two robot systems that differ only in

their state transition functions:

f1 a b

q1 q2 q3

q2 q4 q5

q3 q3 q3

q4 q4 q4

q5 q5 q5

f2 a b

q1 q2 q3

q2 q4 q4

q3 q3 q3

q4 q4 q4

q5 q5 q5

See Figure 3.17. Let I = X with the identity function for κ. Choose

� = {(q3, q5), (q1, q1), (q2, q2), (q3, q3), (q4, q4), (q5, q5)}, (3.28)

so that q3 � q5 is the only nontrivial preference. It is easy to verify directly that Equation 3.2

65

is satisfied. Observe that

Z(R1, ()) = {q1, q2, q3, q4, q5} (3.29)

Z(R2, ()) = {q1, q2, q3, q4}, and (3.30)

Pc−(Z(R2, ())) = {q1, q2, q3, q4, q5}, (3.31)

so Z(R1, ()) = Pc−(Z(R2, ())). However, choosing η1 = η2 = q2, and u1 = b, R1 reaches q5

and R2 (under all policies) reaches q4. Since q5 6� q4, conclude that R1 6E R2. The difference

results from the directedness of transitions in I. Although R2 can reach q5, this option is no

longer available when the robot is at q2. ⋄

3.8 Discussion

The results of this thesis are intended to lay a foundation for a sensor-centered theory for

comparing robotic problems and systems. Great potential exists to build on this foundation,

particularly by developing the analogy to the theory of computation even further.

The most obvious avenue for future work is to study a broader collection of problems.

Although this thesis considers an active global localization problem in detail, other funda-

mental robotics problems warrant similar analysis of their information requirements. For

example, results exist for limited-sensing versions of navigation [88, 88, 114, 115, 133], ex-

ploration [2, 42, 125, 156], and manipulation [4, 5, 6, 59, 72] tasks. Using the techniques we

have presented, it should be possible to unify and extend these results to develop a more

complete understanding of the sensing and motion abilities needed to solve these problems.

Other problems and more complex sensing systems could also be investigated.

One of the most powerful ideas in the theory of computation that we have not explored

here is the idea of reductions, which hold promise for comparing robotic problems themselves.

The resulting statements would have the form “Problem A is at least as hard as Problem

66

Figure 3.18: A sample decision problem. What sensing is required to decide if a planar
environment is simply connected? What robots can distinguish the annulus environment on
the left from the helix on the right?

B.” To make things more concrete, we might consider decision problems, in which the robot

with a state space defined as in Example 2.2 must determine if its environment E ∈ E has a

certain property. Such problems can be expressed naturally as planning problems in I-space.

To decide if E has a property Ξ : E → {0, 1}, the robot must reach the goal region

IG,Ξ = {η ∈ Ihist | ∀(q, E) ∈ κndet(η),Ξ(E) = 1}

∪ {η ∈ Ihist | ∀(q, E) ∈ κndet(η),Ξ(E) = 0}. (3.32)

An example is in Figure 3.18. This problem, in which the robot must decide whether its

environment is simply-connected, is considered in [148].

Another direction is to study the computational requirements of robotics problems. We

expect that there exist rich tradeoffs between computation time, memory usage, sensing

requirements, and solution quality. Some research has been done for certain tasks, for

example exploration [19, 29, 140], pursuit-evasion [86], and coverage [159], but very little

is known in general. One way to deal with such issues is to study sufficient I-maps. For

example, if a problem can be solved under a given robot model using a sufficient I-map

into a derived I-space of finite cardinality n, the memory required to solve the problem is

67

O(log n). The results of Blum and Kozen [29], for example, can be characterized as showing

how a discrete exploration problem can be solved in a derived I-space with cardinality linear

in the height of the area to be explored, meaning that only logarithmic memory is required.

These computational issues must be approached with care, especially if those computations

involve real numbers [28].

68

Chapter 4

Localization with limited sensing

Localization, the task of systematically eliminating uncertainty in the pose of a robot, is

widely regarded as a central problem in mobile robotics. A wide spectrum of sensor systems

have been proposed for the localization problem, ranging from visibility sensors [47, 54, 77],

to landmark detectors [15, 50, 147], to cameras [30, 56, 142], and even to optical mice [105].

How complex a sensor system does localization truly demand? In this chapter, we apply the

minimalist approach to this problem, describing two simple robots with which localization

is possible and a third for which localization is provably impossible.

Suppose a robot is given an accurate map of its environment, but has no knowledge of its

position within that environment. The robot’s goal is to move about, gathering information

about its location until the uncertainty is eliminated. See Figure 4.1. We consider the

localization task for three distinct robot models:

• AL – A robot equipped with angular and linear odometers. This robot can accurately

rotate and translate through its environment, measuring each of these motions.

• CT – A robot equipped with with a compass and contact sensor. This robot can, using

its compass, orient itself with respect to a global reference frame, then move forward

until its contact sensor detects the environment boundary.

• AT – A robot equipped with an angular odometer and contact sensor. This robot

can rotate with respect to a local frame and then move forward until reaching the

environment boundary.

69

Figure 4.1: A robot in a serpentine environment. What sensing is required for the robot to
eliminate uncertainty in is position?

The objective of this chapter is to classify these robots according to their ability to localize

themselves. We show that AL and CT can localize themselves in polygonal environments,

but AT cannot.

The motivation for this work is to identify basic sensing requirements for robotic tasks.

For a given task, some robot systems are capable of completing the task whereas others are

not. Our goal is to search the space of robot systems for the boundary between the “can

localize” and “cannot localize” regions. This boundary gives an indication of the necessary

conditions on robot models for localization. In this chapter we describe a very simple robot

(AT) in the “cannot” set and show that small improvements to its angular sensing (CT) or

linear sensing (AL) lead to models in the “can” set. See Figure 4.2.

The balance of the chapter is organized as follows. We present related work in Section 4.1.

Section 4.2 formally defines our robot models and gives a problem definition. Sections 4.3

and 4.4 describe localization algorithms for robot models AL and CT, respectively. In

Section 4.5 we show that no localization algorithm exists for AT. Concluding remarks appear

in Section 4.6.

This work appears in its current form in [129]. Preliminary versions appear in [126] and

70

Localization possibleLocalization not possible

angular odometer

contact sensor

angular odometer

linear odometer

compass

contact sensor
CT

AL

AT

Figure 4.2: Although AL and CT have only slightly stronger sensing than AT, they are
capable of localization whereas AT is not.

[127].

4.1 Related work

Localization research can be separated into two general flavors: passive localization, which

concentrates on using any information available to the robot to draw conclusions about its

position, and active localization, in which the goal is to prescribe motions for the robot in

order to fully determine its position.

4.1.1 Passive localization

One common sensing model used in localization research is a range sensor that provides as

input to the robot the distance to the nearest obstacle in each direction. This information

can be used to compute the visibility region of the robot’s position, which contains every

point in the environment reachable by a single straight-line motion. The static problem of

finding the set of candidate locations for a given visibility region in a polygonal environment

was solved in [77]. Cox [47] gives an algorithm for candidate generation is given that places

stronger emphasis on robustness to missing and spurious range data.

Another large body of work has focused on localization using landmarks. In [147], a

problem is posed in which the environment contains a collection of landmark objects in fixed

71

locations. At any time, the robot’s sensors can detect some subset of these landmarks. The

robot is aware of the direction (but not distance) to each of these detected landmarks. The

problem of finding the set of points in the environment consistent with this sensor data is

solved for the case where the landmarks are distinguishable in [18]; the distinguishability

requirement is relaxed in [15]. Others consider the problem of “landmark design” in which

landmarks can be placed in locations in the environment carefully selected to facilitate

localization [149]. One possible realization of this idea is to strategically place reflectors

along the walls of the environment and equip the robot with a sensor that can detect the

orientations of each reflector in the robot’s visibility region [147]. An algorithm for computing

a placement of reflectors such that no two points in the environment have identical reflector

signatures appears in [50]. Betke and Gurvits give method that relies on noisy readings of

bearing differences between identifiable landmarks [23]. The method of [99] is also essentially

landmark-based, but the landmarks are wireless ethernet base stations whose signal strength

informs the robot’s position estimate. Other use vision systems to

Finally, a very large family of methods use probabilistic models to estimate the current

state [49, 66, 79, 99, 107, 108, 136, 152, 153, 155, 160]. These methods employ a probability

model for the robot’s motion and sensing to form a distribution that represents the robot’s

“belief” about its current location.

4.1.2 Active localization

We now turn to methods that, rather than only reasoning about uncertainty in the robot’s

position, also generate motion plans to reduce or eliminate this uncertainty. Algorithms

in this context are often considered in an online sense and are evaluated in terms of their

competitive ratio [116, 145], which compares the lengths of paths generated by the algorithm

to the length of the shortest possible path that could have been selected if the robot started

with full information.

In [92], the environment is constrained to an embedding of a bounded-degree acyclic

72

graph into R
n with sensing limited to the orientations of incident edges. This algorithm

has competitive complexity O(n2/3), in which n is the number of leaves in the graph. Later

improvements [137] shaved this to O(n1/2), which is known to be optimal up to a constant

factor[54]. Also addressed in [92] is the case where the robot can move among a collection

of non-intersecting open axis-aligned rectangles in the plane; this problem is solved with a

O
(
n
√

log n
log log n

)
-competitive algorithm.

More generally, the problem of computing a localization strategy that minimizes the

worst-case distance traveled by a robot equipped with a visibility sensor was proved NP-hard

in [54]. In this case, a localization strategy has the form of a decision tree with branches

at points where two or more candidate positions are disambiguated. The hardness proof

proceeds by reduction from the Abstract Decision Tree problem [81]. The optimal decision

tree can, however, be approximated and [54] gives an algorithm based on the visibility-cell

decomposition that does this. An important weakness of this algorithm is that it relies on

motion commands that direct the robot into visibility cells that may be arbitrarily small.

In [134], this difficulty is addressed by introducing randomization. Other work considers the

problem in the framework of approximation algorithms [93].

Building on the foundation of passive probabilistic localization techniques mentioned

above, others use probabilistic techniques for active localization [65, 83, 139].

4.2 Problem statement

In this section, we formally define an active, global localization problem for robot models

AL, CT, and AT.

4.2.1 Actions, transitions, and observations

Allow a point robot with orientation to move in a compact simply connected polygonal

environment E ⊂ R
2. Assume that the rotational symmetry group of E contains only the

73

identity symmetry1. Let ∂E denote the boundary of E, which is itself a subset of E. The

robot has access to an accurate map of E, including its orientation in the plane. Since the

robot’s orientation is relevant, the state space is X = E × S1, in which S1 is the set of

directions in the plane, represented as unit vectors in R
2.

For each robot model, we define a distinct action set and state transition function.

• Robot AL can, at each time step, issue either of two types of commands. First, the

robot may rotate by a commanded amount. Since the robot has an angular odometer,

we assume that rotation commands are executed precisely. Second, a translation com-

mand may be issued, instructing the robot to advance forward by a given distance.

The actual distance traveled may be less than the commanded distance, if the robot

reaches the boundary of the environment first. Formally, let U = S1 ⊔ [0,∞) denote

the robot’s action space, in which the ⊔ notation indicates a disjoint union operation,

under which identical elements from different source sets remain distinct. Elements

of S1 denote relative rotation commands and elements of [0,∞) denote translation

commands. If u ∈ S1, then f(x, u) is the appropriate change of orientation of x. If

u ∈ [0,∞), then f(x, u) computes the appropriate forward translation of x within E.

• The action space for CT is the unit circle U = S1. A single u ∈ U represents a

rotation to orient the robot in a given direction, followed by a motion forward to

the environment boundary. The state transition function f maps a state-action pair

(x, u) to the opposite endpoint of the maximal segment in E starting at x and having

direction u in the global frame. Note that because the robot has a compass, we assume

it can orient itself as it wishes; therefore the current orientation (specified as part of

its state) is not relevant to CT.

• The model for AT is similar to that of CT, but with the motion directions specified

relative to the robot’s current orientation, rather than with respect to a global reference

1This assumption is important because if E has a nontrivial symmetry group, the algorithm of Section 4.3
is effective only up to symmetry. This technicality is addressed in greater detail in Section 4.3.6.

74

frame. We still have U = S1, but f is modified to interpret u as a motion direction

relative to the robot’s current heading.

The observation space and observation function also depend on the robot model.

• For AL, we must consider the feedback provided by the linear odometer. Choose

Y = [0,+∞) as the observation space, in which an observation y ∈ Y indicates that

in executing the previous action, the robot’s translation had magnitude y. Rotations

always succeed without providing useful feedback, so h(x, u) = 0 when u ∈ S1.

• Neither CT nor AT have sensors that provide useful feedback about the environment.

For each, the capabilities of the sensors are instead modeled in the action sets. We

assume that the compass (for CT) and the angular odometer (for AT) are used as part

of a closed loop control system the correctly executes the desired rotation. Similarly,

the contact sensor is used to stop the robot when it reaches the environment boundary,

but does not provide sensor observations as such. Therefore, for both CT and AT, we

select a dummy observation space Y = 0 and define h(x, u) = 0 for all states x and all

actions u.

4.2.2 Planning in the information space

We approach the task of localization as a planning problem in the robot’s nondeterministic

information space Indet, as defined in Section 2.2.2. Recall that κndet is a sufficient I-map, so

the robot does not need to retain its history I-states. As a result, throughout this chapter,

we work exclusively in Indet, using the notation ηk for the nondeterministic I-state at stage

k.

Initially the robot has no knowledge of its state, so the initial information state η1 = X

contains the entire state space. The goal region is

IG = {η ∈ Indet | |η| = 1}. (4.1)

75

A plan is a feedback strategy on Indet: We want a function Indet → U such that, regardless

of the robot’s initial state, repeatedly executing the actions chosen by this function leads in

finite time to an information state in IG. For AL, we must specify a policy π : Indet → U . For

CT and AT, there is no meaningful feedback, so it is sufficient to choose a sequence u1, . . . , uK

of actions that eliminates the state uncertainty. We call such a sequence a localizing sequence.

4.3 Localization with odometry

In this section we present an algorithm to solve the localization problem described in Sec-

tion 4.2, for robot model AL. Recall that AL is equipped with linear and angular odometers.

An overview appears in Algorithm 4.1. The algorithm is “online” in the sense that the

commands it issues depend on the observations obtained as the robot is executing. Indeed,

there is no external “plan” computed ahead of time; instead we may regard Algorithm 4.1

itself as a plan in the sense that it defines a feedback strategy on the information space.

4.3.1 Algorithm overview

The algorithm tracks the robot’s information state ηk throughout the execution. The first

step, InitialActions, issues several commands to move from the initial condition (η1 = X)

to an information state of finite cardinality. This process is described in Section 4.3.2. For

some degenerate but potentially interesting environments, InitialActions fails to generate

a finite information state, instead possibly leaving one or more continua expressed as intervals

on the boundary of E. The function EliminateSegments issues commands guaranteed to

reach an information state devoid of such segments. This issue is dealt with in Section 4.3.3.

The final section of the algorithm, detailed in Section 4.3.4, systematically reduces ηk until

only a single state remains.

76

Algorithm 4.1 LocalizeAL(E)

(ηk, k)← InitialActions(E)
(ηk, k)← EliminateSegments(E, ηk)

while |ηk| > 1 do
Select x1, x2 from ηk.
Ex1 ← TransformToLocalFrame(E, x1)
Ex2 ← TransformToLocalFrame(E, x2)
p← FindPointInOnlyOne(Ex1 , Ex2)
(uk, . . . , uk′)← PathInPolygon(Ex1 , (0, 0), p)
while x1, x2 ∈ ηk do
yk ← ExecuteCommand(uk)
ηk+1 ← fI(ηk, uk, yk)
x1 ← f(x1, uk)
x2 ← f(x2, uk)
k ← k + 1

end while
end while

return ηk−1

4.3.2 Generating a finite set of candidates

This section describes a technique for reaching an information state of finite cardinality. The

central idea is to make two motions between points on the boundary of the environment,

separated by a 90° turn. We show that if the environment has no pair of parallel edges, only

finitely many states are consistent with such a sequence of motions. Section 4.3.3 addresses

the more troublesome case when the environment violates this condition.

The robot, starting with no knowledge of its position, makes several motions:

1. Move forward until reaching the boundary.

2. Rotate 180°, then move forward until reaching the boundary. Let d1 denote distance

traveled on this motion.

3. Rotate 90°, then move forward until reaching the boundary. If the robot reaches the

boundary immediately, rotate 180° and try again. Let d2 denote distance traveled on

this motion.

77

The commands to “move until reaching the boundary” can be realized by selecting a trans-

lation amount larger than the diameter of E. In order to continue in final step, the robot

must make a net rotation of either 90° or −90°, depending on its angle of incidence with

the boundary. Except when the robot reaches an environment vertex, at least one of these

rotations allows the robot to continue. If the robot knows it has reached an environment

vertex, then there are already only finitely many candidates. The use of 90° rotations is

motivated by the simplifications it affords in Equation 4.12. In principle, rotations of other

amounts would work equally well.

The problem remains to find the set of states consistent with these initial motions. For

simplicity, we ignore the first translation and instead consider only the two boundary-to-

boundary translation with lengths d1 and d2. A geometric interpretation of the problem is

perhaps helpful here:

Given E and the two odometer readings d1 and d2, we want to find all ways

to pack into E a 2 link polygonal chain with edges having lengths d1 and

d2 joined at a right angle, such that the initial and final endpoints rest on

different boundary edges from the middle vertex.

The set of final endpoints of these chains can be used directly to compute a set of candidate

states of the robot. Figure 4.3 shows an example.

Generating candidates for three fixed edges

The robot’s initial motions visit three environment edges. Suppose these three edges p1p2,

p3p4, and p5p6, and the order in which the robot visits them are fixed. Let pa ∈ p1p2,

pb ∈ p3p4, and pc ∈ p5p6 denote the three boundary points visited by the robot. See

Figure 4.4.

78

Figure 4.3: [left] Two boundary-to-boundary motions in a square shaped environment, sep-
arated by a turn of 90°. [right] The 8 possibilities for these motions in this environment.

p1

pb

pc

d2

p4p3

p2

d1

p5

p6

pa

Figure 4.4: Three fixed segments p1p2, p3p4, and p5p6 and translations of length d1 and d2

between them.

First, parameterize these three points as follows:

pa = (1− a)p1 + ap2 (4.2)

pb = (1− b)p3 + bp4 (4.3)

pc = (1− c)p5 + cp6. (4.4)

79

The first motion has length d1, therefore ||pa − pb|| = d1. Expanding from the parameteri-

zation above gives a quadratic constraint in a and b:

Aa2 +Bab+ Cb2 +Da+ Eb+ F = 0 (4.5)

with constant coefficients

A = (x2 − x1)
2 + (y2 − y1)

2 (4.6)

B = −2(x2 − x1)(x4 − x3)− 2(y2 − y1)(y4 − y3) (4.7)

C = (x4 − x3)
2 + (y4 − y3)

2 (4.8)

D = −2(x3 − x1)(x2 − x1)− 2(y3 − y1)(y2 − y1) (4.9)

E = 2(x3 − x1)(x4 − x3) + 2(y3 − y1)(y4 − y3) (4.10)

F = (x3 − x1)
2 + (y3 − y1)

2 − d2
1, (4.11)

in which we use the convention that pi = (xi, yi). We also know that pc must be distance d2

from pb, and that pb − pc must be perpendicular to pa − pb. These constraints are satisfied

when

pc − pb = s1
d1

d2

(pb − pa)
⊥ (4.12)

in which s1 is either −1 or +1, depending on whether its net rotation was 90° or −90° in

step 3 above. This vector equation can be separated into a pair of scalar linear equations in

a, b, and c. Eliminating c yields a single linear equation in a and b:

Ga+Hb+ I = 0 (4.13)

80

with constant coefficients

G =
d2

d1
(y2 − y1)

x5 − x6

+
d2

d1
(x2 − x1)

y5 − y6

(4.14)

H =
(x4 − x3)−

d2

d1
(y4 − y3)

x5 − x6

−
(y4 − y3) + d2

d1
(x4 − x3)

y5 − y6

(4.15)

I =
(x3 − x5)−

d2

d1
(y3 − y1)

x5 − x6

−
(y3 − y5) + d2

d1
(x3 − x1)

y5 − y6

. (4.16)

Note that if either denominator is 0 (corresponding to p5p6 being horizontal or vertical), the

system can be solved trivially. Equations 4.5 and 4.13 form a linear-quadratic system in

a and b. Barring degeneracies, this system has at most two solutions, which can be found

analytically by standard methods.

The method described above gives candidate values for a, b, and c. Candidates for which

any of a, b, or c are outside the interval [0, 1] should be discarded, because they correspond

to endpoints outside of p1p2, p3p4, or p5p6 respectively. The final state (that is, position-

orientation pair) of the robot resulting from such a candidate is (pc, atan(yc − yb, xc − xb)).

Lastly, note that if d1 = 0 or d2 = 0, then the robot knows that its position is at

some convex vertex of E. This does not, however, eliminate the uncertainty in the robot’s

orientation. In order to determine its orientation, the robot must move away from the vertex.

To do so, the robot must rotate and attempt translations, at most 360/θ times, in which θ

denotes the measure of the smallest interior angle in E, measured in degrees.

Generating candidates over all of E

The previous section showed how to find candidate solutions, given d1, d2 and three fixed

environment edges to be visited in sequence. Candidate positions over the complete envi-

ronment can be computed by iterating over each ordered triple of environment edges. Since

we must admit the case where p1p2 = p5p6, there are n(n − 1)(n − 1) such triples. The at

most 2 candidates for each can be computed in constant time. In practice, the performance

81

Figure 4.5: [top] Parallel edges of the environment admit continua of candidate states.
[bottom] A motion parallel to one of these segments leaves only a single candidate point.

of this process may possibly be improved by a preprocessing step which, for each pair of en-

vironment edges, computes the minimum and maximum distances between mutually visible

points on these edges. This information can be used to filter some edge triples as infeasible

without explicit consideration.

As a final step, the candidate list must be pruned, retaining only those candidates that

represent motions that lie entirely within E. For each, it is sufficient to ensure that papb

and pbpc are fully contained in E. In a simple polygon, data structures are known to answer

such queries in O(log n) time, with O(n) preprocessing time and O(n) space [39]. This final

candidate set becomes the robot’s information state ηk.

4.3.3 If some boundary edges are parallel

Although the preceding exposition made the assumption that the environment contains no

pair of parallel edges, environments of practical interest often contain parallel edges. In

particular, note the case where the environment contains a narrow strip bounded by two

parallel edges. This situation would arise, for example, in a indoor corridor or narrow room.

When parallel edges exist, continua of final states may be consistent with the robot’s initial

motions. See Figure 4.5. Each of these continua can be eliminated with a motion parallel

to itself.

82

4.3.4 Localization from a finite set

The previous sections showed how to select actions to guarantee that ηk contains only finitely

many states. How can we select additional actions to determine the robot’s true position

from among these candidates? The approach is to select two candidates and choose motions

that are guaranteed to disambiguate them. More precisely, we want choose two states x1

and x2 from ηk and choose actions uk, . . . , uk+j so that ηk+j+1 contains either x1 or x2 (or

neither) but not both.

In Sections 4.3.2 and 4.3.3, we described a method for reaching an information state

representable by a finite union of single states. Given an information state ηk, an action

uk, and an observation yk, how can we compute the resulting information state ηk+1 =

fI(ηk, uk, yk)? We do so in two stages. First, we find the forward projection of ηk under

action uk, by ray shooting in E. Then we prune from the result any states for which the

distance traveled differs from yk using a simple constant time procedure.

For a given state x, let Ex denote the environment E transformed into so that the robot

rests at the origin and faces the positive x-axis. Note that (0, 0) ∈ Ex if and only if the

position portion of x is contained within E in the global frame.

Select x1 and x2 arbitrarily from ηk. Compute Ex1 and Ex2 and overlay them. See

Figure 4.6. In this overlay, rotation and translation commands affect both x1 and x2 in the

same way; we can choose a destination position in this frame and command actions that to

navigate both x1 and x2 to this point in their respective local frames.

Since E has no nontrivial rotational symmetries, we have Ex1 6= Ex2 . Therefore, there

must exist some position p in Ex1 but not in Ex2 . Plan a path in Ex1 from (0, 0) to p.

Since (0, 0) ∈ Ex2 but p /∈ Ex2 , this path must cross the boundary of Ex2 at least once.

The translation action corresponding to this crossing of the boundary of Ex2 necessarily

distinguishes between x1 and x2. If the robot began at x1, its odometry reading at this step

will be greater than if it had begun on x2. One of the two can be pruned after this step. A

83

Figure 4.6: [left] Two states in an L shaped environment. [right] Two overlaid copies of the
environment shown in the local frame of those states. Attempting to execute the path shown
(which consists of one rotation and one translation) shown will result in different odometry
readings for these two states.

third possibility is that both candidates are pruned before or during this step. This could

happen if the robot’s true state is neither x1 nor x2, but some third state in ηk. In this case,

the remaining actions in the plan can be discarded, and new choices for x1 and x2 can be

made from the reduced ηk+1.

Which path should the robot follow within Ex1 to reach p from (0, 0)? To disambiguate

x1 and x2 requires only a path that stays within Ex1 but leaves Ex2 . Our implementation

uses the shortest path between (0, 0) and p, which can be computed in time O(n) [75, 78].

Also of potential interest is the minimum link path [120], which minimizes the number of

robot commands. The minimum link path can also be computed in time O(n). In any

case, a piecewise linear path in Ex1 can be trivially converted to a sequence of alternating

translation and rotation commands.

4.3.5 Complexity

Let n denote the number of edges in E. In InitialActions, we execute fewer than O(n3) ray

shooting queries, each taking time O(log n), so this step takes O(n3 log n) time to generate

O(n3) initial candidates. Let r denote the number of such candidates. If E has parallel

84

edges, each segment returned by InitialActions takes time O(n log n) to compute.

The outer while loop in Algorithm 4.1 eliminates at least one candidate in each iteration,

so there are at most r−1 iterations. There are fewer than r−1 iterations if some candidates

are pruned as a side-effect of distinguishing x1 and x2. The run time of each iteration is

dominated by the time to compute fI , which is O(r log n). This computation must be done

at each of the O(n) steps of the of the path generated at each iteration. Therefore, the total

computation time for the algorithm is O((n3 + r2n) log n) = O(n7 log n).

It is possible that these bounds can be improved. The question remains unanswered

whether r = Θ(n3). Our informal experiments suggest that in practical situations, both

r and the number of disambiguation iterations often fall far short of the upper bounds we

present here.

4.3.6 Environment symmetries

We have thus far assumed that E has no nontrivial rotational symmetries. This is important

in Algorithm 4.1 to ensure that there exists at least one point p in Ex1 but not in Ex2 . If

this assumption does not hold, then we can still consider the problem of localization up to

symmetry. This section makes the notion of localization up to symmetry more precise.

Definition 4.1 A symmetry is function composed of rigid translations and rotations map-

ping E onto itself. Without ambiguity we can extend such a function to X by applying the

appropriate change of orientation. Two states x1, x2 ∈ X are symmetric if there exists a

symmetry under which x1 7→ x2.

Figure 4.7 shows several environments with varying numbers of symmetries. The number

of symmetries of X can be computed in O(n) time [163]. The following lemma will be useful

for showing the relevance of these symmetries to localization.

85

Figure 4.7: Sample environments with, from left to right, 6, 2, and 1 rotational symmetries.

Lemma 4.1 The relation of symmetry between states is an equivalence relation, which

we denote ∼. Each equivalence class of ∼ contains one state for each symmetry of the

environment.

Proof: Observe that the symmetries of a polygon form a group under function composition.

In particular the identity is always a symmetry, and the set of symmetries is closed under

composition and inverse. The reflexivity, transitivity, and symmetry of the ∼ relation all

follow immediately. �

Now we show that AL cannot distinguish between symmetric states.

Lemma 4.2 Consider an action sequence u1, . . . , uk−1, an observation sequence y1, . . . , yk−1

and the resulting information state ηk. For any x ∈ ηk and x′ ∈ X with x ∼ x′, x′ ∈ ηk.

Proof: Since x ∈ ηk, there exists some initial state x1 for which executing u1, . . . , uk−1

leads to x and generates y1, . . . , yk−1. Since x ∼ x′, there exists a symmetry τ under which

x′ = τ(x). But f acts only locally, so we know that a robot starting from τ(x1) and executing

u1, . . . , uk−1 has state

f(τ(x1), u1, . . . , uj) = τ(f(x1, u1, . . . , uj)) = τ(x) = x′. (4.17)

Moreover, the observation sequences are identical, because the boundary edges of E are

affected by τ in the same way as x1 is. Consequently, τ(x1) is an initial state that leads

86

Figure 4.8: With nontrivial symmetries, the robot can reach a known position, but is unable
to fully determine its orientation. [left] Four symmetric states in a square environment.
[right] Motions from those symmetric states to a position fixed by the symmetries.

to x′, thereby demonstrating that x′ is consistent with u1, . . . , uk−1 and y1, . . . , yk−1. Hence

x′ ∈ ηk. �

The practical importance of this lemma is that for AL, the localization task can only

be accomplished modulo the symmetries in the environment. No sequence of actions and

observations can distinguish between a pair of symmetric states. Symmetry plays a similar

role in some methods for part orientation [72]. We define the task of localization up to

symmetry :

Given E, select actions to reduce the robot’s information state to a set of

symmetric states.

Note that Algorithm 4.1 can be adapted for localization up to symmetry. The only modi-

fications needed are to change the termination condition to stop when |ηk| is equal to the

number of symmetries, and to ensure that the states selected as x1 and x2 are not themselves

symmetric. The rest of the algorithm remains unchanged.

The limitations arising from symmetry are no longer relevant if we are concerned only

with determining the robot’s position and are not interested in its final orientation. In

this case we can, after reaching an information state consisting of symmetric points, issue

additional commands to navigate to a point fixed by the environment’s symmetries. See

Figure 4.8. We will not revisit this variant problem.

87

Figure 4.9: A sample execution of Algorithm 4.1 generated by our implementation in ap-
proximately 0.03 seconds. Top row: (a) The robot in its initial state. (b) The motions
generated by InitialActions. (c) There are 7 states consistent with these initial motions,
so |η6| = 7. Bottom row: (d) One disambiguation results in |η12| = 2. (e) The robot is fully
localized after 13 commands, with final information state |η14| = 1.

4.3.7 Computed examples

To illustrate its effectiveness, we have implemented Algorithm 4.1 in simulation, using sim-

plified methods for many of the geometric computations. The implementation is in C++ on

a 2.5GHz GNU/Linux system. Figure 4.9 shows a simple example in which the robot makes

13 motions to localize itself. In Figure 4.10, the environment is a regular pentagon, so the

final information state contains one state for each of the 5 symmetries. The environment

depicted in Figure 4.11 is serpentine and self similar, but has no symmetries.

This environment has 88 edges and geodesic diameter 65 meters. To gauge the efficiency

of our implementation, we selected at random 100 states an executed the localization al-

gorithm starting at each. The results of these runs are summarized in Table 4.1. These

experiments indicate that in at least some non-pathological situations, the algorithm’s per-

formance is significantly better than the upper bounds in Section 4.3.5 might suggest.

88

Figure 4.10: A robot localizing itself in an environment with 5 symmetries. From top
to bottom: (a) The robot’s initial state. (b) Executing InitialActions results in an
information state η8 containing 15 states. (c) One disambiguation iteration fully localizes
the robot, leaving 5 states in η10. Our implementation took approximately 0.1 seconds to
solve this problem.

Table 4.1: Experimental results on the performance of Algorithm 4.1. One hundred initial
states were randomly selected from the state space of the environment depicted in Fig-
ure 4.11.

minimum mean maximum

Distance Traveled (m) 11.45 40.97 64.09

Initial Candidates 3 42.11 103

Actions Executed 9 21.84 45

Computation Time (s) 2.59 5.12 9.26

4.4 Localization with a compass and contact sensor

Having addressed the localization task for AL, we now consider CT, a robot equipped with

only a compass and contact sensor. Once again we show constructively that the localization

task can be completed. A simple example of our algorithm’s execution appears in Fig. 4.12.

Recall that each action u ∈ S1 represents a rotation to the given orientation, followed

by a forward motion to the environment boundary. After its first action, the robot knows

its true orientation. Also note that after the first motion, the robot’s translations are all

between points on the environment boundary. For these reasons, we can simplify the robot’s

state space to ∂E, ignoring orientation and the interior of E. In this context, the information

89

Figure 4.11: A robot localizing itself in a serpentine environment. From top to bottom: (a)
The robot’s initial state. (b) Executing InitialActions results in an information state η6

containing 48 states. (c) After 2 iterations of the disambiguation algorithm, only 6 states
remain in η10. (d) There are only two states in η20. (e) The robot is fully localized after 25
motions. Our implementation took approximately 3.8 seconds to solve this problem.

states are subsets of ∂E. We use this simplification throughout Sections 4.4 and 4.5.

4.4.1 Computing the information transition function

This section presents an algorithm for computing fI(η, u) given E, η and u. We restrict our

attention to information states that can be reached from the initial state η1 = ∂E.

90

i ui ηi+1

0

1

i ui ηi+1

2

3

Figure 4.12: A localizing sequence generated by Alg. 4.2 for CT in a nonconvex polygon.
The information state at each step is shaded. Compare to Fig. 4.9.

Consider an information state η that can be expressed as the union of a finite collection

s1, . . . , sl of open segments and a finite set of points p1, . . . , pm on ∂E. To be precise, each si

is a linear subset of ∂E not containing its endpoints. Each si need not be a complete edge of

∂E and since it is linear, cannot contain any vertex of ∂E. Without loss of generality, assume

that the si’s are pairwise disjoint. The next lemma shows that every reachable information

state can be expressed in this form.

Lemma 4.3 Every information state η reachable from ∂E by an action sequence u1, . . . , uk

can be expressed as a finite union of open segments and points on ∂E.

Proof: Use induction on k. When k = 0, η = ∂E, which is the union of the vertices and

edges bounding E. Assume inductively that ηk−1 can be expressed as a finite union of open

segments and points. Because fI maps each segment to a finite set of polygonal chains on

∂E and each point to another single point, ηk also has a representation as a finite set of

points and segments. �

The intuition is that, given an action u and an information state η described as a finite

union of points and segments, the resulting information state fI(η, u) is simply the projection

of those points and segments onto ∂E in direction u. For a point, this projection is a simple

ray-shooting query. For a segment ab, compute the projection by sweeping line parallel to u

from a to b, generating a new segment each time the point on ∂E intersecting l closest to ab

91

a b

l

u

Figure 4.13: Computing fI(ab, u) by a line sweep algorithm. The diagram shows a snapshot
of the algorithm as it runs. The sweep line l moves from left to right.

is a vertex of E. See Fig. 4.13. The time to perform this computation is O((m + nl) log n)

for an information state described by m points and l segments in an environment with n

vertices.

4.4.2 Algorithm overview

We now present the localization algorithm itself. The algorithm proceeds in two parts.

First, actions are selected which reduce the uncertainty in the robot’s position to a finite

set of possibilities. Second, additional actions are chosen to reduce the uncertainty from

this finite set to a single point. The complete localizing sequence u1, . . . , uK is divided into

two parts u1, . . . , uK1 and uK1+1, . . . , uK2 generated by the respective parts of the algorithm.

The complete algorithm is shown in Algorithm 4.2.

4.4.3 From all the entire environment boundary to a finite subset

This section presents a sweep line algorithm for computing a sequence of actions to reduce

the robot’s information state to a finite set of points. The following lemma, whose intent is

illustrated in Figure 4.14, provides the basis for the algorithm.

92

Algorithm 4.2 LocalizeCT(E)
η1 ← ∂E
k ← 1
while ηk contains at least one segment do

ab← LeftmostSegment(ηk)
if (a− b).x > 0 then

uk ← (a− b)/||a− b||
else

uk ← (b− a)/||b− a||
end if

ηk+1 ← fI(ηk, uk)
k ← k + 1

end while

while ηk contains at least two points do

Select p, q from ηk.
pk ← p, qk ← q
while qk /∈ Vis(pk, E) do

tk ← first vertex of shortest path from pk to qk

uk ← (tk − pk)/||tk − pk||
ηk+1 ← fI(ηk, uk)
pk+1 ← ShootRay(E, pk, uk)
qk+1 ← ShootRay(E, qk, uk)
k ← k + 1

end while

uk ← (qk − pk)/||qk − pk||
ηk+1 ← fI(ηk, uk)
k ← k + 1

end while

return (u1, . . . , uk−1)

Lemma 4.4 For any segment s = ab ⊂ E, fI(s, u) is a single point if and only if u =

(a− b)/||a− b|| or u = (b− a)/||b− a||.

Proof: For the forward part, note that since ab is contained in E and is therefore itself

collision free, the maximal collision free segment starting from each x ∈ ab is the same.

Hence each x ∈ ab maps to the same point under f . For the backward part, suppose u is not

parallel to ab and fI(ab, u) is a single point. Then a, b, and fI(ab, u) form a nondegenerate

triangle. This is a contradiction because by definition of f , we must have ax parallel to

bx. �

93

ua

b

fI(ab,−u)

fI(ab, u)

b

a

x

Figure 4.14: [left] A motion along ab collapses ab to a single point. [right] No motion not
parallel to ab can collapse ab.

Starting with η1 = ∂E, the algorithm maintains a “current” information state ηk and

a sequence of actions u1, . . . , uk−1 mapping η1 to ηk. Computation proceeds by sweeping a

vertical line l from left to right across E, maintaining the invariant that ηk has no segments

on the left side of l. Each time l reaches the endpoint of a segment ab in ηk, the sweep line

stops and the algorithm selects as uk whichever of (a− b)/||a− b|| and (b− a)/||b− a|| has

nonnegative x coordinate. The resulting ηk+1 = fI(ηk, uk) maintains the sweep invariant

because the x-component of the motion of each segment in ηk is nonnegative; hence, no

segment can cross l. When l passes the rightmost vertex of E, it is certain that no segments

remain in ηk. It remains to show that this method generates a plan of finite length.

Lemma 4.5 The above algorithm generates K1 = O(n3) actions for an environment with n

edges.

Proof: Let e1, . . . , en denote the edges of ∂E and let v(ei) denote a unit vector parallel to ei

and oriented so that its x component is nonnegative. For a fixed i and j, fI(ei, v(ej)) is a set

of polygonal chains on ∂E with total complexity O(n). Let Rij denote the set of endpoints

of segments in fI(ei, v(ej)) and let R =
⋃

i,j Rij. Observe that |R| = O(n3). Clearly every

segment s reached by l is in the initial condition η1, or is a subset of some fI(ei, v(ej)). There

are n segments in η1 and R is a set of earliest possible points at which an information state

94

Figure 4.15: A sample execution of the first half of Algorithm 4.2.

segment projected from another edge may begin. These events are sufficient to maintain the

sweep invariant, so K1 = O(n) +O(n3) = O(n3). �

An example execution of this procedure appears in Figure 4.15.

4.4.4 From a finite subset to a single point

The previous section showed how to select actions u1, . . . , uK1 that map η1 = ∂E to a fi-

nite set ηK1 = {p1, p2, . . . , pm} of points on ∂E. It remains to generate additional actions

uK1+1, . . . , uK2 mapping {p1, p2, . . . , pm} to a single point. We derive this part of the algo-

rithm by reduction to the special case when m = 2. The more general problem for m points

can be solved by iterating the algorithm for two points.

Let η = {p, q}. The ordering of the points is arbitrary but must be fixed. Our goal is to

95

design a sequence of actions uK1+1, . . . , uK2 such that

f(p, uK1+1, . . . , uK2) = f(q, uK1+1, . . . , uK2). (4.18)

That is, we want an action sequence mapping p and q to the same destination. For K1 <

k ≤ K2, let

pk = f(p, uK1+1, . . . , uk)

and likewise

qk = f(q, uK1+1, . . . , uk).

Our algorithm selects uk using only pk and qk. We begin with the simple base case:

Lemma 4.6 If pkqk ⊂ E, then the action u = (qk − pk)/||qk − pk|| is a localizing sequence

for {pk, qk}.

Proof: Follows from Lemma 4.4 with a = pk and b = qk. �

The intuition is that if pk can “see” qk in the sense that there is an unobstructed path

between them, then a motion in the direction of this path maps both pk and qk to the same

place.

Now suppose pkqk 6⊂ E. The following definition is useful in this case.

Definition 4.2 For any x ∈ E, let Vis(x,E) denote the visibility polygon [12] of x in E,

defined as

Vis(x,E) = {x′ ∈ E | xx′ ⊂ E}. (4.19)

We follow [77] in characterizing the boundaries visibility polygons in terms of non-

spurious edges which are parts of ∂E and spurious edges which are not. Observe that

since E is simply connected, the spurious edges subdivide E in such a way that every point

x′ /∈ Vis(x,E) can be associated with exactly one spurious edge such that the shortest path

96

Vis(x, W)

x x

Figure 4.16: [left] A visibility polygon. Spurious edges are dashed. [right] The shortest path
to any point not in the visibility polygon begins with a motion in the direction of a spurious
edge.

pk

qk
vk

tk

pk+1

qk+1

Figure 4.17: [left] The spurious edge tkvk hides pk from qk. [right] The point qk+1 cannot
cross tkvk because its motion is parallel to tkvk.

from x to x′ crosses this spurious edge. Further, the first segment of the shortest path from

x to x′ is parallel to this spurious edge. See Figure 4.16. Let tkvk denote the spurious edge

crossed by the shortest path from pk to qk.

Assume momentarily that tkvk is not a bitangent of E. Choose uk = (tk− pk)/||tk− pk||.

That is, select a motion in the direction of the spurious edge that hides qk from pk. Figure 4.17

illustrates this selection (and the intuition behind the proof of Lemma 4.7). This completes

97

the definition of our action sequence uK1+1, . . . , uK2 :

ui =

(qi − pi)/||qi − pi|| if qi ∈ Vis(pi, E)

(ti − pi)/||ti − pi|| otherwise

, (4.20)

in which K2 is the minimal i for which the first case applies. Clearly if K2 exists, then this

action sequence is a localizing sequence. It remains only for us to show that K2 exists.

Let Qk = E −
⋃

i=K1,...,k Vis(pi, E) and observe that Qk+1 ⊂ Qk. Informally, Qk is the

portion of E that p has never seen.

Lemma 4.7 For all k > K1, qk ∈ Qk.

Proof: Use induction on k. The statement is true by construction when k = K1. For the

inductive step, note that qk moves parallel to tkvk, so that qk+1 is still behind this spurious

edge. If qk /∈ Qk, then qk must be in a region visible to some pi, or in some region not seen

by any pi but separated from qk by tkvk. In either case, we can form a nontrivial loop in E,

contradicting the simply connected property of E. �

One informal way to understand Lemma 4.7 is to imagine that p is “chasing” q. With

each motion, p takes a step in pursuit of q and eliminates a portion of the environment Qk in

which q could be “hiding”. If K2 exists, then p eventually “catches” q. An example appears

in Figure 4.18.

Now we can prove the algorithm’s correctness.

Theorem 4.1 The sequence uK1+1, . . . , uK2 is a localizing sequence for {p, q}.

Proof: If K2 exists, it follows from Lemma 4.6 that uK1+1, . . . , uK2 is a localizing sequence

for {p, q}. To show that K2 exists, note that each pk is in a different cell of the visibility

cell decomposition [77] of E. There are only O(n2) such cells on the boundary, so K2 =

O(n2). �

98

pk+1
qk+1

qk

pk

pk+1
qk+1

qk+2

pk+2

qk+2

pk+2

pk+3 = qk+3

Figure 4.18: A sample execution of the second half of Algorithm 4.2.

Finally, we must consider the special case when tkvk is a bitangent. This case is prob-

lematic because choosing uk = (tk − pk)/||tk − pk|| is no longer sufficient to ensure that

Qk+1 ⊂ Qk. The algorithm as stated would alternate between the actions tk−vk and vk− tk.

This problem can be avoided by rotating uk by a sufficiently small ǫ ensuring that qkqk+1

99

tk

vk

qk

pk

ǫ

pk+1

qk
pk+2
qk+2

pk

qk+1

Figure 4.19: The special case when tkvk is a bitangent. An extra motion is needed.

does not intersect tkvk. Then select uk+1 = (vk − pk+1)/||vk − pk+1||. Figure 4.19 illustrates

this situation. This modification adds an additional action each time pk falls at the endpoint

of a bitangent complement, but does not substantially change the analysis.

Now we can finally return to the general case with m points. If m > n (recall n is the

complexity of ∂E), then by the pigeonhole principle, at least two points must lie on the

same edge of ∂E. This pair of points can see each other, and one motion collapses them

to a single point. In this way, we can reduce the information state to a set of at most

n points using only m − n actions. Then select an arbitrary pair of points p and q from

the current information state ηk. We have shown how to merge p and q in O(n2) steps.

Repeating this process at most n times results in a plan of length O(n3) to map {p1, . . . , pm}

to a single point. Combining this with the O(n3) steps from the first part of the algorithm

(Section 4.4.3) yields a total plan length of K = K1 +K2 = O(n3).

4.4.5 Computed examples

We have implemented this algorithm in simulation. The top portion of Figure 4.20 shows

an environment with many regularities for which Algorithm 4.2 generates a 5-step localizing

sequence. In contrast, our algorithm needs 28 steps for the similar but irregular environment

in the bottom portion of Figure 4.20. This is in sharp contrast to visibility based localization,

100

Figure 4.20: [left] An environment with many regularities. Algorithm 4.2 generates a 5-step
localizing sequence for this environment, running in approximately 0.4 seconds. [right] A
modified version of the environment from Figure 4.20 in which the regularities have been
broken. Our algorithm generates a 26 step localizing sequence for this environment, running
in approximately 1.0 seconds.

in which such regularities are precisely what make localization problems difficult. Figure 4.21

shows a very irregular environment for which our algorithm generates a 30 step localizing

sequence. This sequence is executed from six different initial positions. The robot’s final

position is in the lower right.

4.5 Localization with an angular odometer and

contact sensor

In Section 4.4, we showed that robot model CT, a robot with only a compass and a contact

sensor, is capable of localizing itself within its environment. In this section we consider AT, a

weaker version of CT in which the compass has been replaced by an angular odometer. This

model is identical to that of Section 4.4, except that we now consider actions specified relative

to an unknown initial orientation, rather than a global reference direction. Equivalently, we

can consider the environment to have been rotated through an unknown angle θ, representing

the difference between the global reference direction and the robot’s initial orientation. A

localizing sequence must map every x ∈ X to the same xf , regardless of θ. We show that,

under this model, every sequence of actions fails.

101

Definition 4.3 An information state-action pair (η, u) is a collapsing transition if u is

parallel to some segment in η.

Lemma 4.8 Every localizing sequence contains at least one collapsing transition.

Proof: Suppose there exists some localizing sequence u1, . . . , uK with no collapsing tran-

sitions. Arbitrarily pick a segment s1 ⊆ η1 = ∂E. Because of Lemma 4.4, at every step

1 ≤ k ≤ K, F (sk, uk) contains at least one segment sk+1. We have constructed a segment

sK ⊆ ηK . Therefore |ηK | is infinite, a contradiction. �

Theorem 4.2 For a robot with only angular odometry and a contact sensor in any polygonal

environment E, no localizing sequence exists.

Proof: Suppose such a sequence u1, . . . , uK exists. Let e1, . . . en denote the set of edges of

∂E, and let Rot(v, φ) denote the rotation of v ⊆ R
2 by angle φ. If there exists no action-

edge pair (ui, ej) with ui and Rot(ej, θ) parallel, then u1, . . . , uK contains no collapsing

transitions. The sequence is required to work for all θ ∈ S1 but the subset of S1 in which

some ui coincides with some Rot(ej, θ) has measure 0. Therefore u1, . . . , uK fails for almost

every θ. �

The intuition is that reaching a finite cardinality information state requires at least one

motion parallel to some environment wall. No finite length localizing sequence can achieve

this for all possible initial orientations. See Figure 4.22.

4.6 Discussion

This chapter presented a localization techniques for several robots with severely limited

sensing capabilities. In this final section, we discuss these results.

102

4.6.1 Comparison of results

There are also some subtle but perhaps illustrative differences with the results we have

presented for AL and CT. The algorithm for AL is effective only up to symmetry, whereas

symmetries are not relevant to CT. This difference can be directly attributed to the fact

that, for AL, angular information is only local, rather than global. Likewise, the algorithm

for CT can only guarantee a known final state. For AL, each motion is precisely measured.

This provides sufficient information to determine the initial state and indeed the robot’s

entire path.

4.6.2 Comparison between sensing models

Perhaps the most closely related localization model is that of [55], in which the robot uses

an omnidirectional range sensor. The two phase approach described in that work – that

of finding a finite set of candidates (hypothesis generation) followed by determination of

the true state from among these candidates (hypothesis elimination) – is echoed in both

Algorithm 4.1 and Algorithm 4.2.

Model AL is strictly weaker than the visibility based model used in [55]. The visibility

polygon available to the robot in that work can be viewed as an omnidirectional measure

of the distance to the environment boundary. By ignoring all of these distances except the

distance to the boundary directly forward, their robot can accurately simulate AL. Moreover,

the work of [55] is mainly concerned with minimum distance localization, a problem we have

not addressed. A central result of [55] is that minimum distance localization with a visibility

sensor is NP-complete. In Appendix A, we use very similar techniques to show that minimum

distance localization by AL is also NP-complete.

Observe also that AL and CT are not directly comparable. Comparing AL to CT, we

exchange the compass for an angular odometer and the contact sensor for a linear odometer.

In doing so we have strengthened the linear (distance) sensing while reducing the robot’s an-

103

gular sensing. This type of reasoning, if generalized, leads to the dominance ideas presented

in Chapter 3.

4.6.3 Relationship to probabilistic methods

There is a large body of research on Bayesian methods for mobile robot localization (for

example, [49, 65, 84, 141, 143]). One way to interpret our results is as a special case of

techniques based on POMDPs (for example, [143]) in which sensing is perfect. However,

our use of set-based uncertainty allows us to treat the continuous state space exactly, but

existing POMDP methods generally require discretization to a finite state space. This sort of

Bayesian approach is a very natural way of extending our robot models to account for errors

in sensing and motion. Progress has already been made on probabilistic models for the some

sensing capabilities considered here. For example, [141] presents probabilistic models for

local odometry information. Our algorithms themselves, however, would require substantial

adaptation. There is no clear analog to Lemma 4.4, so CT could not “collapse” intervals of

probability mass to single points in the same way. Another consideration is that, because

we would be forced to settle for accumulating a sufficiently large portion of the probability

mass in a sufficiently small region, the basic argument of Theorem 4.2 fails.

Recent work by Erickson (in collaboration with the present author) makes some direct

progress on this front [64]. That approach uses a robot model very similar to CT, but with

probabilistic rotation errors with magnitude that increases during the robot’s execution. A

localization algorithm based on entropy-reduction heuristics successfully localized a Roomba

autonomous vacuum cleaner robot (Figure 1.1) in several laboratory environments. See

Figures 4.23 and 4.24.

104

Figure 4.21: [top] An irregular environment for which the localizing sequence computed
by our algorithm requires 30 steps. The computation took about 1.9 seconds. [bottom]
Execution traces of this localization sequence for 6 different starting positions. For each
starting position, the final position is the lower right corner of the environment.

105

Figure 4.22: A plan must work for any initial orientation, but any plan can only work for
finitely many of them, because there must always be at least one collapsing transition.

Figure 4.23: Probabilistic error models for a Roomba robot moving from the interior of its
environment to the boundary. The variance of the distribution is exaggerated for illustration
purposes.

106

Figure 4.24: Two synthetic environments for which the algorithm of [64] allows a Roomba
to solve the active global localization problem. Photos by Lars Erickson.

107

Chapter 5

Discussion and conclusion

The work presented in this thesis leaves open many possible lines of inquiry. The basic ques-

tion we asked in Chapter 1 still commands attention: How can we push robots into contexts

that are less predictable and more complex, while ensuring that the resulting systems are

robust and inexpensive? This chapter contains some brief discussion intended to put the

results of this thesis into perspective, and to highlight some directions for future research.

The discussion is organized chronologically. We present some general lessoned learned from

the current work in Section 5.1, then move in Section 5.2 to open problems that are suffi-

ciently concrete that they can be tackled in the short term. We conclude in Section 5.3 with

a longer range view of future directions.

5.1 Lessons learned

A defining aspect of this work is its emphasis on using the information space, explicitly

and directly, to approach problems in which the robot is uncertain about its current state.

Although we applied this thinking to several problems is great detail, this approach also

suggests a few broader, more conceptual lessons.

5.1.1 Solve the passive problem first

A distinction exists between passive problems, in which the goal is simply to describe and

update the state of the robot’s knowledge in response to actions and observations, and active

problems, in which the robot chooses actions to guide its I-state to a particular goal. We

108

claim that, for most problems, a good understanding of the passive version of the problem is

a prerequisite to finding a good solution to the active version. For example, in Section 4.4, we

gave an efficient solution to the passive problem (Section 4.4.1) before considering the related

active problem (Sections 4.4.2-4.4.4). This parallels the development of other localization

methods, as discussed briefly in Section 4.1. In this particular case, the passive solution

provided a key insight – that the reachable derived I-states are finite unions of segments

and points – that guided the design of the active algorithm. In other situations, such as the

pursuit-evasion work of Guibas et al. [76], the passive solution may uncover enough structure

that the active problem, properly posed, yields to direct search techniques.

5.1.2 Use abstraction to model robot systems

Robotics problems are defined by the interaction between sensing, actuation, and computa-

tion. In their full complexity, these interactions can be dauntingly complex. As a result, we

claim that finding the right level of abstraction is crucial for understanding these problems.

Compare, for example, the (relative) simplicity of Definition 3.3, in contrast to the messiness

of the continuous time formulations in Section 3.6.2 and Definition 3.5. The difference arises

from the abstraction made in modeling robot systems as collections of robotic primitives.

Note, however, that injudicious abstraction can lead to irrelevant or apparently contra-

dictory results. Lemma 3.2c (which states that R1 E R2 ⇒ R1 ∪ R3 E R2 ∪ R3) becomes

incorrect if primitives execute in parallel rather than serially. Moreover, although there is a

loose connection between primitives and sensors, the techniques of Chapter 3 can only lead

to statements about what can be accomplished with certain selections of primitives, and

cannot be interpreted directly as statements about what can be accomplished with certain

sensors.

109

5.1.3 Use partial orders instead of linear orders

Our results are centered the information preference relation � and the dominance relation E.

There may be some temptation linearize these features. Information preference, for example,

might be replaced by a scalar measure of entropy [166] or utility [24]. We recommend, in

the absence of persuasive motivation to the contrary, to resist such temptations. Although

such partial orders admit the possibility that no meaningful comparisons can be made, this

is ultimately desirable: physical tasks and robot systems exhibit complex relationships and

tradeoffs that can potentially defy meaningful linear ordering.

5.1.4 Don’t use unnecessarily specific uncertainty models

Much of the research on planning for robots (and for decision-making agents in general)

commits very early to one specific method for representing uncertainty. There is little

apparent overlap, for example, between methods that use probabilistic representations (such

as [98, 154, 165]), others that use logic-based formulations of various kinds (such as [11,

25, 45, 118, 138]), and still others that reason directly about possible states (as considered

throughout this thesis).

It seems likely that general purpose autonomous agents will need to employ some combi-

nation of these techniques, depending on the situation. These approaches mentioned above

differ only in how the history I-state is interpreted. The I-map κ represents precisely this

interpretation: It maps from the history of actions and observations into another space (the

derived I-space) in which the implications of these histories is more clear. In this regard,

the novelty of our work is that it does not assume any particular I-map or derived I-space.

Instead, we take an axiomatic approach, stating conditions on I, κ, and � under which cer-

tain results hold. The advantage of this kind of I-space centered approach is that (ideally)

one can seek results that are independent of the particular way that uncertainty is modelled.

Failing that, our work suggests at least to state precisely the range of uncertainty models to

110

which a given result applies.

5.2 Open problems

In spite of the progress we have made, the results presented in thesis thesis have important

limitations. Of the many issues remaining to be addressed, we mention a few here.

5.2.1 Probabilistic uncertainty

We have focused our attention on nondeterministic uncertainty, but a large subset of contem-

porary work in robotics uses probabilistic models of uncertainty [14, 65, 84, 141, 143, 154].

Our results also apply, at least in principle, to probabilistic uncertainty. In this context,

the relevant derived I-space is a space of probability distributions over X. However, it is

not immediately clear what the “right” information preference relation over such a space

would be. Depending on the models used, it may also be necessary to relax Definition 3.3 to

require only that R2 can simulate R1 with sufficiently high probability. More generally, the

differences between nondeterministic and probabilistic uncertainty models warrant further

exploration. For example, nondeterministic uncertainty has the property that sensing can

only help – actions from primitives like PR (Example 3.5) or PG (Example 3.6) that do not

change the state always lead to a derived I-state at least as good as the current one. Under

probabilistic uncertainty, this property does not obviously hold, and sensing can sometimes

increase uncertainty.

5.2.2 Selecting the catalog of primitives

Although we believe that our robotic primitives provide a useful abstraction, any results

derived using our methods are meaningful only ifRP is diverse enough to faithfully represent

the underlying system. It remains an open problem to systematically find small (or at least

succinctly described) sets of robotic primitives that are complete (or nearly complete) in the

111

sense of not eliminating any reachable regions in I-space. There is, however, active interest

in related problems for control systems [67, 70, 119, 122].

What happens if RP is not a finite set? For example, we may extend PL (from Exam-

ple 3.4) to a family {PL,ǫ = (S1, {0}, fLǫ
, hLǫ

) | ǫ ≥ 0} of primitives, each using a noisy linear

odometer whose error is bounded by ǫ. If RP contains many such families of primitives, and

we assume each robot has at most one primitive from each family, then the space of robot

models is a cube in R
n. The problem of identifying the region in which a given task can be

solved is correspondingly more difficult.

5.2.3 Efficiency and optimality

Throughout this paper, we have neglected the question of the robot’s efficiency in completing

its tasks. This weakness is particularly evident, for example, in Example 3.9, in which the

statement of dominance does not consider the differences in execution cost, which in this

case are likely to be prohibitively large. One established technique for taking such costs into

account is to use competitive ratios [68, 82], which compare the execution costs of online

algorithms (which must gather information during their execution) to offline methods (which

have complete information) for the same tasks. It may be fruitful to generalize this notion by

considering “relative competitive ratios” that bound the additional cost accrued by replacing

one robot system with another dominant robot system.

5.2.4 Parameterization of time

In Section 3.6.2, we parameterized the robot’s observations by time. In doing so, we implicitly

assumed that the robot has an accurate clock. Although such an assumption is generally

not technologically impractical, it requires care in abstract models to ensure that the robot

cannot acquire extra information “for free.” A robot might, for example, use this implicit

clock to parlay an accurate velocity sensor into a perfect odometer. One solution is to express

112

Figure 5.1: Good strategies for coordinating teams of unreliable robots may lead to systems
that are reliable as a whole.

ũ and ỹ as functions of some other abstract parameter p. To recover the original functions

of time, the robot must determine a hidden mapping from R to R under which p maps to t.

Such issues are addressed in detail in [103].

5.3 Future directions

We conclude by mentioning a few very broad directions for future research.

5.3.1 Communication, cooperation, and disposable robots

The minimalist philosophy advocated here is motivated partly by the promise of constructing

robot systems very inexpensively. By equipping robots with only a few, carefully selected

sensors, the cost of individual robots can be quite low. Equipped with good strategies for

communication and cooperation, teams of such robots have the potential for robustness even

if the individual units are very unreliable. By introducing a multiplicity of (possibly hetero-

geneous) robots, one may possibly reduce the sensing required for certain tasks. Figure 5.1

is a cartoon of such a situation. There are also a number of related problems for networks

113

of immobile sensing devices. Suppose each device has access to a choice of sensing modal-

ities and communication techniques, but the use of these capabilities is limited by power

constraints. What is the best way to activate sensors and communication links in order to

achieve adequate coverage across the network?

5.3.2 Unknown and unstructured environments

Another direction is to consider mobile robots in dynamic, unstructured environments. Can

a very simple robot reliably move through an outdoor area crowded with moving people

and other irregularly shaped obstacles? One way of approaching the problem is to consider

strategies guaranteed to make progress in some sense, even if the amount of progress cannot

be predicted or measured. By chaining such strategies together in appropriate ways, we can

guarantee that the robot will reach its goal. To properly examine these issues would require

both new basic results and experimental validation.

5.3.3 Necessary computation power

Beyond the questions addressed in this thesis, related to the robot’s sensing and motion

capabilities, important issues remain with regard to the computation requirements of tasks.

By equipping a robot with a more powerful sensor, we may potentially reduce the com-

plexity of the computations the robot must perform. The field currently lacks the tools and

vocabulary to analyze these tradeoffs systematically. We suggest that the information space,

which gives formalisms for understanding sensing, motion, and the collection of information,

provides the right language for understanding problems of this type. A starting point for

this direction might be to examine the amount and types of information that the robot must

retain (in contrast to information it must be able to collect but may be needed only for a

short time) to complete a task.

114

Appendix A

Hardness of minimum distance
localization with odometry

This appendix presents a hardness result for minimum-distance localization. Recall the

robot model AL from Chapter 4, which is equipped with accurate odometers for measuring

its translations and rotations. We show that, given a polygonal environment, the problem

of computing a localization strategy for AL that minimizes the worst-case distance traveled

is NP-hard. We do so using a technique very similar to that used in [55].

More precisely, we consider the following problem:

Limited-Distance Odometry-based Localization(LDOL)

Instance: A polygon E, a set F ⊆ E × S1 of k possible starting states, and a

distance d.

Question: Is there strategy that localizes robot AL, starting at some x1 ∈ F ,

with worst-case distance traveled d or less?

The proof proceeds by reduction from the abstract decision tree problem (ADT), shown to

be NP-complete by Hyafil and Rivest [81].

AbstractDecisionTree (ADT)

Instance: A set of k objects X = {x1, . . . , xk}, a set of n membership tests

T = {T1, . . . , Tn} with each Ti ⊆ X, and an integer h.

Question: Is there a rooted binary decision tree of height h or less, in which

each internal node is labeled with a test in T , each edge is labeled with “Yes”

or “No,” and each leaf is labeled with an object in X, that correctly and

uniquely identifies each object in X?

115

k groups
n tentacles per group

2h + 1 2h + 1 2h + 1

. . .

w

1
2

1
2

ǫ

1
2fi

Figure A.1: Constructing a localization problem from an instance of ADT. Not to scale.

Consider an instance (X, T , h) of ADT to construct an instance of LDOL. For E, build

a long, key-shaped polygon as illustrated in Figure A.1. The polygon has k groups of n

“tentacles” each. The groups are separated by corridors of length 2h + 1, with an extra

corridor at each end. Within each group, the tentacles have width w = 1/(4nh), with

separation of w between each tentacle. The tentacle lengths are determined by the test set

T . In group i, tentacle j has length 1/2 if xi ∈ Tj and length 1/2+ǫ for some ǫ > 0 if xi /∈ Tj.

For F , choose a set of k states with identical orientations positioned distance 1/2 from the

left edge of each group. Choose d = h+1/2. This construction is certainly polynomial time.

Before presenting the reduction itself, we make a few observations. First, note that the

groups of tentacles are spaced far enough apart that any strategy with worst case distance

at most d must stay within the group in which it starts. Second, observe that each group is

identical except at the tips of its tentacles. Therefore, it suffices to consider strategies that

make a series of “probes” of particular tentacles to determine whether their length is 1/2 or

1/2+ ǫ. To do so requires one unit of total motion, except that the robot need not exit from

116

the last tentacle it probes. This exception is offset by the fact that the starting position is

distance 1/2 from the nearest tentacle.

The distance traveled to make a single probe is at least 1 (to travel distance 1/2 down the

tentacle and back) and at most 2wn+ 1 (to account for lateral motions between tentacles).

Therefore, if the problem can be solved with worst case distance d, we can do so with

a strategy that makes at most ⌊d/(2wn+ 1)⌋ probes in the worst case. Likewise, if the

problem cannot be solved with worst-case distance d, it cannot be solved by any strategy

that makes ⌊d/1⌋ probes or fewer.

Given a strategy that makes t probes in the worst case, we can construct a decision tree of

height h for the corresponding ADT problem. Perform test Tj whenever the robot probes the

jth tentacle in its current group. The leaves of the decision tree correspond to the starting

position of the fully localized robot: If the robot determines that its starting position was

in the ith group, the corresponding decision tree leaf is labeled xi. This straightforward

transformation can be done in polynomial time.

Now we can state the result.

Lemma A.1 LDOL is NP-hard.

Proof: By reduction from ADT, using the construction described above. It remains only

to show that the constructed LDOL instance has the same solution (that is, “Yes” or “No”)

as the original ADT instance. If solution to the LDOL decision problem is “Yes,” meaning

that the localization problem can be solved with worst-case distance d, the argument above

implies that there exists a decision tree for the original ADT problem with height

⌊
d

2wn+ 1

⌋
≤

d

2wn+ 1
=
h+ 1/2
2n
4nh

+ 1
= h. (A.1)

Similarly, if the LDOL solution is “No,” meaning that no strategy can localize the robot

117

with worst-case distance d, then no decision tree exists with height

⌊d⌋ = ⌊h+ 1/2⌋ = h. (A.2)

Conclude that ADT can be reduced in polynomial time to LDOL. Since ADT is NP-hard,

LDOL is also NP-hard. �

118

Appendix B

Execution examples

This appendix presents detailed execution examples for Alg. 4.2. The intent is to illustrate,

step by step, how the information states progress from the initial information state of total

uncertainty to a final information state with which only a single state is consistent.

Table B.1: A localizing sequence computed by Algo-

rithm 4.2 for a highly symmetric environment.

i ui ηi+1

0

1

2

Continued on next page.

119

Table B.1, cont.

i ui ηi+1

3

4

5

Table B.2: A modified version of the environment from

Table B.1 in which the symmetries have been broken.

Our algorithm generates a 28 step localizing sequence for

this environment.

i ui ηi+1

0

Continued on next page.

120

Table B.2, cont.

i ui ηi+1

1

2

3

4

5

6

Continued on next page.

121

Table B.2, cont.

i ui ηi+1

7

8

9

10

11

12

Continued on next page.

122

Table B.2, cont.

i ui ηi+1

13

14

15

16

17

18

Continued on next page.

123

Table B.2, cont.

i ui ηi+1

19

20

21

22

23

24

Continued on next page.

124

Table B.2, cont.

i ui ηi+1

25

26

27

28

29

125

Table B.3: An irregular environment for which the lo-

calizing sequence computed by our algorithm requires 30

steps.

i ui ηi+1

0

1

2

Continued on next page.

126

Table B.3, cont.

i ui ηi+1

3

4

5

6

Continued on next page.

127

Table B.3, cont.

i ui ηi+1

7

8

9

10

Continued on next page.

128

Table B.3, cont.

i ui ηi+1

11

12

13

14

Continued on next page.

129

Table B.3, cont.

i ui ηi+1

15

16

17

18

Continued on next page.

130

Table B.3, cont.

i ui ηi+1

19

20

21

22

Continued on next page.

131

Table B.3, cont.

i ui ηi+1

23

24

25

26

Continued on next page.

132

Table B.3, cont.

i ui ηi+1

27

28

29

30

133

References

[1] A. D. Ames A. Abate and S. Sastry. Error-bounds based stochastic approximations
and simulations of hybrid dynamical systems. In American Control Conference, 2006.
33

[2] E. U. Acar and H. Choset. Complete sensor-based coverage with extended-range de-
tectors: A hierarchical decomposition in terms of critical points and voronoi diagrams.
In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001.
7, 66

[3] E. U. Acar and H. Choset. Robust sensor-based coverage of unstructured environments.
In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001.
7

[4] P. K. Agarwal, A. D. Collins, and J. L. Harer. Minimal trap design. In Proc. IEEE
International Conference on Robotics and Automation, volume 3, pages 2243–2248,
2001. 6, 66

[5] S. Akella, W. Huang, K. M. Lynch, and M. T. Mason. Parts feeding on a conveyor
with a one joint robot. Algorthmica, 26(3):313–344, March 2000. 6, 66

[6] S. Akella and M. Mason. Posing polygonal objects in the plane by pushing. Interna-
tional Journal of Robotics Research, 17(1):70–88, January 1998. 6, 66

[7] S. Akella and M. Mason. Using partial sensor information to orient parts. IJRR,
18:963–997, 1999. 6

[8] R. Aleliunas. A simple graph traversing problem. Master’s thesis, University of
Toronto, April 1978. 7

[9] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. Random walks,
universal traversal sequences, and the complexity of maze problems. In Proc. IEEE
Symposium on Foundations of Computer Science, pages 218–223, 1979. 7

[10] N. Alon, Y. Azar, and Y. Ravid. Universal sequences for complete graphs. Discrete
Appl. Math., 27(1-2):25–28, 1990. 7

[11] E. Amir and S. Russell. Logical filtering. In Proc. International Joint Conferences on
Artificial Intelligence, 2003. 110

134

[12] B. Aronov, L. Guibas, M. Teichmann, and L. Zhang. Visibility queries in simple poly-
gons and applications. Algorithms and Computation, 9th International Symposium,
ISAAC ’98, 1533, 1998. 96

[13] P. N. Atkar, D. C. Conner, A. Greenfield, H. Choset, and A. A. Rizzi. Uniform coverage
of simple surfaces embedded in r3 for auto-body painting. In Proc. Workshop on the
Algorithmic Foundations of Robotics, 2004. 2

[14] D. J. Austin and P. Jensfelt. Using multiple gaussian hypotheses to represent probabil-
ity distributions for mobile robot localization. In Proc. IEEE International Conference
on Robotics and Automation, pages 1036–1041, 2000. 33, 111

[15] D. Avis and H. Imai. Locating a robot with angle measurements. Journal of Symbolic
Computation, 10(3-4):311–326, 1990. 69, 72

[16] T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory, 2nd Ed. Academic,
London, 1995. 5

[17] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins. Searching in the plane.
Information and Computation, 106:234–252, 1993. 59, 60

[18] K. Basye and T. Dean. Map learning with indistinguishable locations. In Proc. Con-
ference on Uncertainty in Artificial Intelligence, pages 331–342. North-Holland, 1990.
72

[19] M. A. Bender, A. Fernández, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble:
exploring and mapping directed graphs. In Proc. IEEE Symposium on Foundations of
Computer Science, pages 269–278, 1998. 67

[20] J. O. Berger. Statistical Decision Theory. Springer-Verlag, Berlin, 1980. 25

[21] R-P. Berretty, K. Goldberg, M. Overmars, and F. Van der Stappen. Trap design for
vibratory part feeders. International Journal of Robotics Research, 20(11), November
2001. 6

[22] D. P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena Scientic,
Belmont, MA, second edition, 2001. 5, 24

[23] M. Betke and L. Gurvits. Mobile robot localization using landmarks. IEEE Transac-
tions on Robotics and Automation, 13(2):251–263, April 1997. 72

[24] F. Bian, D. Kempe, and R. Govindan. Utility based sensor selection. In Proc. Inter-
national Conference on Information Processing in Sensor Networks, 2006. 110

[25] P. Blackburn, J. van Benthem, and F. Wolter, editors. Handbook of Modal Logic.
Elsevier, Amsterdam, 2006. 110

[26] D. Blackwell and M. A. Girshik. Theory of Games and Statisitical Decisions. Dover,
New York, 1979. 50

135

[27] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain.
SIAM Journal on Computing, 26(1):110–137, 1997. 7

[28] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer Verlag, Berlin, 1998. 68

[29] M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to
search than graphs). In Proc. IEEE Symposium on Foundations of Computer Science,
pages 132–142, 1978. 6, 67, 68

[30] D. L. Boley, E. S. Steinmetz, and K. T. Sutherland. Robot localization from landmarks
using recursive total least squares. In Proc. IEEE International Conference on Robotics
and Automation, pages 1381–1386, 1996. 69

[31] G. Boothroyd, C. Poli, and L. E. Murch. Automatic Assembly. Marcel Dekker, Inc.,
1982. 6

[32] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge, UK, 98. 31

[33] A. Borodin, W. L. Ruzzo, and M. Tompa. Lower bounds on the length of universal
traversal sequences. In Proc. ACM Symposium on Theory of Computing, pages 562–
573. ACM Press, 1989. 7

[34] R. I. Brafman, J. Y. Halpern, and Y. Shoham. On the knowledge requirements of
tasks. Artificial Intelligence, 98(1-2):317–349, 1998. 33

[35] A. Broggi, C. Caraffi, P. P. Porta, and P. Zani. The single frame stereo vision system for
reliable obstacle detection used during the 2006 darpa grand challenge on TerraMax.
In IEEE Intelligent Transportation System Conference, 2006. 1

[36] M. Brokowski, M. A. Peshkin, and K. Goldberg. Curved fences for part alignment on
a belt. ASME Journal of Mechanical Design, 117(1), March 1995. 6

[37] J. F. Canny and K. Y. Goldberg. “RISC” industrial robots: Recent results and current
trends. In Proc. IEEE International Conference on Robotics and Automation, pages
1951–1958, 1994. 6

[38] A. K. Chandra, P. Raghavan, W. L. Ruzzo, and R. Smolensky. The electrical resistance
of a graph captures its commute and cover times. In Proc. ACM Symposium on Theory
of Computing, pages 574–586. ACM Press, 1989. 7

[39] B. Chazelle and L. G. Guibas. Visibility and intersection problems in plane geometry.
Discrete and Computation Geometry, 4:551–589, 1989. 82

[40] C.-T. Chen. Linear System Theory and Design. Holt, Rinehart, and Winston, New
York, 1984. 55

136

[41] T.-H. Chiang, M. S. Apaydin, D. L. Brutlag, D. Hsu, and J.C. Latombe. Predicting
experimental quantities in protein folding kinetics using stochastic roadmap simula-
tion. In Proc. ACM International Conference on Computational Biology, volume 3909
of LNCS, pages 410–424. Springer, 2006. 2

[42] H. Choset and J. Burdick. Sensor based planning, part I: The generalized Voronoi
graph. In Proc. IEEE International Conference on Robotics and Automation, pages
1649–1655, 1995. 66

[43] H. Choset and J. Burdick. Sensor based motion planning: Incremental construction of
the hierarchical generalized Voronoi graph. International Journal of Robotics Research,
19(2):126–148, 2000. 7

[44] H. Choset and J. Burdick. Sensor based motion planning: The hierarchical generalized
Voronoi graph. International Journal of Robotics Research, 19(2):96–125, 2000. 7

[45] A. Cimatti, M. Roveri, and P. Bertoli. Conformant planning via symbolic model
checking and heuristic search. Artificial Intelligence, 159(1-2):127–206, 2004. 110

[46] S. Cook. The complexity of theorem proving procedures. In Proc. ACM Symposium
on Theory of Computing, pages 151–158, 1971. 10

[47] I. J. Cox. Blanche – An experiment in guidance and navigation of an autonomous
robot vehicle. IEEE Transactions on Robotics and Automation, 7(2):193–204, 1991.
69, 71

[48] T. L. Dean and M. P. Wellman. Planning and Control. Morgan Kaufman, San Fran-
cisco, CA, 1991. 13

[49] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo localization for mobile
robots. In Proc. IEEE International Conference on Robotics and Automation, 1999.
24, 72, 104

[50] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Robot localization without depth
perception. In Scandinavian Workshop on Algorithm Theory, 2002. 69, 72

[51] X. Deng, T. Kameda, and C. H. Papadimitriou. How to learn an unknown environment
I: The rectilinear case. Journal of the ACM, 45(2):215–245, 1998. 7, 31

[52] B. R. Donald. On information invariants in robotics. Artificial Intelligence, 72:217–304,
1995. 5, 6, 33

[53] B. R. Donald and J. Jennings. Sensor interpretation and task-directed planning using
perceptual equivalence classes. In Proc. IEEE International Conference on Robotics
and Automation, pages 190–197, Sacramento, CA, 1991. 5

[54] G. Dudek, K. Romanik, and S. Whitesides. Localizing a robot with minimum travel.
In Proc. ACM-SIAM Symposium on Discrete Algorithms, 1995. 69, 73

137

[55] G. Dudek, K. Romanik, and S. Whitesides. Localizing a robot with minimum travel.
SIAM Journal on Computing, 27(2):583–604, 1998. 103, 115

[56] G. Dudek and C. Zhang. Vision-based robot localization without explicit object mod-
els. In Proc. IEEE International Conference on Robotics and Automation, pages 76–82,
1996. 69

[57] M. Egerstedt. Motion description languages for multi-modal control in robotics. In
A. Bicchi, H. Cristensen, and D. Prattichizzo, editors, Control Problems in Robotics,
Springer Tracts in Advanced Robotics, pages 75–90. Springer-Verlag, 2002. 33

[58] D. Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing,
19(3):500–510, 1990. 6

[59] M. Erdmann and M. T. Mason. An exploration of sensorless manipulation. IEEE
Transactions on Robotics and Automation, 4(4):369–379, August 1988. 6, 66

[60] M. Erdmann, M. T. Mason, and Jr. G. Vaněček. Mechanical parts orienting: The case
of a polyedron on a table. Algorthmica, 10:206–247, 1993. 6

[61] M. A. Erdmann. Using backprojections for fine motion planning with uncertainty.
International Journal of Robotics Research, 5(1):19–45, 1986. 6

[62] M. A. Erdmann. Randomization for robot tasks: Using dynamic programming in the
space of knowledge states. Algorthmica, 10:248–291, 1993. 5

[63] M. A. Erdmann. Understanding action and sensing by designing action-based sensors.
International Journal of Robotics Research, 14(5):483–509, 1995. 6, 20, 33

[64] L. Erickson, J. M. O’Kane, and S. M. LaValle. Probabilistic localization using only a
clock and a contact sensor. In Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2007. Under review. xiii, 104, 107

[65] D. Fox, W. Burgard, and S. Thrun. Active markov localization for mobile robots.
Robotics and Autonomous Systems, 25:195–207, 1998. 73, 104, 111

[66] D. Fox, S. Thrun, W. Burgard, and F. Dellaert. Particle filters for mobile robot
localization. In Arnaud Doucet, Nando de Freitas, and Neil Gordon, editors, Sequential
Monte Carlo Methods in Practice, pages 470–498, New York, 2001. Springer. 72

[67] E. Frazzoli. Robust Hybrid Control of Autonomous Vehicle Motion Planning. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, 2001. 112

[68] Y. Gabriely and E. Rimon. Competitive complexity of mobile robot on line motion
planning problems. In Proc. Workshop on the Algorithmic Foundations of Robotics,
2004. 31, 112

[69] B. Gates. A robot in every home. Scientific American Magazine, January 2007. 2

138

[70] A. Girard and G. J. Pappas. Hierarchical control using approximate simulation rela-
tions. In Proc. IEEE Conference on Decision and Control, 2006. 112

[71] A. Girard and G. J. Pappas. Approximation metrics for discrete and continuous sys-
tems. IEEE Transactions on Automatic Control, 52(5):782–798, May 2007. 33

[72] K. Y. Goldberg. Orienting polygonal parts without sensors. Algorthmica, 10:201–225,
1993. 6, 66, 87

[73] K. Y. Goldberg and M. T. Mason. Bayesian grasping. In Proc. IEEE International
Conference on Robotics and Automation, 1990. 5, 6

[74] D. D. Grossman and M. W. Blasgen. Orienting parts by computer controlled manip-
ulation. IEEE Transactions on Systems, Man, and Cybernetics, 5(5):561–565, 1975.
6

[75] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon.
Journal of Computer and Systems Sciences, 39(2):126–152, 1989. 84

[76] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. Visibility-based
pursuit-evasion in a polygonal environment. International Journal on Computational
Geometry and Applications, 9(5):471–494, 1999. 109

[77] L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization problem. In
K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson, editors, Proc. Workshop on
the Algorithmic Foundations of Robotics, pages 269–282. A.K. Peters, Wellesley, MA,
1995. 69, 71, 96, 98

[78] J. Hershberger. A new data structure for shortest path queries in a simple polygon.
Information Processing Letters, 38:231–235, 1991. 84

[79] R. Hinkel and T. Knieriemen. Environment perception with a laser radar in a fast
moving robot. In Proceedings of Symposium on Robot Control, 1988. 24, 72

[80] J. E. Hopcroft, J. D. Ullman, and R. Motwani. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, MA, second edition, 2000.
30

[81] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is np-complete.
Information Processing Letters, 5:15–17, 1976. 73, 115

[82] C. Icking, T. Kamphans, R. Klein, and E. Langetepe. On the competitive complexity
of navigation tasks. In Sensor Based Intelligent Robots, pages 245–258, 2002. 112

[83] P. Jensfelt and H. I. Christensen. Pose tracking using laser scanning and minimalistic
environmental models. IEEE Transactions on Robotics and Automation, 17(2):138–
147, April 2001. 73

139

[84] P. Jensfelt and S. Kristensen. Active global localisation for a mobile robot using mul-
tiple hypothesis tracking. IEEE Transactions on Robotics and Automation, 17(5):748–
760, October 2001. 104, 111

[85] J. D. Kahn, N. Linial, N. Nisan, and M. E. Saks. On the cover time of random walks
in graphs. Journal of Theoretical Probability, 2(1):121–128, January 1989. 7

[86] T. Kameda, M. Yamashita, and I. Suzuki. On-line polygon search by a seven-state
boundary 1-searcher. IEEE Transactions on Robotics, 22(3):446–460, June 2006. 67

[87] I. Kamon and E. Rivlin. Sensory-based motion planning with global proofs. IEEE
Transactions on Robotics and Automation, 13(6):814–822, December 1997. 6

[88] I. Kamon, E. Rivlin, and E. Rimon. Range-sensor based navigation in three dimensions.
In Proc. IEEE International Conference on Robotics and Automation, 1999. 6, 66

[89] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An opti-
mal randomized algorithm for the cow-path problem. In Proc. ACM-SIAM Symposium
on Discrete Algorithms, pages 441–447, 1993. 59

[90] R. M. Karp. On-line algorithms versus off-line algorithms: How much is it worth to
know the future? In Proceedings World Computer Congress, 1992. 31

[91] H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In Proc.
International Joint Conferences on Artificial Intelligence, 1999. 10

[92] J. M. Kleinberg. The localization problem for mobile robots. In Proc. IEEE Symposium
on Foundations of Computer Science, pages 521–531, 1994. 72, 73

[93] S. Koenig, A. Mudgal, and C. Tovey. An approximation algorithm for the robot
localization problem. In Proc. ACM-SIAM Symposium on Discrete Algorithms, 2006.
73

[94] H. W. Kuhn. Extensive games and the problem of information. In H. W. Kuhn
and A. W. Tucker, editors, Contributions to the Theory of Games, pages 196–216.
Princeton University Press, Princeton, NJ, 1953. 5

[95] P. R. Kumar and P. Varaiya. Stochastic Systems. Prentice-Hall, Englewood Cliffs, NJ,
1986. 5

[96] K. N. Kutulakos, C. R. Dyer, and V. J. Lumelsky. Provable strategies for vision-guided
exploration in three dimensions. In Proc. IEEE International Conference on Robotics
and Automation, pages 1365–1371, 1994. 6

[97] K. N. Kutulakos, V. J. Lumelsky, and C. R. Dyer. Vision-guided exploration: a step
toward general motion planning in three dimensions. In Proc. IEEE International
Conference on Robotics and Automation, pages 289–296, 1993. 6

140

[98] M. Littman L. Kaelbling and and A. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101:99–134, 1998. 13, 110

[99] A. M. Ladd, K. E. Bekris, A. P. Rudys, D. S. Wallach, and L. E. Kavraki. On the
feasibility of using wireless Ethernet for indoor localization. IEEE Transactions on
Robotics and Automation, 20(3):555–559, June 2004. 24, 72

[100] M. Lau and J. Kuffner. Behavior planning for character animation. In ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation, 2005. 2

[101] J.-P. Laumond. Kineo CAM: a success story of motion planning algorithms. IEEE
Robotics and Automation Magazine, 13(2):90–93, June 2006. 2

[102] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K.,
2006. Available at http://planning.cs.uiuc.edu/. 5, 21, 37, 56

[103] S. M. LaValle and M. B. Egerstedt. On time: Clocks, chronometers, and open-loop
control. Technical Report UIUCDCS-R-2007-2861, University of Illinois at Urbana-
Champaign, 2007. 60, 113

[104] A. Lazanas and J. C. Latombe. Landmark-based robot navigation. In Proc. National
Conference on Artificial Intelligence (AAAI), 1992. 7

[105] S. Lee. Mobile robot localization using optical mice. In IEEE Conference on Robotics,
Automation and Mechatronics, volume 2, pages 1192–1197, 2004. 69

[106] S. Lenser and M. Veloso. Sensor resetting localization for poorly modelled mobile
robots. In Proc. IEEE International Conference on Robotics and Automation, 2000.
33

[107] J. Leonard, H. Durrant-Whyte, and I. Cox. Dynamic map building for an autonomous
mobile robot. International Journal of Robotics Research, 11(4):89–96, 1992. 24, 72

[108] J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by tracking geo-
metric beacons. IEEE Transactions on Robotics and Automation, 7(3):376–382, June
1991. 72

[109] L. Levin. Universal search problems. In B. A. Trakhtenbrot, editor, A Survey of
Russian Approaches to Perebor (Brute-Force Searches) Algorithms, volume 6 of Annals
of the History of Computing, pages 384–400. IEEE, 1984. Translated from Russian. 10

[110] D. Lieb, A. Lookingbill, and S. Thrun. Adaptive road following using self-supervised
learning and reverse optical flow. In Proc. Robotics: Science and Systems, 2005. 1

[111] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor. Automatic synthesis of fine-motion
strategies for robots. International Journal of Robotics Research, 3(1):3–24, 1984. 5,
6, 33

141

[112] T. Lozano-Pérez and M. A. Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM, 22(10):560–570, October
1979. 14

[113] R. D. Luce and H. Raiffa. Games and Decisions: Introduction and Critical Survey.
Dover, Mineola, New York, 1957. 13

[114] V. J. Lumelsky and A. A. Stepanov. Path planning strategies for a point mobile
automaton moving amidst unknown obstacles of arbitrary shape. Algorthmica, 2:403–
430, 1987. 6, 66

[115] V. J. Lumelsky and S. Tiwari. An algorithm for maze searching with azimuth input.
In Proc. IEEE International Conference on Robotics and Automation, pages 111–116,
1994. 6, 66

[116] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for on-line
problems. In Proc. ACM Symposium on Theory of Computing, pages 322–333, 1988.
49, 72

[117] Matthew Mason. Kicking the sensing habit. AI Magazine, 14(1):58–59, 1993. 3

[118] D. McDermott and J. Doyle. Nonmonotonic logic I. Artificial Intelligence, 13:41–72,
1980. 110

[119] T. Mehta, F. Delmotte, and M. Egerstedt. Motion alphabet augmentation based on
past experiences. In Proc. IEEE Conference on Decision and Control, 2006. 112

[120] J. S. B. Mitchell, G. Rote, and G. Woeginger. Minimum-link paths among obstacles
in the plane. Algorthmica, 8:431–459, 1992. 84

[121] M. Moll and M. Erdmann. Manipulation of pose distributions. International Journal
of Robotics Research, 21(3):277–292, 2002. 6

[122] T. Murphey. Motion planning for kinematically overconstrained vehicles using feedback
primitives. In Proc. IEEE International Conference on Robotics and Automation, 2006.
112

[123] B.K. Natarajan. An algorithmic approach to the automated design of part orienters.
In Proc. IEEE Symposium on Foundations of Computer Science, pages 132–142, 1986.
6

[124] A. Y. Ng and M. Jordan. PEGASUS: A policy search method for large MDPs and
POMDPs. In Proc. Conference on Uncertainty in Artificial Intelligence, 2000. 5

[125] C. Ó. Dúnlaing and C. K. Yap. A retraction method for planning the motion of a disc.
Journal of Algorithms, 6:104–111, 1982. 7, 66

[126] J. M. O’Kane. Global localization using odometry. In Proc. IEEE International Con-
ference on Robotics and Automation, 2006. 70

142

[127] J. M. O’Kane and S. M. LaValle. Almost-sensorless localization. In Proc. IEEE
International Conference on Robotics and Automation, 2005. 71

[128] J. M. O’Kane and S. M. LaValle. On comparing the power of mobile robots. In Proc.
Robotics: Science and Systems, 2006. 33

[129] J. M. O’Kane and S. M. LaValle. Localization with limited sensing. IEEE Transactions
on Robotics, 2007. To appear. 70

[130] J. M. O’Kane and S. M. LaValle. On comparing the power of robots. International
Journal of Robotics Research, 2007. To appear. 33

[131] J. M. O’Kane and S. M. LaValle. Sloppy motors, flaky sensors, and virtual dirt:
Comparing imperfect ill-informed robots. In Proc. IEEE International Conference on
Robotics and Automation, 2007. 33

[132] C. H. Papadimitriou. Games against nature. Journal of Computer and System Sci-
ences, 31:288–301, 1985. 50

[133] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical
Computer Science, 84:127–150, 1991. 31, 66

[134] M. Rao, G. Dudek, and S. Whitesides. Randomized algorithms for minimum distance
localization. In Proc. Workshop on the Algorithmic Foundations of Robotics, pages
265–280, 2004. 73

[135] N. Rao, S. Kareti, W. Shi, and S. Iyenagar. Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-12410,
Oak Ridge National Laboratory, 1993. 7

[136] W. Renken. Concurrent localisation and map building for mobile robots using ultra-
sonic sensors. In Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, 1993. 24, 72

[137] K. Romanik and S. Schuierer. Optimal robot localization in trees. In Proc. ACM
Symposium on Computational Geometry, pages 264–273, 1996. 73

[138] S. Russell and J. Wolfe. Efficient belief-state AND-OR search, with application to
kriegspiel. In Proc. International Joint Conferences on Artificial Intelligence, 2005. 5,
110

[139] M. Seiz, P. Jensfelt, and H. I. Christensen. Active exploration for feature based global
localization. In Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2000. 73

[140] C. E. Shannon. Presentation of a maze solving machine. In H. von Foerster, M. Mead,
and H. L. Teuber, editors, Cybernetics: Circular, Casual, and Feedback Mechanisms in
Biological and Social Systems, Transactions Eighth Conference, pages 169–181, New
York, 1952. Josiah Macy Jr. Foundation. 67

143

[141] H. Shatkay and L. P. Kaelbling. Learning topological maps with weak local odometric
information. In Proc. International Joint Conferences on Artificial Intelligence, pages
920–927, 1997. 104, 111

[142] R. Sim and G. Dudek. Mobile robot localization from learned landmarks. In Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 2,
pages 1060–1065, 1998. 69

[143] R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable
environments. In Proc. International Joint Conferences on Artificial Intelligence, pages
1080–1087, 1995. 104, 111

[144] M. Sipser. Introduction to the Theory of Computation. PWS, Boston, MA, 1997. 30,
34

[145] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28:202–208, 1985. 31, 49, 72

[146] R. I. Soare. Recursively enumerable sets and degrees. Springer-Verlag, Berlin, 1987. 34

[147] K. Sugihara. Some location problems for robot navigation using a simple camera.
Computer Vision, Graphics, and Image Processing, 42(1):112–129, 1988. 69, 71, 72

[148] S. Suri, E. Vicari, and P. Widmayer. Simple robots with minimal sensing: From local
visibility to global geometry. In Proc. National Conference on Artificial Intelligence
(AAAI), 2007. 67

[149] K. T. Sutherland and W. B. Thompson. Inexact navigation. In Proc. IEEE Interna-
tional Conference on Robotics and Automation, pages 1–7, 1993. 72

[150] R. H. Taylor, M. T. Mason, and K. Y. Goldberg. Sensor-based manipulation planning
as a game with nature. In International Symposium of Robotics Research, Cambridge
MA, 1988. MIT Press. 50

[151] M. Thompa. Lower bounds on universal traversal sequences for cycles and other low
degree graphs. SIAM Journal on Computing, 21(6), December 1992. 7

[152] S. Thrun. Probabilisitic algorithms in robotics. AI Magazine, 21(4):93–109, 2000. 24,
72

[153] S. Thrun, W. Burgard, and D. Fox. A probabilistic approach to concurrent mapping
and localization for mobile robots. Machine Learning, pages 1–25, April 1998. 24, 72

[154] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge,
MA, 2005. 33, 110, 111

[155] M. Tomono and S. Yuta. Mobile robot localization based on an inaccurate map. In
Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
399–404, 2001. 72

144

[156] B. Tovar, L. Guilamo, and S. M. LaValle. Gap Navigation Trees: Minimal representa-
tion for visibility-based tasks. In Proc. Workshop on the Algorithmic Foundations of
Robotics, 2004. 7, 66

[157] B. Tovar, S. M. LaValle, and R. Murrieta. Locally-optimal navigation in multiply-
connected environments without geometric maps. In Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2003. 7

[158] A. F. van der Stappen, R.-P. Berretty, K. Goldberg, and M. H. Overmars. Geometry
and part feeding. In Sensor Based Intelligent Robots, pages 259–281, 2000. 6

[159] I. A. Wagner, M. Lindenbaum, and A.M. Bruckstein. Distributed covering by ant-
robots using evaporating traces. IEEE Transactions on Robotics and Automation,
15(5):918–933, October 1999. 67

[160] G. Weiss, C. Wetzler, and E. von Puttkamer. Keeping track of position and orientation
of moving indoor systems by correlation of range-finder scans. In Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems, 1994. 24, 72

[161] D. E. Whitney. Real robots don’t need jigs. In Proc. IEEE International Conference
on Robotics and Automation, 1986. 3, 6

[162] J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski. A complete algorithm for
designing passive fences to orient parts. Assembly Automation, 17(2), August 1997. 6

[163] J. D. Wolter, T. C. Woo, and R. A. Volz. Optimal algorithms for symmetry detection
in two and three dimensions. The Visual Computer, 1:37–48, July 1985. 85

[164] A. Yershova, B. Tovar, R. Ghrist, and S. M. LaValle. Bitbots: Simple robots solving
complex tasks. In Proc. National Conference on Artificial Intelligence (AAAI), 2005.
7

[165] N. Zhang and W. Lin. A model approximation scheme for planning in partially observ-
able stochastic domains. Journal of Artificial Intelligence Research, 7:199–230, 1997.
110

[166] Y. Zhang and Q. Ji. Sensor selection for active information fusion. In Proc. National
Conference on Artificial Intelligence (AAAI), 2005. 110

[167] R. Zhou and E. A. Hansen. An improved grid-based approximation algorithm for
POMDPs. In Proc. International Joint Conferences on Artificial Intelligence, 2001. 5

145

Author’s Biography

Jason O’Kane was born near Pittsburgh, Pennsylvania on November 7, 1979, a day in

which the temperature was a seasonable 40 degrees and the skies were partly cloudy. He

graduated from McKeesport Area High School in 1997. In 2001, O’Kane earned a B.S.

degree summa cum laude in Computer Science from Taylor University in Upland, Indiana.

From the University of Illinois at Urbana-Champaign, he earned an M.S. degree in 2005 and

a Ph.D. degree in 2007, both in Computer Science. O’Kane was named Taylor University’s

Outstanding Computer Science Graduate in 2001 and he was awarded a Roy S. Carver

Fellowship by the University of Illinois for 2001-2002. He is a member of the Institute

for Electrical and Electronics Engineers, the IEEE Robotics and Automation Society, the

Association for the Advancement of Artificial Intelligence, and the Society for Industrial and

Applied Mathematics. In August 2007, O’Kane will join the faculty of the Department of

Computer Science and Engineering at the University of South Carolina.

146

	List of Figures
	List of Tables
	List of Symbols
	Chapter 1 Introduction
	The challenge of autonomy
	Core ideas
	Information spaces
	Minimalism
	Feasible feedback planning

	Thesis overview
	Comparing the power of robot systems
	Localization with limited sensing

	Chapter 2 Basic definitions
	Basic ingredients
	The state space
	Actions and transitions
	Observations

	Information spaces
	The history information space
	Information maps and derived information spaces

	Tasks and solutions

	Chapter 3 Comparing the power of robots
	Related work
	Defining a set of robot systems
	The information preference relation
	A dominance relation over robot systems
	Dominance examples
	Properties of the dominance relation

	Extended example: Global localization
	Task definition
	Equivalences and dominances
	Completing the localization task
	The value of initial information

	Extensions and generalizations
	Imperfect sensing and control
	Continuous time

	Dominance and reachable sets
	Discussion

	Chapter 4 Localization with limited sensing
	Related work
	Passive localization
	Active localization

	Problem statement
	Actions, transitions, and observations
	Planning in the information space

	Localization with odometry
	Algorithm overview
	Generating a finite set of candidates
	If some boundary edges are parallel
	Localization from a finite set
	Complexity
	Environment symmetries
	Computed examples

	Localization with a compass and contact sensor
	Computing the information transition function
	Algorithm overview
	From all the entire environment boundary to a finite subset
	From a finite subset to a single point
	Computed examples

	Localization with an angular odometer and contact sensor
	Discussion
	Comparison of results
	Comparison between sensing models
	Relationship to probabilistic methods

	Chapter 5 Discussion and conclusion
	Lessons learned
	Solve the passive problem first
	Use abstraction to model robot systems
	Use partial orders instead of linear orders
	Don't use unnecessarily specific uncertainty models

	Open problems
	Probabilistic uncertainty
	Selecting the catalog of primitives
	Efficiency and optimality
	Parameterization of time

	Future directions
	Communication, cooperation, and disposable robots
	Unknown and unstructured environments
	Necessary computation power

	Appendix A Hardness of minimum distance localization with odometry
	Appendix B Execution examples
	References
	Author's Biography

