Reliable Indoor Navigation with an Unreliable Robot:
Allowing Temporary Uncertainty for Maximum Mobility

Jeremy S. Lewis and Jason M. O’Kane

Abstract— In this work we consider a navigation problem for
a very simple robot equipped with only a map, compass, and
contact sensor. Our prior work on this problem uses a graph to
navigate between the convex vertices of an environment. In this
paper, we extend this graph with the addition of a new node
type and four new edge types. The new node type allows for
more uncertainty in robot position. The presence of one of these
new edge types guarantees reliable transitions between these
nodes. This enhanced graph enables the algorithm to navigate
environment features not solvable by our previous algorithm,
including T-junctions and long halls. We also present a heuristic
to accelerate the planning process by prioritizing the promising
edge tests to perform. Our heuristic effectively focuses the
search and qualitative data show that it computes plans with
much less computational effort than a ndve approach. We
describe a simulated implementation of the algorithm that finds
paths not previously possible, and a physical implementation
that demonstrates the feasibility of executing those plans in
practice.

Fig. 1. A plan generated by our algorithm. The figure shows 20
simultaneous simulations of a robot executing that plansh eaceiving
different sensor noise. Our algorithm guarantees that dbetrwill reach

I. INTRODUCTION its goal in spite of these errors.

The ability to navigate in cluttered environments is fun-
damental to many robotic tasks. This is a challenging goal Specifically, in our new graph, nodes represent continua

for a mobile robot due to the combined difficulties of bothyt hoints along the boundary of the environment. Because
finding & plan to move a robot from a beginning location tqnere are infinitely many potential nodes in such a graph,
a goal location and executing that plan in consideration fe choose a finite subset of those potential nodes, based on
uncertainty in both sensing and actuation. While it is typica, yisiple-vertex analysis of the environment that accounts
in navigation research to solve these problems separti®y, {o the robot's motion error. This method generates nodes
approach does not allow for plans with actions specificallysefy for navigating around the reflex vertices that comi

intended to reduce uncertainty. In this paper we considergs proplematic features we aim to overcome. This method
navigation problem for a very simple robot, having only & eates(n4) nodes in an environment with vertices.

map, compass, and contact sensor. There exists uncertainttaeh edge between these nodes is labeled with some
'?] bo”;) s:yansmg anq actuation. Our pllanner d|r_ec_tly CO"'S'desequence of actions the robot can execute to ensure safe
the robot's uncertainty to generate plans containing stegis movement from the set of possible states represented by one

move the rob%t tﬁward the goal, reduce uncertainty Whf,qe 14 the set of possible states represented by anotrer. Th
hecessary, or both. _ sets of states are represented as line segments and singleto
In our previous work [8] on this problem, we showedseis a5 points. We present the five algorithms to generate suc
that in certain cqndmons, movements by this robot Ca‘hbeled edges: (1) a point to point test with corer-finding,
decreage uncerta|.nty; however, that algorithm .tend_s fo f b) a direct point to segment test, (3) a direct segment to
at predictable enwron'me'nt fegtures such as T-junctiomss adegment test, (4) a segment to point test with corner-finding
long halls. Our key insight is to allow the robot's stateyq (5) a point to point test for long hallways.
uncertainty to temporarily grow from a single state 0 a et 5 yjanning algorithm is a process of constructing these

of possible state;. This a”?"_"s the ro_bot to trave_rsg tho%e('jges. However, it is impractical to exhaustively test eafch
features that stymied our ongmal alg.orlthm. To achievs,th he O(n®) potential connections between the nodes. Instead,
we search for plans on a graph in which each node represeqls use a heuristic to order the node pairs considered for

a set of states, in contrast to our prior work that ConSider%nnection by their applicability to the overall plan and

only singleton sets. by their potential for success in one of our edge tests.
)) The heuristic considers the progress made by each potential

J. S. Lewis and J. M. O’Kane are with the Department of Computer d d th | di desic di hil
Science and Engineering, University of South Carolina, 30din St., eage toward the goa (measure In geodaesic |stance), while

Columbia, SC 29208, USAl ewi sj s4, jokane}@se. sc. edu preferring transitions between nodes with relativelylditt

uncertainty. Our heuristic also eliminates altogetheresod
which have no chance for success in our edge tests. We
present quantitative data illustrating the superior penénce
of our planner’s heuristic-driven search in comparison to
randomized, stack-ordered, and queue-ordered searches.
The remainder of the paper is structured as follows. In
Section I, we discuss related research. Section IV gives a
formal problem statement. Our algorithm appears in Se€lg: 2. Corner-finding allows the robot to travel frahto A, in spite of
. . .) . . ~ fotation errors up to the error bourig, .
tion V, and we present an implementation, in simulation, in
Section VI. Section VII concludes the paper with discussion
and a preview of future work.

S=ux

Il. RELATED WORK

The goal of simplifying sensing and actuation in robotic
systems, retaining the capability to solve meaningful prob
lems, is not new. Many tasks are considered with this
approach including: manipulation [9] navigation [7], and
mapping [14]. Additionally, the question of task completio
under a minimal sensor model has been considered [1], [3],
[5], [11]. Often the idea behind such an approach is that by
reducing the power of the robot, a greater understanding of
the problem is obtained.

Our planning algorithm uses ideas introduced by Erickson,
Knuth, O’Kane, and LaValle [6]. That research also uses
the idea of an error cone to model uncertainty in rOtatior.|3ig. 3. Aplan to travel from stateg to stater, generated by the authors’
which moves a robot'’s state probability distribution fromeo previously published algorithm. However, that algorithritsféo find a path
distribution to another. In solving a global active locatipn to return tozs from z¢ due to a T-junction highlighted by shaded area.
problem, the authors use a system of actions to drive a

robot’s state probability toward a single cell of a coarse) .
discretization of the environment. The differences in oufonsider having only a map, a noisy compass, and a contact

work are that we are solving a navigation problem, we use€nsor. There has also been prior work considering robot
nondeterministic reasoning to achieve guarantees of saccgM0dels similar to ours for other tasks [10], [11]. However,

and we use precise geometry rather than a discretizatidff consider a more realistic model for robot .motion that_
of the environment. Our high-level transitions are aIscyver'nC'UdeS substantial errors and show that solutions cdin sti

much in the spirit of pre-image backchaining introduced b€ 9enerated for many navigation problems. The motivation
Lozano-Rerez, Mason, and Taylor [9]. Our corner-finding _ehlnd this is the desire to solve problems such as this with
algorithm is very similar to the notion of a fine-motion SiMPple robots.
strategy countering positional uncertainty. The lessohs o
these problems allow us to guarantee, if our algorithm
generates a plan and the robot’s sensor noise remains withirThe results in this paper extend the authors’ prior work
the bounds of the model, that the robot will successfully{8] on the same problem. The intuition of that approach is
navigate from start to goal. that, in the right circumstances, a mobile robot can reduce
The approach we use in our planner parallels the idets positional uncertainty via a sequence of back-andifort
of landmark-based navigation introduced by Lazanas andotions that drive it toward a corner in the environment.
Latombe [7]. Their work assumes the robot's sensor modéligure 2 illustrates this process. This funneling operatio
is error-free while in the presence of landmarks, whereas inspired by the sensorless manipulation work of Erdmann
landmarks give our robot no additional sensing capalslitieand Mason [4], and allows the robot to drive itself arbitsari
Their robot model also assumes a goal detector which telidose to a convex vertex of the environment, in spite of
it exactly when it reaches its goal. We do not have sensomsotion errors.
to detect goals nor any landmarks; instead, we exploit the Our prior work presented an algorithm that can determine,
geometric features of the environment to reduce unceytaingiven two convex environment vertices, whether it is possi-
without sensing. ble to perform a guaranteed transition between those two
Our work considers the uncertainty of the robot as aertices using this corner-finding technique. The algarith
guide in path planning. This approach is similar to planninghen generates a complete navigation plan by searching for
using coastal navigation techniques [12]—that is moving path through a directed graph whose nodes are the convex
from one landmark to another using range sensors to detertices of the environment, and whose edges connect pairs
landmarks. Our model is quite different however in that wef vertices between which a corner-finding transition exist

IIl. SUMMARY OF AUTHORS' PRIOR WORK

Figure 3 shows an example of a plan generated by this5) The state transition functionf : X x U x © — X
approach. We observed, however, that because the algorithm describes how the state changes in response to the
can only generate plans that travel point-to-point between robot's actions, so that the current statg combined

convex vertices, it generally fails for problems that requi with the robot's actionu; and nature’s actiorfy,
the robot to traverse certain environment features, sudh as determines the next statg,:

junctions and long corridors. The new contributions of this

paper are (1) a massive expansion to the usable nodes in Try1 = f(ap, ug, Ok). 1)

the underlying directed graph to enable traversal of these

kinds of features, (2) the consequent geometric algorithms ~ Specifically, f(zx, ux, 6)) is defined as the opposite
for computing the edges in this expanded graph, and (3) a endpoint of the longest segment i, starting atzy,
heuristic search procedure for exploring this graph effiitye and moving in directionu, + 6.

The robot’s goal, giveiW andf,,,., along with initial and

IV. PROBLEM STATEMENT .
))) o goal statesrs,xe € W and an accuracy bound, is to
This section formalizes the navigation problem we conzpgose a sequence of actioms . .. ,u,, SO that

sider. A point robot moves in a closed, bounded, polygonal
regionW C R? of the plane. The robot has a complete and g — Tni1]] < & 2)
accurate map of its environment.
A vertex v of W is convexif the neighborhood of in for all possible nature action sequenégs. . ., 6, € ©. That
W is convex. Formally, le3(v, €) denote the open ball with is, we seek actions that drive the robot frarg to a point
radiuse centered ab. A vertexv is defined as convex if there close toxzq, regardless of nature’s actions. The accuracy
exists somes > 0 such thatB(v,e) N W is a convex set. bound § is needed because the robot's motion error and
Informally, notice that convex vertices are formed whemevesensor limitations prevent it from ever knowing with cemtgi
the two incident edges of a vertex form an interior angle les#at is has reached; exactly.
than or equal tor radians.

The robot is equipped with a compass and a contact sensor, V. ALGORITHM DESCRIPTION
but no other sensors. Note specifically that the robot has
no clock nor any method of odometry, and consequently In this section we describe an algorithm to solve nav-
cannot measure the distances it moves. Using its compaggtion problems of the form given in Section IV. From
the robot can orient itself in a desired direction relatiweat the robot's environment, we create a graph with nodes
global reference frame, but because of noise in the sensmpresenting sets of states and edges indicating the meéste
this rotation is subject to potentially large, bounded erroof transitions between such sets. Each edge is labeled with a
Using its contact sensor, can translate in this directiotil unsequence of actions,, ..., u;+x such that the robot will
it reaches the boundary of the environment. be guaranteed to make a transition between its incident

Our model for the motions of this robot has the followingnodes. We use two classes of nodesint nodegepresenting

elements: convex vertices, andegment nodegepresenting positional

1) Thestate spaceX = W is simply the robot’s environ- uncertainty along some environment edge. A solution is
ment. Because we encapsulate the robot’s use of igspath in the graph between the point nodes representing
compass as part of the actions, we need not record thes} and{z¢}. The bulk of the computation time is spent
robot’s orientation as part of the state. discovering the nodes and edges of the graph.

2) The action spaceU < [0,2n) is the set of planar ~We describe a segmerff by its endpointssrc[S] and
angles. To execute an actienc U, the robot orients tar[S]. By convention, we maintain the property that a
itself in direction u, subject to the error described counterclockwise rotation of the vectorr[S]—src[S] is into
below, then moves forward in this direction until it the free space of’. For a (possibly degenerate) segméht
reaches the environment boundary. and an actioru, the error conee(S, u, 0,,,.) is defined as

3) Time proceeds in a series sfages numberedk = the portion of W through which a robot could potentially
1,2,3,.... In each stage, the robot chooses and conpass when executing from any state inS. See Figure 4.
pletes a single action. At stage the robot’s state is We call an actiorsafefrom a segmen§ if the far boundary
denotedz;, and its action is denoted,. of e(S, u,0,q:) lies on a single edge dfV. An interval of

4) Rotation errors are modeled as interference by aactions(di,ds) is aninterval of safe actionsf every action
imaginary adversary calledature In each stage, na- in the interior of the interval is safe.
ture chooses aature actiond, € ©. Nature’s action Several of the algorithms we describe utilize a function
space® = (-0,,4z, H0maz) IS @n interval of possible called S100TRAY, that takes as input a starting pojne W
error values. Note that because we are interested &mnd a direction, and returns the first boundary point coathct
worst-case guarantees of success, we need not considad the environment edge on which that point lies. This is
any probabilities ove®. The robot has no knowledge a standard operation from computational geometry. It takes
of nature’s choice, nor any way to observe it directlyO(logn) time, in whichn is the number of vertices ifl/
or indirectly. [13].

Fig. 4. An error cone whose far boundary spans two edgdd/ofAs a
result, the illustrated action would not be in any interval of safe actions.

Fig. 5. An environment illustrating all the delimiting poinggnerated by
GenerateNodes algorithm.

A. Graph nodes
Usmg only the point no_des and _co_rne.r—flnd.lng edges %e total number of nodes created is
our prior work, there are inherent limitations in the set o)
navigation problems we can solve. Specifically, for every™ " "
intermediate transition between two statesand z,, there)S (7 +1:)/2] < Z(lf) < (Z lz’) < (2n2)2 € O(n%),
must exist at least one safe action frdm,} that reaches =! =1 i=1
one of the two edges incident tg,. Certain environment in which we use the fact that squaring is a convex, and
features, such as T-junctions, generally do not satisfy ththerefore, superadditive function.
restriction.
To overcome this limitation, we introduce segment nodeS- Graph edges
into the graph to allow temporary position uncertainty be- Recall that an edgéy;, x,) of the graph represents the
yond the bound$ given in the definition of localization in existence of a sequence of actions which safely brings & robo
Section IV. Each segment node corresponds to a closed from some node; to nodey,. We next present a collection
line segment along a single boundary edgé&lafWhen there of tests which are used in attempt to generate such sequences
is no possibility for confusion, we use to denote either a 1) Point node to point node (with corner-findingDur
segment node or its underlying line segment. We also retagrevious work [8] includes an algorithm that generates
point nodes at each convex vertexaf. edges between pairs of point nodes using a “corner-finding”
Which segment nodes should be included in the graph@chnique. See Figure Il for details.
Our approach usemutually visible verticeso select nodes, 2) Point node to segment node (direcf)o generate an
accounting for the uncertainty of the system. See Section lédge that moves from a point noge to a segment nodg,
for details. The intuition is that, to move safely past arn a single step, we need only to identify the intervals o&saf
obstacle vertex, the robot cannot aim directly in the diogct actions fromy, that reachy,. To do so, we perform a radial
of the vertex, but instead must aify,., radians away from sweep abouty,, testing between each pair of consecutive
that vertex. obstacle vertices reached by the sweep ray. Figure 6 shows
Based on this observation, we generate a seletifmiting an example in which there are two such intervals of safe
points that serve as the endpoints for our segment nodeactions and Algorithm 2 shows the details of the algorithm.
As shown in Algorithm 1, we use rays originating fromThe algorithm runs irO(nlogn) time.
pairs of mutually visible vertices, extending in direcéon 3) Segment node to segment node (diredow we
rotated+6,,.., to build the collection of delimiting points. consider how to decide whether the robot can move from a
Figure 5 illustrates these delimiting points. The algarith segment node, to another segment nodg, using a single
then generates, in each environment edge, a segment nadéon. This is a generalization of the problem in Section
for each ordered pair of distinct delimiting points withtmat V-B.2. The intuition is that if all of the intervals of safe
edge. actions generated by Algorithm 2, across all of the (inflgite
To bound the number of nodes generated,dedenote many) points along the continuum frasmc[y | to tar[x| as
the number of vertices of the environment andljeienote its starting point, have non-empty intersection, then sach
the number of delimiting points on edge For any two edge exists.
verticesv; # v;, the algorithm will create at most two It is trivially true that any interval of safe actions from
delimiting points originating fromy;, each of which lies on a the entire intervaly, cannot contain any actions are not
single edge, so we know that"_, /; < 2n®. Note also that safe from bothsrc[y,] andtar[x,]. To determine this initial
Algorithm 1 createg!? + [;) /2 nodes for edgé. Therefore, set of candidate actions, we execute Algorithm 2 twice, and

Algorithm 1 GENERATENODES(W, 0,,,4.) Algorithm 2 POINTTOSEGMENTTEST (Xs, Xgs Omaz, W)

1: N + empty set of delimiting points 1: V + empty set of angles
2: for all vertices: € W do 2: for all verticesv € W do
3: for all verticesj € W do 3: addangle(v — x,) to V
4: if i £j 4: end for
and j is a reflex vertex 5: SORT(V) counterclockwise) to 27
and j is visible fromi then 6: for i « 1 to count(V) do
5 a + angle(j — 1) 7. a + angle bisector(V[i], V[i].next)
6 N < N U {SHOOTRAY (i,a + gz, W)} 8 if 20,4, < angle(V[i].next— Vi])
7 N < N U {SHOOTRAY (i, a — Oq0, W)} and ray from s in direction V[i] intersectsy
8 end if and ray from s in direction V'[i].next intersectg
9: end for and SHOOTRAY (s, a, W) returns a point ory then
10: end for o: return true
11: @ + empty set of segments 10: end if
12: for all edgesf € W do 11: end for
13: N’ < all points in N contained inf 12: return false
14: N’ < N U {src[f], tar[f]}
15 m ¢ count(N') Algorithm 3 SEGMENTTOSEGMENTTEST(Xs, X, Omaz, W)

16: SORT(N') by the distance fromsrc|f]
17: for p«+ 1ton do

1: Py <= PTOS_SAFEINTERVALS(src[xs); Xg, Omaz: W)

18: for g« 1ton —ido 2: P, < PTOS_SAFEINTERVALS (tar[xs], Xg, Omaz, W)
19: Q + QU {(src[N'[q]], tar[N'[qg + p]]) } 3 P<—P_sﬂPt
20: end for 4: for all intervals(d;,ds) € P do

21- end for 5 if 20,00 < |d_2 — dy| th_en .

22- end for 6: q + quadrilateral with verticesrc[ys],
23 return Q tar[xs], SHOOTRAY (src[ys], d2, W), and
SHOOTRAY (tar[ys], d1, W)

7: for all verticesv € W do
8: if ¢ containsv then

9: goto line 14

10: end if

11: end for

12: return true

13: end if

14: end for

15: return false

Algorithm 3 shows the details.

The algorithm’s two calls to Algorithm 2 each take
O(nlogn) time. To provide a maximum number of intervals
constructed by the loops on lines 3 and 4 of Algorithm 3,
Fig. 6. A point nodey. and a segment nodg, for which Algorithm 2 consider a very contrived e_nvironment Wher(_ein all vertices
would return true. v € W except the four vertices of, and y,, lie between

the two nodes. Given that at least three vertices are needed

to form an obstacle that can split an interval and at most
intersect the resulting intervals of safe actions. It retedd four intervals are formed from each obstacle, then there can
ensure that the result contains no actions that are unsafe frbe at mosti(n — 4)/3 intervals generated between the two
any interior point ofy. nodes. The test to determine whether a vertex lies inside

To accomplish this, we consider the maximal intervals ofhe quadrilateral takes constant time, therefore a maximum
actions safe from bothrc[xs] andtar[xs] in turn. For each number of intervals inO(n) leads to a total run time in
such interval(d;,ds), we form a quadrilateral for which O(n?).
two vertices aresrc[y;s] and tar[x,], and the remaining 4) Segment node to point node (with corner-finding):
two vertices are the results ofHBOTRAY (src[y;s],d2, W) To build edges that reach point nodes from segment nodes,
and SH0OTRAY (tar[xs],d1, W). If any obstacle vertices we use a variation on the corner-finding technique refer-
are within this quadrilateral, then the entire interval camnced in Section V-B.1. The key extension we need is a
be discarded as unsafe. Figure 7 shows an example diudction called @RNERFINDINGTARGET that returns the

Algorithm 5 LONGHALLTEST(xs, Xg; %, Omaz, W, 1)

[

SUp = U Opan

2! Ug <~ U — omar
31 P14 Xs
4: pa < Xs
5: e < nil
6: eg + nil
7: 1+ 0
8: while e; = ey andi < [do
o pip
100 py < p2
11 (p1,e1) < SHOOTRAY (p1, uy, w)
12 (pa,ea) < SHOOTRAY (po, ug, w)
13: ¢ < quadrilateral formed by, p2, p, andp)
14; for all verticesv € W do
15: if ¢ containsv then
16: goto 28
17: end if
18: end for
\ 19: if [|(sreles] — xo)I| < [[(tarfes] — x,)]| then
A\ 20: uy < angle(tar[e;] — srcfe1]) — § + Omaz
A 21: uy < angle(tar[e;] — srcle1]) — § — Omaz
Xo 22: else
23: uy < angle(srcley] — tarfei]) + § — Oz
_Fig. 7. [top] An example segment-to-segment test, in whichetlaee two 24: Uy angle(src[eﬂ — tar[el]) + % + 0rmax
intervalsI; and I of safe actions fromsrc[xs] and two such intervalés 25: end if

and Iy from tar[xs]. [bottom] The final result includef; N 13 andlaN1y. . .
A third interval, I; N1, is safe from both endpoints, but is correctly rejected 26: 2 <— ¢ + 1
by the algorithm because its quadrilateral contains anachest 27: end while

28: return SEGMENTTOPOINTTEST((p},P5), Xg: Omaz, W)

Algorithm 4 SEGMENTTOPOINTTEST(xs, Xg, Omaz, W)

1: (S1,52) < CORNERFINDINGTARGET(Xg; Omaz, W)

2: for all S € {S1,5,} do nodes using the techniques described above.

3. if SEGMENTTOSEGMENTTEST(Xs, S, Omaz W) then To address this shortcoming, we provide an algorithm

4: return true whereby the robot attempts to make progress by alternating
5. endif motions between the hallway walls. The algorithm chooses
6: end for two initial action, offset fromangle(src[x,] — src[xs]) by

7: return false m/4 in either direction and executes Algorithm 5 using each

of these initial actions as the input
As described in Sections V-B.2 and V-B.3, we can calcu-

largest segments from which the corner-finding algorithm ikte the forward projection of a robot’s possible statesnfio
guaranteed to succeed. There are always two such segmefitggle point or segment under a given action. The algorithm
one for each of the edges incident {g. Details on how Proceeds by computing a series of forward projections under
to compute such segments@(n) time appear in our prior actions chosen to be/4 radians away from the edge reached
work [8]. Using these segments, the edge test becomedP¥ the projection. This process continues until either (1)
simple application of Algorithm 3 to these two candidatesone of the forward projections is unsafe, in the sense of
Refer to Algorithm 4, whose run timé(n?) is dominated Ccontaining an environment vertex or reaching two or more
by the call to Algorithm 3. different environment edges or (2) the algorithm reaches a
5) Point node to point node with oscillation and corner-limit of iterat_ions. We provide this I_imit asitis _not obvious
finding: A weakness in our approach to segment nodg‘at_ the algorithm will halt. After this process is complete
generation is apparent in environments containing longedg"e iNvoke SGMENTTOPOINTTEST to attempt to reacly,.
with no environment vertices in between. An example of thid Nis algorithm’s run time is clearlg)(n?), dominated by the
structure is a long “hallway;” in which there are 4 vertices aC@ll to Algorithm 4.
the ends and none in the middle. In this scenario, Algorithm 1
would generate segment nodes nearly as long as the hallv&y
itself. An example is visible at the far right side of Figure 5 Sections V-A and V-B describe a graph with as many
It is extremely difficult to generate outgoing edges fromtsucas O(n?) nodes andO(n®) edges, each of which requires

Searching for connections

several tests to include or discard. As a result, a brutesforc
approach that performs the edge tests on all node pairs would
be infeasible. Instead, we pre-process the environment and
provide a heuristic to prefer pairs of nodes that are more
likely to result in an edge between and also to be useful for
navigation between a given starting node and ending node.
To compare two given node pair§x,1,xq,1) and

(xs,2, Xg,2), We apply a sequence of tests as listed below. We
apply these tests as a sequence of “tiebreakers,” conginuin
to each subsequent test only when the both node pairs have
equal values for the previous test.

1) Prefer the pair for which the final nodg, ; is a point o o
’ Fig. 8. A plan generated by our algorithm in a non-rectiline@ironment.

node. The plan is simulated 20 times and shown in parallel. The diffepaths
2) Prefer the pair for which the final nodg, ; is closer, are caused by interference up4maz =

in geodesic distance, to the global gagj.
3) Prefer the pair for which the final nodg ; is smaller.
4,5) Repeat tests 2 and 3 for the initial nodes;. VI. IMPLEMENTATION AND EXPERIMENTS
The intuition is to drive the search toward nodes that arg = simulated implementation
nearer to the goal, noting that it is more challenging to gen- .
erate outgoing edges from larger nodes. We also implementwe. explqred the pgrformance of our planner by |mple—
a filtering technique in which node pairs that are separat enthg It in C++, using CGA.L [2] as a geometry engine
by three or more “turns” in the shortest path between the odeling the robot and environment. Figures 1, 8, and

are discarded outright. Such node pairs are unlikely to b are three Of. the enywonments on which we performed
connected by any of our edge test algorithms. experiments. Figure 8 is a non-rectilinear environmenhwit

The full planner uses a priority queue of node pairs‘,‘z verti_ces, di_/ided by an obstacle in(_jL!cing two very long
ordered by this heuristic. It also maintains@nnected set’ halls. Flgure 9Is an environment Co“t‘?"”'”g 172 yertlcei; an
of nodesy for which a plan reaching from z is known, sevgral mstanpes of Iong_halls and T—Junctlons. Figured is
and anunconnected set/ containing all other nodes. The rectilinear environment with 44"vert|ces used to colledda
connected set is initialized to contain onlyxs and the on the performance of severalina approaches to the edge

o . : : P search.
priority queue is seeded with all pairs originatingaat. In :
each iteration, a node pair is extracted from the queue andThe e:perrllmer# |IIusftrated n Flgure ds was rr1un with
we execute each of the applicable edge tests described abng :d %' The € iCt ,0 1(11nf;:erta|nty |sheV| ir.]t n t € cones
to attempt to connect the nodes to each other. If any of ed feated by the robots different paths. This environment
tests succeed, we remoyg from U, add it toC, and insert Ofers unique challenges due to the long halls and the
the node pairgy,} x U into the queue. lfz is inserted obstacles set between the convex vertices of the graph. Our
g . . :
into C, then a plan is complete, and the action sequence cQFaner required 364 edges and 114,847 edge conpectlon
be extracted from the sequence of edges conneatingo attempts to generate the solution shown. The solution to
z¢. If there is no way for a connection to be made betweeﬂr()ble(;n prese(;]ted in Figure 9 uséd,, = 7; and required
the start and goal nodes using the methods we've presenlje%3 edges an 24,004_cqnnect|on attempts.
above, the algorithm will terminate with an empty queue, To evaluate our heuristic, we solved the planning problem
having attempted all possible pairs depicted in Figure 1 using our heuristic method, and com-

To speed the heuristic calculations, we preprocess ﬂp@re_d it_s performance to similar planners thqt use a random
environment, by the construction of a visibility graph ordistribution, ast.ack, anq a queue. The following tableitketa
all vertices of the environment, along with all-pairs skett (e results, which confirm the success of our approach. It
path data for this visibility graph. We use this structurdS Worth noting the final plan found by each method were

to calculate the shortest path distance and the number 'gfntical.

i
36"

turns between each pair of environment vertices. In the case Heuristic comparison:
of point nodes, geodesic distance and turns are calculated sdges Tourd heul”;“c 'azggm S;iclk qgg;e
directly. In the case of segment nodes, we overestimate thezgnnection attempts | 1,201 | 198,736 | 167,590 | 167,590

distance by using the environment edge on which the node - i
lies. Specifically, for distances involving a segment ngde B- Physical implementation

we use the mean of two distances: (1) the distance from We have implemented the algorithm on an iRobot Create,
src[x] to the closest environment vertex of the segmerds shown in Figure 10. Because the Create platform does
on which x lies, and (2) the distance fromur[y] to the not have a compass sensor, it was necessary to simulate the
closest environment vertex of the segment on whjclies. compass via the Create’s IR range sensor and encoders. This
In the case of a small segment node near its edge’s endpoiwws done via noting the direction of each wall along which
options (1) and (2) may be the same. the robot ends its translation. Once adjacent to that wal, t

Fig. 9. A plan generated by our algorithm and simulated 20 tireesh

use a heuristic to focus the search for edges and terminate
the algorithm once it has exhausted all possible pairs or
successfully generated a solution. We have also presented
data to support the power of our heuristic and several non-
trivial environments through which our planner succeeded i
navigating.

We are also working to prove the hardness of a complete
solution to this problem. In our current work, we have
several limiting restrictions in that we only consider tep
plans between nodes, generate a finite discretized selectio
of segment nodes, and limit segment nodes to subsets of
environment edges. It appears likely that a complete swiuti
will consider plans of length, will provide some mechanism
to use exactly the segment nodes necessary for those plans,
and will not restrict segment nodes to a single environment
edge.

different due to interference in rotation up #69,,4.. In this experiment,

Omaz = 7%

ACKNOWLEDGMENTS

We gratefully acknowledge support from NSF (11S-0953503)d a

(1]

(2]
(3]
(4]

(5]

Fig. 10. An iRobot Create executing a plan generated by camngr. 6]

(71
robot uses its range sensor to rotate to a pose approxmatelg/

parallel to the wall, such that its right side is against thel®!

wall. We then used the robot’s encoders to rotate a necessary
offset for the proper pose facing. This technique allowed[9]
us to circumvent the accumulation of error normally seen

in pure dead-reckoning or encoder measurement. While the)
simulated compass technique held, the Create performed as
in simulation. (11]

VII. (2
. . . [913]
We have presented a planning algorithm which generates
plans that a robot having only a compass, map, and contact
sensor can use to navigate non-trivial environments contail4!
ing obstacles. The planner considers the bound on error in
the robot’'s actions and chooses plans to move the robot
between sets of states in the environment, driving it from a
singleton initial set to a singleton goal set through theafse
specialized high-level actions. The planner represeetséks
as nodes in a graph and the existence of an edge guarantees
safe transitions between nodes. In our previous work, our
algorithm sought to fill the graph, then generate plans via a
simple breadth-first search. The enhanced graph in this work
is too large and complex to calculate explicitly, so instesd

D ISCUSSION AND CONCLUSION

DARPA (N10AP20015).

REFERENCES

M. Blum and D. Kozen, “On the power of the compass (or, why
mazes are easier to search than graphs)Proc. IEEE Symposium
on Foundations of Computer Sciend®78, pp. 132-142.
“CGAL, Computational Geometry Algorithms
http://www.cgal.org.

B. R. Donald, “On information invariants in roboticsArtificial
Intelligence vol. 72, pp. 217-304, 1995.

M. Erdmann and M. T. Mason, “An exploration of sensorlessiipa-
lation,” IEEE Transactions on Robotics and Automatigal. 4, no. 4,
pp. 369-379, Aug. 1988.

M. A. Erdmann, “Understanding action and sensing by d@sig
action-based sensorslhternational Journal of Robotics Research
vol. 14, no. 5, pp. 483-509, 1995.

L. Erickson, J. Knuth, J. M. O’'Kane, and S. M. LaValle, -
bilistic localization with a blind robot,” inProc. IEEE International
Conference on Robotics and Automafi@@08.

A. Lazanas and J. C. Latombe, “Landmark-based robot nteiga
in Proc. National Conference on Atrtificial Intelligence (AAA1992.
J. S. Lewis and J. M. O’Kane, “Guaranteed navigation with
unreliable blind robot,” inProc. IEEE International Conference on
Robotics and Automatior2010.

T. Lozano-Rerez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robotdfiternational Journal of Robotics
Researchvol. 3, no. 1, pp. 3-24, 1984.

J. M. O’Kane and S. M. LaValle, “Localization with limitesensing,”
IEEE Transactions on Roboticsol. 23, pp. 704-716, Aug. 2007.
——, “On comparing the power of robotslhternational Journal of
Robotics Researctvol. 27, no. 1, pp. 5-23, Jan. 2008.

N. Roy and S. Thrun, “Coastal navigation with mobile rtoin
Advances in Neural Processing Systed@99, pp. 1043-1049.

L. Szirmay-Kalos and G. Marton, “Worst-case versus ager case
complexity of ray-shooting,Computing vol. 61(2), no. 2, pp. 103—
131, 1998.

B. Tovar, L. Guilamo, and S. M. LaValle, “Gap Navigationees:
Minimal representation for visibility-based tasks,” Rroc. Workshop
on the Algorithmic Foundations of Robotjcz004.

Library,”

