
c© Copyright by Jason Matthew O’Kane, 2005



ALMOST-SENSORLESS LOCALIZATION

BY

JASON MATTHEW O’KANE

B.S., Taylor University, 2001

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois



Acknowledgment

I offer sincere thanks to my family for teaching me the value of education and

encouraging my progress at every step. Many teachers and professors have

also been major influences in my development as computer scientist and as a

person. Special, lexicographically-ordered thanks are due to Leon Adkison,

Felix Aguilar, Stefan Brandle, Tim Diller, George Lepsch, Richard Malay,

Anna Marie Nucci, Frau Diana O’Donnell, Janet Robb, Wally Roth, Bill

Toll, and Art White. I am indebted in various ways to each of my present-day

colleagues Peng Cheng, Hamid Chitsaz, Steve Lindemann, Benjamin Tovar,

Anna Yershova, and George Zaimes. Finally, my advisor Steve LaValle is to

be particularly thanked for his insight, guidance, and wisecracking.

iii



Abstract

Localization is a fundamental problem for many kinds of mobile robots. A

variety of sensor systems of varying ability have been proposed and suc-

cessfully used to address the problem. This thesis probes the lower limits

of this range by describing an extremely simple robot with which localiza-

tion is still possible. More precisely, it presents a localization method for

a robot equipped with only a compass, a contact sensor, and a map of the

environment. In this context, a localization strategy can be described as a

sequence of directions in which the robot moves until it comes into contact

with the environment boundary. The main contribution is to show that a

localizing sequence exists for any simply connected polygonal environment

by presenting an algorithm to compute such a sequence. An implementation

with simulated examples is presented. We also show that the sensing model

is minimal by proving that in any simply-connected polygonal environment,

replacing the compass with an angular odometer precludes the possibility of

performing localization.

iv



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . 1

1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Localization . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Minimalist robotics . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Problem Statement . . . . . . . . . . . . . . . . . 6

2.1 Robot model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Problem formalization . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Localization as a search in information space . . . . . . . . . 8

Chapter 3 An Algorithm to Generate Localizing Sequences 10

3.1 The information transition function . . . . . . . . . . . . . . . 10
3.2 Generating localizing sequences . . . . . . . . . . . . . . . . . 12

3.2.1 From all of ∂X to a finite subset . . . . . . . . . . . . 13
3.2.2 From a finite subset to a single point . . . . . . . . . . 15

3.3 Computed examples . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 4 Minimality of the Model . . . . . . . . . . . . . . 36

Chapter 5 Discussion . . . . . . . . . . . . . . . . . . . . . . . 38

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



List of Figures

3.1 Computing F (η, u) by a line sweep algorithm. . . . . . . . . . 12
3.2 (a) A motion along ab will collapse ab to a single point. (b)

No motion not parallel to ab will collapse ab. . . . . . . . . . 14
3.3 If pk can see qk, then a motion in the direction of pkqk maps

pk and qk to the same place. . . . . . . . . . . . . . . . . . . . 16
3.4 (a) A visibility polygon. Spurious edges are dashed. (b) The

shortest path to any point not in the visibility polygon begins
with a motion in the direction of a spurious edge. . . . . . . . 17

3.5 (a) The spurious edge tkvk hides pk from qk. (b) The point
qk+1 cannot cross tkvk because its motion is parallel to tkvk. . 17

3.6 The special case when tkvk is a bitangent. . . . . . . . . . . . 19
3.7 Execution traces of the localization sequence depicted in Ta-

ble 3.3 for 6 different starting positions. For each starting
position, the final position is the lower right corner of the
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vi



List of Tables

2.1 A localizing sequence for a simple non-convex polygon. Pos-
sible states at each step are shaded. . . . . . . . . . . . . . . 7

3.1 A localizing sequence computed by our algorithm for a highly
symmetric environment. . . . . . . . . . . . . . . . . . . . . . 21

3.2 A modified version of the environment from Table 3.1 in which
the symmetries have been broken. Our algorithm generates
a 28 step localizing sequence for this environment. . . . . . . 22

3.3 An irregular environment for which the localizing sequence
computed by our algorithm requires 30 steps. . . . . . . . . . 27

vii



Chapter 1

Introduction

Localization, the task of systematically eliminating uncertainty in the pose

of a robot, is a fundamental problem for nearly any autonomous mobile

robotic system. It has long been known that robot designs with simplified

sensing and actuation models can lead to decreased costs and increased

robustness [60]. This thesis applies this idea to the problem of localization

in an attempt to describe the simplest possible robot with which localization

is still possible. This work has potential applications for extremely low-

cost robots in industrial and residential settings. In addition, it is of basic

scientific interest to explore the minimum sensing requirements for robotic

tasks.

We propose a robot model in which only a map, a compass and a contact

sensor are available. Odometry, range sensing and wall-following abilities are

omitted. With such a robot, the only reliable courses of action are to select

a motion direction and move in that direction as far as possible. During

any execution, the robot can never gather any new information from sensors

about its position within the environment. It must instead rely on actions

that are conformant in the sense that they map multiple possible current

states to a single resulting state. A plan in this model is an action sequence

rather than a decision tree.

This thesis presents two main results. First, we give an algorithm that

accepts as input a description of a simply-connected polygonal environment

and outputs a sequence of actions that will localize a robot that starts at

some unknown position within the environment. The correctness of this

algorithm constitutes a constructive proof that a localizing sequence exists

for any such environment. Second, we argue for the minimality of the robot

model by addressing the need for each of the map, contact sensor, and

compass.

A preliminary version of this work appeared in [47].

1



1.1 Organization

The balance of this thesis is organized as follows. The remainder of this

chapter will review related work. Chapter 2 formalizes our robot model,

defines the localization problem and characterizes this problem as a search

through an abstract space of information states. An algorithm to solve this

problem is in Chapter 3. Chapter 4 addresses the minimality of the robot

model. Some concluding remarks appear in Chapter 5.

1.2 Related work

There are two primary lines of antecedent research: First, a diverse collec-

tion of works have studied the localization problem itself on theoretical and

practical levels. Second, a recurring theme over two decades of robotics re-

search has been the notion of minimalism, the idea that simple but carefully

designed robotic systems can offer advantages in cost, efficiency and robust-

ness over more complex systems that are richer in sensors and actuators.

1.2.1 Localization

Much attention has been given to the problem of localization for robots with

varying degrees of sensing capability. We can generally separate the research

on this topic into two flavors: passive localization, which concentrates on

using any information available to the robot to draw conclusions about its

position, and active localization, in which the goal is to prescribe motions

for the robot in order to fully determine its position.

Passive localization Because it is both extremely practical and algorith-

mically interesting, the dominant sensor model for localization research is

that of range sensing. A range sensor provides as input to the robot the

distance to the nearest obstacle in each direction. This information can be

used to compute the visibility region of the robot’s position, which contains

every point in the environment reachable by a single straight-line motion.

The static problem of finding the set of candidate locations for a given vis-

ibility region in a polygonal environment was solved in [32]. In [21], an

algorithm for candidate generation is given that places stronger emphasis

on robustness to missing and spurious range data, as would be required for

experimental mobile robotics.

Another large body of work has focused on localization using landmarks.

In [52], a problem is posed in which the environment contains a collection

2



of landmark objects in fixed locations. At any time, the robot’s sensors can

detect some subset of these landmarks. The robot is aware of the direction

(but not distance) to each of these detected landmarks. The problem of

finding the set of points in the environment consistent with this sensor data

is solved for the case where the landmarks are distinguishable in [11]; the

distinguishability requirement is relaxed in [10]. One might also consider

the problem of “landmark design” in which landmarks can be placed in

locations in the environment carefully selected to facilitate localization. One

possible realization of this idea is to strategically place reflectors along the

walls of the environment and equip the robot with a sensor that can detect

the orientations of each reflector in the robot’s visibility region [52]. An

algorithm for computing a placement of reflectors such that no two points

in the environment have identical reflector signatures appears in [23]. The

method of [41] is also essentially landmark-based, but the landmarks are

wireless ethernet base stations whose signal strength informs the robot’s

position estimate.

Finally, a large family of methods use probabilistic models to estimate

the current state [22, 33, 41, 42, 49, 54, 55, 59]. Generally these methods

employ a probabilistic model for the robot’s position given sensor data (i.e.

range data, odometry, landmark positions, etc.) to form a probability dis-

tribution over states in the environment that represents the robot’s “belief”

about its current location.

Active localization We now turn to methods that, rather than only rea-

soning about uncertainty in the robot’s position, also generate motion plans

to reduce or eliminate this uncertainty. Algorithms in this context are often

considered in an online sense and are evaluated in terms of their compet-

itive ratio [45, 51], which compares the lengths of paths generated by the

algorithm to the length of the shortest possible path that could have been

selected if the robot started with full information.

In [38], the environment is constrained to an embedding of a bounded-

degree acyclic graph into R
n with sensing limited to the orientations of

incident edges. This algorithm has competitive complexity O(n2/3), in which

n is the number of leaves in the graph. Later improvements [50] shaved this

to O(n1/2), which is known to be optimal up to a constant factor[25]. Also

addressed in [38] is the case where the robot can move among a collection

of non-intersecting open axis-aligned rectangles in the plane; this problem

is solved with a O
(

n
√

log n
log log n

)

-competitive algorithm.

More generally, the problem of computing a localization strategy that

3



minimizes the worst-case distance traveled by a robot equipped with a visi-

bility sensor was proved NP-hard in [25]. In this case, a localization strategy

has the form of a decision tree with branches at points where two or more

candidate positions are disambiguated. The hardness proof proceeds by re-

duction from the Abstract Decision Tree problem [34]. The optimal decision

tree can, however, be approximated and [25] gives an algorithm based on

the visibility-cell decomposition that does this. An important weakness of

this algorithm is that it relies on motion commands that direct the robot

into visibility cells that may be arbitrarily small. In [48], this difficulty is

addressed by introducing randomization.

1.2.2 Minimalist robotics

Robots are composed, essentially by definition, of sensors and actuators that

interact with the physical world. Both sensors and actuators are subject in

practice to significant errors in precision and accuracy. Effective robots

must, in some way, be robust to these errors. One solution paradigm is

to design more and more complex robots with richer sensor sets and ac-

tuators with greater freedom, and then take advantage of these additional

capabilities through careful algorithm design and programming. Starting,

perhaps, with Whitney’s critique of mid-1980’s robotics research [60], an

alternative approach has arisen in which these difficulties are dealt with by

designing extremely simple robots that exploit the compliant properties of

the system in question to execute their assigned tasks. In industrial settings,

more complex tasks can be solved by sequences of these simple robots [17].

Other work has explored the more general question of the minimal sensing

requirements to complete a given task [13, 24]. The whole of this approach

has been called minimalist robotics.

Universal traversal sequences On a purely abstract level, we may think

of the universal traversal sequences that arise in graph theory [7, 8] as a

minimalist approach. Let g denote a d-regular graph. For each vertex of g,

we may bijectively label the incident edges with the labels {1, . . . , d}. Then,

fixing a start vertex v, a string s ∈ {1, . . . , d}∗ can be considered a path in g

simply by following edges in the indicated order. If s visits every vertex in

g, then we call s a traversal sequence for g starting at v. Now consider the

family G(n, d) of all connected n-vertex d-regular graphs. A sequence s is a

(n, d)-universal traversal sequence if s, for each g ∈ G(n, d) and each v ∈ g,

s is a traversal sequence for g starting at v.

Universal traversal sequences can be considered as solutions to planning

4



problems with uncertainty both in environment space (that is, the selection

of g from G(n, d)) and in state space (that is, the selection of a start vertex

v ∈ V (g)). More concretely, observe that G(n, 4) contains all grid-like en-

vironments in the plane with n unoccupied cells, so that an (n, 4)-universal

traversal sequence will visit every square of any n-element planar grid.

Borodin et al. [15] give several lower bounds on the lengths of universal

traversal sequences. In [9], the problem is addressed for complete graphs.

Bounds for other special cases appear in [18, 35, 53].

Manipulation Some of the most effective systems for manipulation, the

problem of using robots to move unarticulated objects, have used a mini-

malist approach. Akella and Mason [6] give a complete planner for pushing

objects on a planar surface while avoiding obstacles. A broader focus of

research has been on part-orienting systems, in which a stream of identical

parts with unknown initial orientation are manipulated into some known

final orientation. This has been accomplished with limited sensing using

tilting trays [27, 30], parallel-jaw grippers [28, 29], vibratory bowl feeders

[3, 12, 14] and active [4, 5] or passive [16, 61] fences over constant-speed

conveyor belts. Many of these methods are surveyed in [58]. For some of

these cases, the problem of planning to orient parts can be reduced to that

of finding a sequence that resets a finite state machine from an unknown

initial state to a known final state [26].

Exploration and navigation Finally, others have considered certain

navigation and exploration tasks for mobile robots with minimal sensing.

An analysis of the basic requirements for navigation in an unknown three-

dimensional environment appears in [39, 40]. Bug algorithms [36, 37, 43, 44]

are used for navigation by robots capable only of moving toward obstacles

and following walls. In [56, 57], the robot has an extremely crude range

sensor that can only detect discontinuities in depth information. As the

robot explores its environment, this information is used to construct a data

structure that allows for optimal navigation between previously-visited loca-

tions. More explicit maps based on metric measurements can be built with a

range sensor by traversing the generalized Voronoi graph of the environment

boundaries [1, 2, 20, 46].

5



Chapter 2

Problem Statement

In this chapter, we formally define a localization problem for a particular

model of robot with extremely weak sensing capability. We also present

by way of definition the primary machinery (the information space) used in

Chapter 3 to solve this localization problem.

2.1 Robot model

A robot, equipped with a compass and a contact sensor, moves in some

environment. In the absence of odometry, the only reliable actions for the

robot are maximal linear motions. That is, the robot can select a direction

and use its compass to move reliably in that direction as far as the environ-

ment allows. Importantly, the robot cannot gather any information about

its position within the environment as a result of taking an action; the only

information available to the robot is a set of possible initial positions and

the history of selected actions.

2.2 Problem formalization

This section formalizes the abstract robot model we have described. Allow

a point robot to move in a compact simply-connected polygonal state space

X. Let ∂X denote the boundary of X. Observe that ∂X ⊂ X because X

is closed. The robot is consequently allowed to come in contact with the

walls of the environment. The robot has access to an accurate map of X,

including its orientation in the plane.

The robot’s action space U = S1 is the unit circle, denoting the set of

directions in the plane. We will represent elements of U as unit vectors in

R
2. Given a state x ∈ X and an action u, the resulting state is governed by

the state transition equation f : X × U → X, in which (x, u) maps to the

6



Table 2.1: A localizing sequence for a simple non-convex poly-

gon. Possible states at each step are shaded.

i ui ηi+1

0

1

2

3

opposite endpoint of the maximal segment in X starting at x and having

direction u. We also define an iterated version of f to denote the result of

a sequence of actions:

fk(x, u1, . . . , uk) = f(· · · f(f(x, u1), u2) · · · ), uk). (2.1)

Now we can define the notion of a solution.

Definition 1 A localizing sequence for X is a sequence of actions u1,

. . . , uK such that there exists xf ∈ X with fK(x, u1, . . . , uK) = xf for all

x ∈ ∂X.

The intuition is that regardless of the robot’s initial location within ∂X,

after executing a localizing sequence, the robot’s final position, xf , is cer-

tain. The localizing sequence eliminates the uncertainty in the robot’s state.

7



Table 2.1 shows a sample environment and a localizing sequence for it. The

task, then, is to design a algorithm that accepts as input a description of X

and outputs a localizing sequence for X.

Localizing sequences are distinguished from the decision trees that arise

in some forms of sensor-based localization in that every x ∈ X must map

to the same xf , rather than allowing different initial states to reach distinct

but known final states. This change is a direct result of the lack of feedback

in our localization strategies.

Also, note that although this definition only considers points on the

boundary of X as possible initial states, a localizing sequence that works

for any initial state in the interior of X can be created by prepending an

arbitrary initial action (which necessarily will reach ∂X) to a localizing

sequence as according to this definition.

2.3 Localization as a search in information space

The problem of finding a localizing sequence for a given environment can

be seen as a planning problem in which the initial state is unknown and

the current state is unobservable. To manage this uncertainty, we transform

the problem from an unobservable planning problem in state space to an

observable problem in a more complex space called the robot’s information

space, which we now define.

At each step, the next action selected by the robot must be based solely

on its map of the environment and the history of actions it has taken so

far. This action sequence can be used to rule out certain elements of ∂X

as possible positions for the robot. The set of positions consistent with this

action sequence is called the robot’s information state. The next definition

makes this idea more precise.

Definition 2 Suppose the robot has executed some sequence of actions u1,

. . . , uk−1. The information state ηk of the robot is

ηk = {x ∈ ∂X | ∃xI ∈ ∂X, x = fk−1(xI , u1, . . . , uk−1)}. (2.2)

Definition 3 The information space I is the set 2∂X of all information

states, in which 2S denotes the power set of S.

We can view the problem of computing a localizing sequence for X as a

planning problem in I with initial state ∂X and goal region

IG = {η ∈ I | |η| = 1}, (2.3)

8



in which | · | denotes the (possibly infinite) cardinality of a set.

It is possible to define a transition function for information states in a

very natural way. Let F : I × U → I according to the forward projection

F (η, u) = {x′ ∈ ∂X | ∃x ∈ η, x′ = f(x, u)}. (2.4)

As with f , we define

F k(η, u1, . . . , uk) = F (· · ·F (F (η, u1), u2) · · · ), uk). (2.5)

In this notation, an action sequence u1, . . . , uK is a localizing sequence if

and only if
∣

∣FK(∂X, u1, . . . , uK)
∣

∣ = 1. (2.6)

Our algorithm presentation in Chapter 3 will take this view of localizing

sequences.

9



Chapter 3

An Algorithm to Generate

Localizing Sequences

This chapter presents a solution to the problem posed in Chapter 2. The

presentation will proceed in two parts. First, in Section 3.1 we give an

algorithm for computing the information transitions defined by (2.4). This

algorithm is used in Section 3.2 as a subroutine for our main algorithm,

which computes the localizing sequences.

3.1 The information transition function

This section presents a simple algorithm for computing F (η, u) given X, η

and u. We restrict our attention to information states that can be reached

from the initial state η1 = ∂X. Alg. 3.1 summarizes the algorithm, which is

justified by the next two lemmas.

Consider an information state η that can be expressed as the union

of a finite collection s1, . . . , sl of open segments and a finite set of points

p1, . . . , pm on ∂X. To be precise, each si is a linear subset of ∂X not

containing its endpoints. Each si need not be a complete edge of ∂X and

since it is linear, cannot contain any vertex of ∂X. Without loss of generality,

assume that the si’s are pairwise disjoint.

The next lemma characterizes the set of reachable information states.

Lemma 4 Every information state η reachable from ∂X by an action se-

quence u1, . . . , uk can be expressed as a finite union of open segments and

points on ∂X.

Proof: Use induction on k. When k = 0, η = ∂X, which is the union of

the vertices and edges bounding X. Assume inductively that ηk−1 can be

expressed as a finite union of open segments and points. Because F maps

10



Algorithm 3.1 InfoTrans(X, s1, . . . , sl, p1, . . . , pm, u)

η′ ← ∅
for i← 1 . . . l do

{a, b} ← endpoints of si

E ← vertices of X
E ← E − {v ∈ E|CCW(a, a + u, x) = CCW(b, b + u, x)}.

E ← Sort(E) by perpendicular distance from
←−−−−→
a(a + u)

p← ShootRayForSweep(X, a, u, b− a)
for e ∈ E do

if SameEdge(p, e) then

η′ ← η′ ∪ pe
p← ShootRayForSweep(X, e, u, b− a)

else

p′ ← ShootRayForSweep(X, e, u, b− a)
η′ ← η′ ∪ pp′

p← p′

end if

end for

end for

for j ← 1 . . . m do

η′ ← η′ ∪ {ShootRay(X, pj , u)}
end for

return η′

each segment to a finite set of polygonal chains on ∂X and each point to

another single point, ηk also has a representation as a finite set of points

and segments. �

Lemma 5 For any action u ∈ U and any reachable information state

η =

[

⋃

i

si

]

∪





⋃

j

{pj}



 ,

in which the si’s are open segments and the pj’s are points in ∂X,

F (η, u) =

[

⋃

i

F (si, u)

]

∪





⋃

j

{f(pj , u)}



 . (3.1)

Proof: Immediate from the definition of F (Eq. 2.4). �

The significance of Lemma 5 is that to compute any transition F (η, u)

from a reachable η, it will be sufficient to give an algorithm for the cases

where η is an open segment and a single point. Then the complete F (η, u)

can be formed by unioning each of these partial results.

11



a

b

l

x

Figure 3.1: Computing F (η, u) by a line sweep algorithm.

• If η is a segment ab, where the notation ab denotes the open segment

with endpoints a and b, sweep a line l perpendicular to ab starting

at a and moving toward b. Maintain as an invariant that the nearest

point x ∈ ∂X to ab intersected by l is known. Qualitative changes to

x will occur only when l reaches a vertex of ∂X. At each such event,

a segment is generated in F (η, u) corresponding to the segment swept

by l since the last event. An updated value for x can be computed

by a modified ray shooting query, in which the ray stops at boundary

vertices for which both incident edges are beyond l. Fig. 3.1 illustrates

the sweeping algorithm.

• If η is a singe point p1, then F (η, u) = f(p1, u) can be computed by a

ray-shooting query in X from p1 in direction u. In a simple polygon,

data structures are known to answer such queries in O(log n) time,

with O(n) preprocessing time and O(n) space [19].

The preceding exposition has established the correctness of the Alg. 3.1.

Its run time is determined by the description length of η and the complexity

of planar ray shooting.

Theorem 6 Alg. 3.1 runs in time O((m + nl) log n) to compute the transi-

tion from an information state described by m points and l segments in an

environment with n vertices.

3.2 Generating localizing sequences

We now present an algorithm to compute a localizing sequence for any

simply-connected polygonal environment X. The algorithm proceeds in two

12



Algorithm 3.2 LocalizingSequence(X)

η1 ← ∂X
k ← 1
while ηk contains at least one segment do

ab← leftmost segment in ηk

if (a− b).x > 0 then

uk ← (a− b)/||a− b||
else

uk ← (b− a)/||b− a||
end if

ηk+1 ← InfoTrans(X, ηk, uk)
k ← k + 1

end while

while ηk contains at least two points do

Select p, q from ηk.
pk ← p, qk ← q
while qk /∈ Vis(pk, X) do

tk ← first vertex of shortest path from pk to qk

uk ← (tk − pk)/||tk − pk||
ηk+1 ← InfoTrans(X, ηk, uk)
pk+1 ← ShootRay(X, pk, uk)
qk+1 ← ShootRay(X, qk, uk)
k ← k + 1

end while

uk ← (qk − pk)/||qk − pk||
ηk+1 ← InfoTrans(X, ηk, uk)
k ← k + 1

end while

return (u1, . . . , uk−1)

parts. First, actions are selected which reduce the uncertainty in the robot’s

position to a finite set of possibilities. Second, additional actions are cho-

sen to reduce the uncertainty from this finite set to a single point. The

complete localizing sequence u1, . . . , uK is divided into two parts u1, . . . ,

uK1
and uK1+1, . . . , uK2

generated by the respective parts of the algorithm.

The complete algorithm is shown in Alg. 3.2; the subsequent discourse will

explain and justify it.

3.2.1 From all of ∂X to a finite subset

This section presents a sweep line algorithm for computing a sequence of

actions to reduce the robot’s information state to a finite set of points. The

following lemma, whose intent is illustrated in Fig. 3.2, provides the basis

for the algorithm.

Lemma 7 For any segment s = ab ⊂ X, F (s, u) is a single point if and

13



u

F (ab,−u)

F (ab, u)

b

a

b

a

x

(a) (b)

Figure 3.2: (a) A motion along ab will collapse ab to a single point. (b) No
motion not parallel to ab will collapse ab.

only if u = (a− b)/||a− b|| or u = (b− a)/||b− a||.

Proof: For the forward part, note that since ab is contained in X and

is therefore itself collision-free, the maximal collision-free segment starting

from each x ∈ ab will be the same. Hence each x ∈ ab maps to the same

point under f . For the backward part, suppose u is not parallel to ab and

F (ab, u) is a single point x. Then a, b, and x form a nondegenerate triangle.

This is in itself a contradiction because by definition of f , we must have ax

parallel to bx. �

Starting with η1 = ∂X, the algorithm maintains a “current” information

state ηk and a sequence of actions u1, . . . , uk−1 mapping η1 to ηk. Compu-

tation proceeds by sweeping a vertical line l from left to right across X,

maintaining the invariant that ηk has no segments on the left side of l.

Each time l reaches the endpoint of a segment ab in ηk, it selects as uk

whichever of (a− b)/||a− b|| and (b− a)/||b− a|| has nonnegative x coordi-

nate. The resulting ηk+1 = F (ηk, uk) maintains the sweep invariant because

the x-component of the motion of each segment in ηk is positive; hence, no

segment can cross l. When l passes the rightmost vertex of X, it is cer-

tain that no segments remain in ηk. It remains to show that this method

generates a plan of finite length.

Lemma 8 The above algorithm generates K1 = O(n3) actions for an envi-

ronment with n edges.

14



Proof: Let e1, . . . , en denote the edges of ∂X and let v(ei) denote a unit

vector in direction of ei oriented so that its x component is positive. For a

fixed i and j, F (ei, v(ej)) is a set of polygonal chains on ∂X with total com-

plexity O(n). Let Rij denote the set of endpoints of segments in F (ei, v(ej))

and let R =
⋃

i,j Rij . Observe that |R| = O(n3). Clearly every segment s

reached by l will correspond to the initial condition η1 or to some transition

from another edge. There are n segments in η1 and R describes a set of

earliest possible points at which an information state segment may begin on

any edge. These events are sufficient to maintain the sweep invariant, so

K1 = O(n) + O(n3) = O(n3). �

3.2.2 From a finite subset to a single point

The previous section showed how to select actions u1, . . . , uK1
that map

η1 = ∂X to a finite set ηK1
= {p1, p2, . . . , pm} of points. It remains to

generate additional actions uK1+1, . . . , uK2
mapping {p1, p2, . . . , pm} to a

single point. We will derive this part of the algorithm by reduction to the

special case when m = 2. The more general problem for m points can be

solved by iterating the algorithm for two points.

Let η = {p, q}. The ordering of the points is arbitrary but must be fixed.

Our goal is to design a sequence of actions uK1+1, . . . , uK2
such that

fK2−K1(p, uK1+1, . . . , uK2
) = fK2−K1(q, uK1+1, . . . , uK2

). (3.2)

That is, we want to design a sequence of actions mapping p and q to the

same destination.

For K1 < k ≤ K2, let

pk = fK−K1(p, uK1+1, . . . , uk)

and likewise

qk = fK−K1(q, uK1+1, . . . , uk).

Our algorithm will select uk using only pk and qk. We begin with the simple

base case:

Lemma 9 If pkqk ⊂ X, then the action u = (qk − pk)/||qk − pk|| is a

localizing sequence for {pk, qk}.

Proof: Follows directly from Lemma 7. �

The intuition is that if pk can “see” qk in the sense that there is an

unobstructed path between them, then a motion in the direction of this

15



pk
qk pk+1 − qk+1

Figure 3.3: If pk can see qk, then a motion in the direction of pkqk maps pk

and qk to the same place.

path will map both pk and qk to the same place. Fig. 3.3 illustrates this

situation.

Now suppose pkqk 6⊂ X. The following definition will be useful in this

case.

Definition 10 For any x ∈ X, let Vis(x, X) denote the visibility polygon

of x in X, defined as

Vis(x, X) = {x′ ∈ X | xx′ ⊂ X}. (3.3)

We follow [32] in characterizing the boundaries visibility polygons in

terms of non-spurious edges which are parts of ∂X and spurious edges which

are not. Observe that since X is simply connected, the spurious edges

subdivide X in such a way that every point x′ /∈ Vis(x, X) can be associated

with exactly one spurious edge such that the shortest path from x to x′

crosses this spurious edge. Further, the first segment of the shortest path

from x to x′ will be parallel to this spurious edge. See Fig. 3.4. Let tkvk

denote the spurious edge crossed by the shortest path from pk to qk. It

is shown in [31] that such initial shortest path segments can be computed

using a data structure with O(log n) query time, O(n) preprocessing time

and O(n) storage.

Assume for the moment that tkvk is not a bitangent of X. Since this case

creates some complications in the analysis, we will deal with it separately.

Choose uk = (tk − pk)/||tk − pk||. That is, select a motion in the direction

of the spurious edge that hides qk from pk. Fig. 3.5 illustrates this selection

(and the intuition behind the proof of Lemma 11). This completes the

definition of our action sequence uK1+1, . . . , uK2
:

ui =







(qi − pi)/||qi − pi|| if qi ∈ Vis(pi, X)

(ti − pi)/||ti − pi|| otherwise
, (3.4)

16



x

Vis(x,X)

(a)

x

(b)

Figure 3.4: (a) A visibility polygon. Spurious edges are dashed. (b) The
shortest path to any point not in the visibility polygon begins with a motion
in the direction of a spurious edge.

pk

qk

tk

vk
pk+1

qk+1

(a) (b)

Figure 3.5: (a) The spurious edge tkvk hides pk from qk. (b) The point qk+1

cannot cross tkvk because its motion is parallel to tkvk.

17



in which K2 is the minimal i for which the first case applies. We will show

in Theorem 12 that K2 is well-defined, but we need to following lemma to

do so:

Lemma 11 Let Qk = X −
⋃

i=K1,...,k Vis(pi, X). Then for K1 ≤ k < K2 if

K2 is well-defined or K1 < k otherwise, qk ∈ Qk.

Proof: Use induction on k. The statement is trivially true by construction

when k = K1. For the inductive step, note that qk moves parallel to tkvk,

so that qk+1 is still behind this spurious edge. If qk /∈ Qk, then qk must

be contained in a region that is not in visible to some pi, or in some region

not seen by any pi but separated from qk by tkvk. In either case, we can

form a non-trivial loop in X, contradicting the simply-connected property

of X. �

One informal way to understand Lemma 11 is to imagine that p is “chas-

ing” q. With each motion, p takes a step in pursuit of q and eliminates a

portion of the environment Qk in which q could be hiding. If K2 is well-

defined (and we will show momentarily that this is the case) then p will

eventually “catch” q.

Finally, we must consider the special case when tkvk is a bitangent.

This case is problematic because choosing uk = (tk − pk)/||tk − pk|| is no

longer sufficient to ensure that Qk+1 ⊂ Qk. The algorithm as stated would

alternate between the actions tk − vk and vk − tk. This problem can be

avoided by rotating uk by a sufficiently small ε that qkqk+1 will not intersect

tkvk. Then select uk+1 = (vk − pk+1)/||vk − pk+1||. Fig 3.6 illustrates this

situation. This modification adds an additional action each time pk falls at

the endpoint of a bitangent complement, but does not substantially change

the analysis.

Now we can prove the algorithm’s correctness.

Theorem 12 The sequence uK1+1, . . . , uK2
is a localizing sequence for {p, q}.

Proof: If K2 is well-defined, it follows from Lemma 9 that uK1+1, . . . , uK2

is a localizing sequence for {p, q}. To show that K2 is well-defined, note

that each pk is in a different cell of the visibility cell decomposition [32] of

X. There are only O(n2) such cells on the boundary, so K2 = O(n2). �

Now we can finally return to the general case with m points. If m > n

(recall n is the complexity of the environment boundary ∂X), then by the

pigeonhole principle, at least two points must lie on the same edge of ∂X.

This pair of points can see each other, and one motion will collapse them

18



pk

tk

qk

vk

pk

pk+1

qk

qk+2

pk+2

qk+1

ε

Figure 3.6: The special case when tkvk is a bitangent.

19



to a single point. In this way, we can reduce the information state to a

set of at most n points using only m − n actions. Then select an arbitrary

pair of points p and q from the current information state η. We have just

shown how to merge p and q in O(n2) steps. Repeating this process at

most n times results in a plan of length O(n3) to map {p1, . . . , pm} to a

single point. Combining this with the O(n3) steps from the first part of the

algorithm (Sec. 3.2.1) yields a total plan length of K = K1 + K2 = O(n3).

3.3 Computed examples

We have implemented Algs. 3.1 and 3.2 in simulation. Table 3.1 shows the

5 step localizing sequence generated by our implementation for an environ-

ment with many regularities. In contrast, our algorithm needs 28 steps for

the similar but irregular environment in Table 3.2. In this sense, the local-

izing sequence for Table 3.1 appears to “exploit” these symmetries in the

sense that uncertainty is simultaneously reduced in each of the identical

branches. This is in sharp contrast to visibility-based localization, in which

such symmetries are precisely what make localization problems difficult.

Fig. 3.7 shows a very irregular environment for which our algorithm

generates a 30 step localizing sequence. This sequence is executed from six

different initial positions. Note that because some actions in the sequence

will lead to an immediate collision with the wall, these execution traces need

not in general contain 30 segments. Table 3.3 depicts the information states

at each of these steps.

20



Table 3.1: A localizing sequence computed by our algorithm

for a highly symmetric environment.

i ui ηi+1

0

1

2

3

4

5

21



Table 3.2: A modified version of the environment from Ta-

ble 3.1 in which the symmetries have been broken. Our al-

gorithm generates a 28 step localizing sequence for this envi-

ronment.

i ui ηi+1

0

1

2

3

4

5

Continued on next page.

22



Table 3.2, cont.

i ui ηi+1

6

7

8

9

10

11

Continued on next page.

23



Table 3.2, cont.

i ui ηi+1

12

13

14

15

16

17

Continued on next page.

24



Table 3.2, cont.

i ui ηi+1

18

19

20

21

22

23

Continued on next page.

25



Table 3.2, cont.

i ui ηi+1

24

25

26

27

28

29

26



Table 3.3: An irregular environment for which the localizing

sequence computed by our algorithm requires 30 steps.

i ui ηi+1

0

1

2

3

Continued on next page.

27



Table 3.3, cont.

i ui ηi+1

4

5

6

7

Continued on next page.

28



Table 3.3, cont.

i ui ηi+1

8

9

10

11

Continued on next page.

29



Table 3.3, cont.

i ui ηi+1

12

13

14

15

Continued on next page.

30



Table 3.3, cont.

i ui ηi+1

16

17

18

19

Continued on next page.

31



Table 3.3, cont.

i ui ηi+1

20

21

22

23

Continued on next page.

32



Table 3.3, cont.

i ui ηi+1

24

25

26

27

Continued on next page.

33



Table 3.3, cont.

i ui ηi+1

28

29

30

34



Figure 3.7: Execution traces of the localization sequence depicted in Ta-
ble 3.3 for 6 different starting positions. For each starting position, the final
position is the lower right corner of the environment.

35



Chapter 4

Minimality of the Model

In Chapter 3, we showed that a robot with only a map, compass, and contact

sensor is capable of localizing itself within its environment. This chapter

briefly addresses the minimality of this model. We argue that this robot

model is locally minimal in the sense that omitting any of the map, compass,

or contact sensor will make localization impossible.

Environment map The environment map is essential because the robot

has no other way of obtaining information about its surroundings. Indeed,

for a robot with no means of sensing its environment, the problem of local-

ization is only well-defined in the case where the robot has some a priori

description of the environment to give meaning to the idea of reaching a

“known” location. We may, of course, imagine that the robot has some

incomplete map information. For example, the robot may have a small col-

lection of maps of potential environments. In this case it is a trivial extension

of the algorithm we have given to devise an action sequence that localizes

the robot, up to the selection of the environment.

Contact sensor Without its contact sensor, the robot cannot draw any

firm conclusions about the results of its actions. The robot has no sense of

time nor any way of measuring distances, so it cannot reliably execute any

motions that are not maximal. We may replace the contact sensor with any

sort of crude odometry for which only a lower bound in distance traveled is

available. Then, assuming the robot’s wheels will slip after it reaches the

opposite wall, maximal linear motions can be accomplished by moving in

the commanded direction until a distance greater than the diameter of the

environment has been covered. Of course, this sort of robot is strictly more

capable than the one described in Chapter 2, since it can also stop before

this point and draw some conclusions about its position.

36



Compass The question of whether localization is still possible without a

compass demands more careful attention. To that end, we consider now

a weaker robot which has angular odometry rather than a compass. That

is, we now consider actions specified relative to an unknown initial orien-

tation, rather than a global reference direction. In this section, we show

that localizing sequences do not exist for this compass-free variant of our

problem.

The problem of localization without a compass is identical to the for-

mulation in Chapter 2, except that the environment is rotated through an

unknown angle θ representing the difference between the global reference di-

rection and the robot’s initial orientation. A localizing sequence must map

every x ∈ X to the same xf , regardless of θ.

Definition 13 An information state-action pair (η, u) is a collapsing tran-

sition if u is parallel to some segment in η.

Lemma 14 Every localizing sequence contains at least one collapsing tran-

sition.

Proof: Suppose there exists some localizing sequence u1, . . . , uK with no

collapsing transitions. Arbitrarily pick a segment s1 ∈ ∂X. Because of

Lemma 7, at every step 1 ≤ k ≤ K, F (sk, uk) contains at least one segment

sk+1. We have constructed a segment sK ⊆ ηK . Therefore |ηK | is infinite,

a contradiction. �

Theorem 15 For a robot with only angular odometry and a contact sensor

in any polygonal environment X, no localizing sequence exists.

Proof: Suppose such a sequence u1, . . . , uK exists. Let e1, . . . en denote

the set of edges of ∂X, and let Rot(v, φ) denote the rotation of v ∈ R
2 by

angle φ. If there exists no action-edge pair (ui, ej) with ui and Rot(ej , θ)

parallel, then u1, . . . , uK contains no collapsing transitions. The sequence

is required to work for all θ ∈ S1 but the subset of S1 in which some ui

coincides with some Rot(ej , θ) has measure 0. Therefore u1, . . . , uK fails

for almost every θ. �

The intuition here is that reaching a finite-cardinality information state

requires at least one motion parallel to some environment wall. No finite-

length localizing sequence can achieve this for all possible starting orienta-

tions.

37



Chapter 5

Discussion

This thesis presented a localization technique for robots equipped with only

a compass, a contact sensor, and a map of the environment. We showed the

completeness of this technique for any compact simply-connected polygonal

environment and proved that localization is impossible if the compass is

replaced by an angular odometer. However, we have left open a number of

interesting questions.

Multiply-connected environments Most obviously, the problem of gen-

erating a localizing sequence is still well-defined for multiply-connected en-

vironments, i.e. environments with “holes.” Our method depends on X

being simply connected primarily for Lemma 11. It is not immediately clear

whether a similar method can be devised for environments that are not

simply connected.

ε-bounded error We have assumed that the robot can perfectly exe-

cute any commanded motion. We may more generally consider robots with

bounded uncertainty in the angle of motion. This uncertainty might arise

from errors in actuation or noise in compass readings. Under this model,

points in an information state would undergo a “dilation” during each transi-

tion with the amount of dilation being an increasing function of the distance

traveled. Our two-stage approach clearly fails under this generalization.

Optimality In this thesis we have only considered the existence question

for localizing sequences in simple polygons. The O(n3) bound on the num-

ber of steps can quite likely be improved. Also, it remains an open problem

to generate localizing sequences that are optimal in any sense. Two rea-

sonable optimality criteria are the number of steps in the sequence and the

maximum distance traveled for any initial state in X. Finding decision trees

for minimum distance localization of a robot with a range sensor is NP-hard

38



[25]. In that model, a localization strategy is a decision tree, and the dif-

ficulty comes in finding the shallowest decision tree that can discriminate

every set of points with equivalent visibility polygons. Since our robot model

does not admit branching in the localizing sequence, neither those hardness

results nor the general methods used to prove them are applicable.

39



References

[1] E. U. Acar and H. Choset. Complete sensor-based coverage with

extended-range detectors: A hierarchical decomposition in terms of

critical points and voronoi diagrams. In Proc. of IEEE IROS, Int’l

Conference on Intelligent Robots and Systems, 2001.

[2] E. U. Acar and H. Choset. Robust sensor-based coverage of unstruc-

tured environments. In Proc. of IEEE IROS, Int’l Conference on In-

telligent Robots and Systems, 2001.

[3] P.K. Agarwal, A.D. Collins, and J.L. Harer. Minimal trap design. In

Proc. IEEE Int. Conf. Robot. and Autom., volume 3, pages 2243–2248,

2001.

[4] S. Akella, W. Huang, K. M. Lynch, and M. T. Mason. Parts feeding

on a conveyor with a one joint robot. Algorithmica, 26(3):313–344,

March-April 2000.

[5] S. Akella, W. H. Huang, K. M. Lynch, and M. T. Mason. Sensorless

parts feeding with a one joint robot. In J.-P. Laumond and M. Over-

mars, editors, Algorithms for Robotic Motion and Manipulation, pages

229–237. A K Peters, Wellesley, MA, 1997.

[6] S. Akella and M. Mason. Posing polygonal objects in the plane by push-

ing. International Journal of Robotics Research, 17(1):70–88, January

1998.

[7] R. Aleliunas. A simple graph traversing problem. Master’s thesis,

University of Toronto, April 1978.

[8] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff.

Random walks, universal traversal sequences, and the complexity of

maze problems. In Proc. IEEE. Symp. Found. Comp. Sci., pages 218–

223, 1979.

40



[9] N. Alon, Y. Azar, and Y. Ravid. Universal sequences for complete

graphs. Discrete Appl. Math., 27(1-2):25–28, 1990.

[10] D. Avis and H. Imai. Locating a robot with angle measurements. J.

Symb. Comput., 10(3-4):311–326, 1990.

[11] K. Basye and T. Dean. Map learning with indistinguishable locations.

In Proc. Conf. Uncert. Artif. Intell., pages 331–342. North-Holland,

1990.

[12] R-P. Berretty, K. Goldberg, M. Overmars, and F. Van der Stappen.

Trap design for vibratory part feeders. Int. J. Robot. Res., 20(11),

November 2001.

[13] M. Blum and D. Kozen. On the power of the compass (or, why mazes

are easier to search than graphs). In Proc. IEEE. Symp. Found. Comp.

Sci., pages 132–142, 1978.

[14] G. Boothroyd, C. Poli, and L. E. Murch. Automatic Assembly. Marcel

Dekker, Inc., 1982.

[15] A. Borodin, W. L. Ruzzo, and M. Tompa. Lower bounds on the length of

universal traversal sequences. In STOC ’89: Proceedings of the twenty-

first annual ACM symposium on Theory of computing, pages 562–573.

ACM Press, 1989.

[16] M. Brokowski, M. A. Peshkin, and K. Goldberg. Curved fences for

part alignment on a belt. ASME Journal of Mechanical Design, 117(1),

March 1995.

[17] J. F. Canny and K. Y. Goldberg. “RISC” industrial robots: Recent

results and current trends. In Proc. IEEE Int. Conf. Robot. and Autom.,

pages 1951–1958, 1994.

[18] A. K. Chandra, P. Raghavan, W. L. Ruzzo, and R. Smolensky. The

electrical resistance of a graph captures its commute and cover times.

In Proc. ACM Symposium on Theory of Comp., pages 574–586. ACM

Press, 1989.

[19] B. Chazelle and L. G. Guibas. Visibility and intersection problems in

plane geometry. Disc. and Comp. Geom., 4:551–589, 1989.

[20] H. Choset and J. Burdick. Sensor based planning, part I: The gener-

alized Voronoi graph. In Proc. IEEE Int. Conf. Robot. and Autom.,

pages 1649–1655, 1995.

41



[21] I. J. Cox. Blanche – an experiment in guidance and navigation of an

autonomous robot vehicle. IEEE Trans. Robot. and Autom., 7:2:193–

204, 1991.

[22] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization

for mobile robots. In Proc. IEEE Int. Conf. Robot. and Autom., 1999.

[23] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Robot localization

without depth perception. In Scandinavian Workshop on Algorithm

Theory, 2002.

[24] B. R. Donald. On information invariants in robotics. Artif. Intell.,

72:217–304, 1995.

[25] G. Dudek, K. Romanik, and S. Whitesides. Localizing a robot with

minimum travel. In SODA: ACM-SIAM Symposium on Discrete Al-

gorithms (A Conference on Theoretical and Experimental Analysis of

Discrete Algorithms), 1995.

[26] D. Eppstein. Reset sequences for monotonic automata. SIAM J. Com-

put., 19(3):500–510, 1990.

[27] M. A. Erdmann and M. T. Mason. An exploration of sensorless manip-

ulation. IEEE Trans. Robot. and Autom., 4(4):369–379, August 1988.

[28] K. Y. Goldberg. Orienting polygonal parts without sensors. Algorith-

mica, 10:201–225, 1993.

[29] K. Y. Goldberg and M. T. Mason. Bayesian grasping. In Proc. IEEE

Int. Conf. Robot. and Autom., 1990.

[30] D.D. Grossman and M.W. Blasgen. Orienting parts by computer con-

trolled manipulation. IEEE Trans. Systems, Man and Cybernetics,

5(5):561–565, 1975.

[31] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a

simple polygon. J. Comput. Syst. Sci., 39(2):126–152, 1989.

[32] L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization

problem. In K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson,

editors, Proc. Workshop on Alg. Found. of Robot., pages 269–282. A.K.

Peters, Wellesley, MA, 1995.

[33] R. Hinkel and T. Knieriemen. Environment perception with a laser

radar in a fast moving robot. In Proceedings of Symposium on Robot

Control, 1988.

42



[34] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees

is np-complete. Inf. Process. Lett., 5:15–17, 1976.

[35] J. D. Kahn, N. Linial, N. Nisan, and M.E. Saks. On the cover time of

random walks in graphs. Journal of Theoretical Probability, 2(1):121–

128, January 1989.

[36] I. Kamon and E. Rivlin. Sensory-based motion planning with global

proofs. IEEE Trans. Robot. and Autom., 13(6):814–822, December

1997.

[37] I. Kamon, E. Rivlin, and E. Rimon. Range-sensor based navigation in

three dimensions. In Proc. IEEE Int. Conf. Robot. and Autom., 1999.

[38] J. M. Kleinberg. The localization problem for mobile robots. In IEEE

Symposium on Foundations of Computer Science, pages 521–531, 1994.

[39] K. N. Kutulakos, C. R. Dyer, and V. J. Lumelsky. Provable strategies

for vision-guided exploration in three dimensions. In Proc. IEEE Int.

Conf. Robot. and Autom., pages 1365–1371, 1994.

[40] K. N. Kutulakos, V. J. Lumelsky, and C. R. Dyer. Vision-guided ex-

ploration: a step toward general motion planning in three dimensions.

In Proc. IEEE Int. Conf. Robot. and Autom., pages 289–296, 1993.

[41] A. M. Ladd, K. E. Bekris, A. P. Rudys, D. S. Wallach, and L. E.

Kavraki. On the feasibility of using wireless Ethernet for indoor local-

ization. IEEE Transactions on Robotics and Automation, 20(3):555–

559, June 2004.

[42] J. Leonard, H. Durrant-Whyte, and I. Cox. Dynamic map building for

an autonomous mobile robot. Int. J. Robot. Res., 11(4):89–96, 1992.

[43] V. Lumelsky and S. Tiwari. An algorithm for maze searching with

azimuth input. In Proc. IEEE Int. Conf. Robot. and Autom., pages

111–116, 1994.

[44] V. J. Lumelsky and A. A. Stepanov. Path planning strategies for a

point mobile automaton moving amidst unknown obstacles of arbitrary

shape. Algorithmica, 2:403–430, 1987.

[45] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive al-

gorithms for on-line problems. In Proc. ACM Symp. Theory Comput.,

pages 322–333, 1988.

43



[46] C. Ó. Dúnlaing and C. K. Yap. A retraction method for planning the

motion of a disc. Journal of Algorithms, 6:104–111, 1982.

[47] J. M. O’Kane and S. M. LaValle. Almost-sensorless localization. In

Proc. IEEE Int. Conf. Robot. and Autom., 2005. To appear.

[48] M. Rao, G. Dudek, and S. Whitesides. Randomized algorithms for min-

imum distance localization. In Proc. Workshop on Algorithmic Foun-

dations of Robotics, pages 265–280, 2004.

[49] W. Renken. Concurrent localisation and map building for mobile robots

using ultrasonic sensors. In IEEE/RSJ Int. Conf. on Intelligent Robots

& Systems, 1993.

[50] K. Romanik and S. Schuierer. Optimal robot localization in trees. In

Proc. Symp. Comp. Geom., pages 264–273, 1996.

[51] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and

paging rules. Comm. of the ACM, 28:202–208, 1985.

[52] K. Sugihara. Some location problems for robot navigation using a sim-

ple camera. Comp. Vis., Graphics, & Image Proc., 42(1):112–129, 1988.

[53] M. Thompa. Lower bounds on universal traversal sequences for cycles

and other loew degree graphs. SIAM J. Comput., 21(6), December

1992.

[54] S. Thrun. Probabilisitic algorithms in robotics. AI Magazine, 21(4):93–

109, 2000.

[55] S. Thrun, W. Burgard, and D. Fox. A probabilistic approach to con-

current mapping and localization for mobile robots. Machine Learning,

pages 1–25, April 1998.

[56] B. Tovar, L. Guilamo, and S. M. LaValle. Gap Navigation Trees: Min-

imal representation for visibility-based tasks. In Proc. Workshop on

Alg. Found. of Robot., 2004.

[57] B. Tovar, S. M. LaValle, and R. Murrieta. Locally-optimal naviga-

tion in multiply-connected environments without geometric maps. In

IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, 2003.

[58] A. F. van der Stappen, R.-P. Berretty, K. Goldberg, and M. H. Over-

mars. Geometry and part feeding. In Sensor Based Intelligent Robots,

pages 259–281, 2000.

44



[59] G. Weiss, C. Wetzler, and E. von Puttkamer. Keeping track of position

and orientation of moving indoor systems by correlation of range-finder

scans. In IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 1994.

[60] D.E. Whitney. Real robots don’t need jigs. In Proceedings of the IEEE

International Conference on Robotics and Automation, 1986.

[61] J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski. A complete

algorithm for designing passive fences to orient parts. Assembly Au-

tomation, 17(2), August 1997.

45


	List of Figures
	List of Tables
	Chapter 1 Introduction
	Organization
	Related work
	Localization
	Minimalist robotics


	Chapter 2 Problem Statement
	Robot model
	Problem formalization
	Localization as a search in information space

	Chapter 3 An Algorithm to Generate Localizing Sequences
	The information transition function
	Generating localizing sequences
	From all of X to a finite subset
	From a finite subset to a single point

	Computed examples

	Chapter 4 Minimality of the Model
	Chapter 5 Discussion
	References

