
Reliable Indoor Navigation with an Unreliable Robot:
Allowing Temporary Uncertainty for Maximum Mobility

Jeremy S. Lewis and Jason M. O’Kane

Abstract— In this work we consider a navigation problem for
a very simple robot equipped with only a map, compass, and
contact sensor. Our prior work on this problem uses a graph to
navigate between the convex vertices of an environment. In this
paper, we extend this graph with the addition of a new node
type and four new edge types. The new node type allows for
more uncertainty in robot position. The presence of one of these
new edge types guarantees reliable transitions between these
nodes. This enhanced graph enables the algorithm to navigate
environment features not solvable by our previous algorithm,
including T-junctions and long halls. We also present a heuristic
to accelerate the planning process by prioritizing the promising
edge tests to perform. Our heuristic effectively focuses the
search and qualitative data show that it computes plans with
much less computational effort than a näıve approach. We
describe a simulated implementation of the algorithm that finds
paths not previously possible, and a physical implementation
that demonstrates the feasibility of executing those plans in
practice.

I. I NTRODUCTION

The ability to navigate in cluttered environments is fun-
damental to many robotic tasks. This is a challenging goal
for a mobile robot due to the combined difficulties of both
finding a plan to move a robot from a beginning location to
a goal location and executing that plan in consideration of
uncertainty in both sensing and actuation. While it is typical
in navigation research to solve these problems separately,this
approach does not allow for plans with actions specifically
intended to reduce uncertainty. In this paper we consider a
navigation problem for a very simple robot, having only a
map, compass, and contact sensor. There exists uncertainty
in both sensing and actuation. Our planner directly considers
the robot’s uncertainty to generate plans containing stepsthat
move the robot toward the goal, reduce uncertainty when
necessary, or both.

In our previous work [8] on this problem, we showed
that in certain conditions, movements by this robot can
decrease uncertainty; however, that algorithm tends to fail
at predictable environment features such as T-junctions and
long halls. Our key insight is to allow the robot’s state
uncertainty to temporarily grow from a single state to a set
of possible states. This allows the robot to traverse those
features that stymied our original algorithm. To achieve this,
we search for plans on a graph in which each node represents
a set of states, in contrast to our prior work that considered
only singleton sets.

J. S. Lewis and J. M. O’Kane are with the Department of Computer
Science and Engineering, University of South Carolina, 301Main St.,
Columbia, SC 29208, USA.{lewisjs4, jokane}@cse.sc.edu

Fig. 1. A plan generated by our algorithm. The figure shows 20
simultaneous simulations of a robot executing that plans, each receiving
different sensor noise. Our algorithm guarantees that the robot will reach
its goal in spite of these errors.

Specifically, in our new graph, nodes represent continua
of points along the boundary of the environment. Because
there are infinitely many potential nodes in such a graph,
we choose a finite subset of those potential nodes, based on
a visible-vertex analysis of the environment that accounts
for the robot’s motion error. This method generates nodes
useful for navigating around the reflex vertices that constitute
the problematic features we aim to overcome. This method
createsO(n4) nodes in an environment withn vertices.

Each edge between these nodes is labeled with some
sequence of actions the robot can execute to ensure safe
movement from the set of possible states represented by one
node to the set of possible states represented by another. The
sets of states are represented as line segments and singleton
sets as points. We present the five algorithms to generate such
labeled edges: (1) a point to point test with corner-finding,
(2) a direct point to segment test, (3) a direct segment to
segment test, (4) a segment to point test with corner-finding,
and (5) a point to point test for long hallways.

The planning algorithm is a process of constructing these
edges. However, it is impractical to exhaustively test eachof
theO(n8) potential connections between the nodes. Instead,
we use a heuristic to order the node pairs considered for
connection by their applicability to the overall plan and
by their potential for success in one of our edge tests.
The heuristic considers the progress made by each potential
edge toward the goal (measured in geodesic distance), while
preferring transitions between nodes with relatively little

uncertainty. Our heuristic also eliminates altogether nodes
which have no chance for success in our edge tests. We
present quantitative data illustrating the superior performance
of our planner’s heuristic-driven search in comparison to
randomized, stack-ordered, and queue-ordered searches.

The remainder of the paper is structured as follows. In
Section II, we discuss related research. Section IV gives a
formal problem statement. Our algorithm appears in Sec-
tion V, and we present an implementation, in simulation, in
Section VI. Section VII concludes the paper with discussion
and a preview of future work.

II. RELATED WORK

The goal of simplifying sensing and actuation in robotic
systems, retaining the capability to solve meaningful prob-
lems, is not new. Many tasks are considered with this
approach including: manipulation [9] navigation [7], and
mapping [14]. Additionally, the question of task completion
under a minimal sensor model has been considered [1], [3],
[5], [11]. Often the idea behind such an approach is that by
reducing the power of the robot, a greater understanding of
the problem is obtained.

Our planning algorithm uses ideas introduced by Erickson,
Knuth, O’Kane, and LaValle [6]. That research also uses
the idea of an error cone to model uncertainty in rotation,
which moves a robot’s state probability distribution from one
distribution to another. In solving a global active localization
problem, the authors use a system of actions to drive a
robot’s state probability toward a single cell of a coarse
discretization of the environment. The differences in our
work are that we are solving a navigation problem, we use
nondeterministic reasoning to achieve guarantees of success,
and we use precise geometry rather than a discretization
of the environment. Our high-level transitions are also very
much in the spirit of pre-image backchaining introduced by
Lozano-Ṕerez, Mason, and Taylor [9]. Our corner-finding
algorithm is very similar to the notion of a fine-motion
strategy countering positional uncertainty. The lessons of
these problems allow us to guarantee, if our algorithm
generates a plan and the robot’s sensor noise remains within
the bounds of the model, that the robot will successfully
navigate from start to goal.

The approach we use in our planner parallels the idea
of landmark-based navigation introduced by Lazanas and
Latombe [7]. Their work assumes the robot’s sensor model
is error-free while in the presence of landmarks, whereas
landmarks give our robot no additional sensing capabilities.
Their robot model also assumes a goal detector which tells
it exactly when it reaches its goal. We do not have sensors
to detect goals nor any landmarks; instead, we exploit the
geometric features of the environment to reduce uncertainty
without sensing.

Our work considers the uncertainty of the robot as a
guide in path planning. This approach is similar to planning
using coastal navigation techniques [12]—that is moving
from one landmark to another using range sensors to detect
landmarks. Our model is quite different however in that we

Bx1

x2

x4

A x3

θmax

C

S = x0

Fig. 2. Corner-finding allows the robot to travel fromS to A, in spite of
rotation errors up to the error boundθmax.

xG

xS

Fig. 3. A plan to travel from statexS to statexG, generated by the authors’
previously published algorithm. However, that algorithm fails to find a path
to return toxS from xG due to a T-junction highlighted by shaded area.

consider having only a map, a noisy compass, and a contact
sensor. There has also been prior work considering robot
models similar to ours for other tasks [10], [11]. However,
we consider a more realistic model for robot motion that
includes substantial errors and show that solutions can still
be generated for many navigation problems. The motivation
behind this is the desire to solve problems such as this with
simple robots.

III. SUMMARY OF AUTHORS’ PRIOR WORK

The results in this paper extend the authors’ prior work
[8] on the same problem. The intuition of that approach is
that, in the right circumstances, a mobile robot can reduce
its positional uncertainty via a sequence of back-and-forth
motions that drive it toward a corner in the environment.
Figure 2 illustrates this process. This funneling operation
is inspired by the sensorless manipulation work of Erdmann
and Mason [4], and allows the robot to drive itself arbitrarily
close to a convex vertex of the environment, in spite of
motion errors.

Our prior work presented an algorithm that can determine,
given two convex environment vertices, whether it is possi-
ble to perform a guaranteed transition between those two
vertices using this corner-finding technique. The algorithm
then generates a complete navigation plan by searching for
a path through a directed graph whose nodes are the convex
vertices of the environment, and whose edges connect pairs
of vertices between which a corner-finding transition exists.

Figure 3 shows an example of a plan generated by this
approach. We observed, however, that because the algorithm
can only generate plans that travel point-to-point between
convex vertices, it generally fails for problems that require
the robot to traverse certain environment features, such asT-
junctions and long corridors. The new contributions of this
paper are (1) a massive expansion to the usable nodes in
the underlying directed graph to enable traversal of these
kinds of features, (2) the consequent geometric algorithms
for computing the edges in this expanded graph, and (3) a
heuristic search procedure for exploring this graph efficiently.

IV. PROBLEM STATEMENT

This section formalizes the navigation problem we con-
sider. A point robot moves in a closed, bounded, polygonal
regionW ⊂ R

2 of the plane. The robot has a complete and
accurate map of its environment.

A vertex v of W is convexif the neighborhood ofv in
W is convex. Formally, letB(v, ǫ) denote the open ball with
radiusǫ centered atv. A vertexv is defined as convex if there
exists someǫ > 0 such thatB(v, ǫ) ∩W is a convex set.
Informally, notice that convex vertices are formed whenever
the two incident edges of a vertex form an interior angle less
than or equal toπ radians.

The robot is equipped with a compass and a contact sensor,
but no other sensors. Note specifically that the robot has
no clock nor any method of odometry, and consequently
cannot measure the distances it moves. Using its compass,
the robot can orient itself in a desired direction relative to a
global reference frame, but because of noise in the sensor,
this rotation is subject to potentially large, bounded error.
Using its contact sensor, can translate in this direction until
it reaches the boundary of the environment.

Our model for the motions of this robot has the following
elements:

1) Thestate spaceX = W is simply the robot’s environ-
ment. Because we encapsulate the robot’s use of its
compass as part of the actions, we need not record the
robot’s orientation as part of the state.

2) The action spaceU ∈ [0, 2π) is the set of planar
angles. To execute an actionu ∈ U , the robot orients
itself in direction u, subject to the error described
below, then moves forward in this direction until it
reaches the environment boundary.

3) Time proceeds in a series ofstages, numberedk =
1, 2, 3, In each stage, the robot chooses and com-
pletes a single action. At stagek, the robot’s state is
denotedxk and its action is denoteduk.

4) Rotation errors are modeled as interference by an
imaginary adversary callednature. In each stage, na-
ture chooses anature actionθk ∈ Θ. Nature’s action
spaceΘ = (-θmax, +θmax) is an interval of possible
error values. Note that because we are interested in
worst-case guarantees of success, we need not consider
any probabilities overΘ. The robot has no knowledge
of nature’s choice, nor any way to observe it directly
or indirectly.

5) The state transition functionf : X × U × Θ → X
describes how the state changes in response to the
robot’s actions, so that the current statexk, combined
with the robot’s actionuk and nature’s actionθk,
determines the next statexk+1:

xk+1 = f(xk, uk, θk). (1)

Specifically, f(xk, uk, θk) is defined as the opposite
endpoint of the longest segment inX, starting atxk

and moving in directionuk + θk.

The robot’s goal, givenW andθmax, along with initial and
goal statesxS , xG ∈ W and an accuracy boundδ, is to
choose a sequence of actionsu1, . . . , un so that

||xG − xn+1|| < δ (2)

for all possible nature action sequencesθ1, . . . , θn ∈ Θ. That
is, we seek actions that drive the robot fromxS to a point
close toxG, regardless of nature’s actions. The accuracy
bound δ is needed because the robot’s motion error and
sensor limitations prevent it from ever knowing with certainty
that is has reachedxG exactly.

V. A LGORITHM DESCRIPTION

In this section we describe an algorithm to solve nav-
igation problems of the form given in Section IV. From
the robot’s environment, we create a graph with nodes
representing sets of states and edges indicating the existence
of transitions between such sets. Each edge is labeled with a
sequence of actionsui, . . . , ui+K such that the robot will
be guaranteed to make a transition between its incident
nodes. We use two classes of nodes:point nodesrepresenting
convex vertices, andsegment nodesrepresenting positional
uncertainty along some environment edge. A solution is
a path in the graph between the point nodes representing
{xS} and{xG}. The bulk of the computation time is spent
discovering the nodes and edges of the graph.

We describe a segmentS by its endpointssrc[S] and
tar[S]. By convention, we maintain the property that a
counterclockwise rotation of the vectortar[S]−src[S] is into
the free space ofW . For a (possibly degenerate) segmentS
and an actionu, the error conee(S, u, θmax) is defined as
the portion ofW through which a robot could potentially
pass when executingu from any state inS. See Figure 4.
We call an actionsafefrom a segmentS if the far boundary
of e(S, u, θmax) lies on a single edge ofW . An interval of
actions(d1, d2) is an interval of safe actionsif every action
in the interior of the interval is safe.

Several of the algorithms we describe utilize a function
called SHOOTRAY , that takes as input a starting pointp ∈W
and a direction, and returns the first boundary point contacted
and the environment edge on which that point lies. This is
a standard operation from computational geometry. It takes
O(log n) time, in whichn is the number of vertices inW
[13].

θmax

u

S

Fig. 4. An error cone whose far boundary spans two edges ofW . As a
result, the illustrated actionu would not be in any interval of safe actions.

A. Graph nodes

Using only the point nodes and corner-finding edges of
our prior work, there are inherent limitations in the set of
navigation problems we can solve. Specifically, for every
intermediate transition between two statesxs andxg, there
must exist at least one safe action from{xs} that reaches
one of the two edges incident toxg. Certain environment
features, such as T-junctions, generally do not satisfy this
restriction.

To overcome this limitation, we introduce segment nodes
into the graph to allow temporary position uncertainty be-
yond the boundsδ given in the definition of localization in
Section IV. Each segment nodeχ corresponds to a closed
line segment along a single boundary edge ofW . When there
is no possibility for confusion, we useχ to denote either a
segment node or its underlying line segment. We also retain
point nodes at each convex vertex ofW .

Which segment nodes should be included in the graph?
Our approach usesmutually visible verticesto select nodes,
accounting for the uncertainty of the system. See Section III
for details. The intuition is that, to move safely past an
obstacle vertex, the robot cannot aim directly in the direction
of the vertex, but instead must aimθmax radians away from
that vertex.

Based on this observation, we generate a set ofdelimiting
points that serve as the endpoints for our segment nodes.
As shown in Algorithm 1, we use rays originating from
pairs of mutually visible vertices, extending in directions
rotated±θmax, to build the collection of delimiting points.
Figure 5 illustrates these delimiting points. The algorithm
then generates, in each environment edge, a segment node
for each ordered pair of distinct delimiting points within that
edge.

To bound the number of nodes generated, letn denote
the number of vertices of the environment and letli denote
the number of delimiting points on edgei. For any two
vertices vi 6= vj , the algorithm will create at most two
delimiting points originating fromvj , each of which lies on a
single edge, so we know that

∑n

i=1
li < 2n2. Note also that

Algorithm 1 creates
(

l2i + li
)

/2 nodes for edgei. Therefore,

Fig. 5. An environment illustrating all the delimiting pointsgenerated by
GenerateNodes algorithm.

the total number of nodes created is

n
∑

i=1

[

(l2i + li)/2
]

≤

n
∑

i=1

(l2i) ≤

(

n
∑

i=1

li

)2

≤ (2n2)2 ∈ O(n4),

in which we use the fact that squaring is a convex, and
therefore, superadditive function.

B. Graph edges

Recall that an edge〈χs, χg〉 of the graph represents the
existence of a sequence of actions which safely brings a robot
from some nodeχs to nodeχg. We next present a collection
of tests which are used in attempt to generate such sequences.

1) Point node to point node (with corner-finding):Our
previous work [8] includes an algorithm that generates
edges between pairs of point nodes using a “corner-finding”
technique. See Figure III for details.

2) Point node to segment node (direct):To generate an
edge that moves from a point nodeχs to a segment nodeχg

in a single step, we need only to identify the intervals of safe
actions fromχs that reachχg. To do so, we perform a radial
sweep aboutχs, testing between each pair of consecutive
obstacle vertices reached by the sweep ray. Figure 6 shows
an example in which there are two such intervals of safe
actions and Algorithm 2 shows the details of the algorithm.
The algorithm runs inO(n log n) time.

3) Segment node to segment node (direct):Now we
consider how to decide whether the robot can move from a
segment nodeχs to another segment nodeχg using a single
action. This is a generalization of the problem in Section
V-B.2. The intuition is that if all of the intervals of safe
actions generated by Algorithm 2, across all of the (infinitely
many) points along the continuum fromsrc[χs] to tar[χs] as
its starting point, have non-empty intersection, then suchan
edge exists.

It is trivially true that any interval of safe actions from
the entire intervalχs cannot contain any actions are not
safe from bothsrc[χs] andtar[χs]. To determine this initial
set of candidate actions, we execute Algorithm 2 twice, and

Algorithm 1 GENERATENODES(W, θmax)

1: N ← empty set of delimiting points
2: for all verticesi ∈W do
3: for all verticesj ∈W do
4: if i 6= j

and j is a reflex vertex
and j is visible from i then

5: a← angle(j − i)
6: N ← N ∪ {SHOOTRAY(i, a+ θmax,W)}
7: N ← N ∪ {SHOOTRAY(i, a− θmax,W)}
8: end if
9: end for

10: end for
11: Q← empty set of segments
12: for all edgesf ∈W do
13: N ′ ← all points inN contained inf
14: N ′ ← N ∪ {src[f], tar[f]}
15: n← count(N ′)
16: SORT(N ′) by the distance fromsrc[f]
17: for p← 1 to n do
18: for q ← 1 to n− i do
19: Q← Q ∪ {(src[N ′[q]], tar[N ′[q + p]])}
20: end for
21: end for
22: end for
23: return Q

θmax

χg

χs

Fig. 6. A point nodeχs and a segment nodeχg for which Algorithm 2
would return true.

intersect the resulting intervals of safe actions. It remains to
ensure that the result contains no actions that are unsafe from
any interior point ofχs.

To accomplish this, we consider the maximal intervals of
actions safe from bothsrc[χs] andtar[χs] in turn. For each
such interval(d1, d2), we form a quadrilateral for which
two vertices aresrc[χs] and tar[χs], and the remaining
two vertices are the results of SHOOTRAY(src[χs], d2,W)
and SHOOTRAY(tar[χs], d1,W). If any obstacle vertices
are within this quadrilateral, then the entire interval can
be discarded as unsafe. Figure 7 shows an example and

Algorithm 2 POINTTOSEGMENTTEST (χs, χg, θmax,W)

1: V ← empty set of angles
2: for all verticesv ∈W do
3: addangle(v − χs) to V
4: end for
5: SORT(V) counterclockwise0 to 2π
6: for i← 1 to count(V) do
7: a← angle bisector(V [i], V [i].next)
8: if 2θmax < angle(V [i].next− V [i])

and ray from s in directionV [i] intersectsg
and ray from s in directionV [i].next intersectsg
and SHOOTRAY (s, a, W) returns a point ong then

9: return true
10: end if
11: end for
12: return false

Algorithm 3 SEGMENTTOSEGMENTTEST(χs, χg, θmax,W)

1: Ps ← PTOS SAFEINTERVALS(src[χs], χg, θmax,W)
2: Pt ← PTOS SAFEINTERVALS (tar[χs], χg, θmax,W)
3: P ← Ps ∩ Pt

4: for all intervals(d1, d2) ∈ P do
5: if 2θmax < |d2 − d1| then
6: q ← quadrilateral with verticessrc[χs],

tar[χs], SHOOTRAY(src[χs], d2,W), and
SHOOTRAY(tar[χs], d1,W)

7: for all verticesv ∈W do
8: if q containsv then
9: goto line 14

10: end if
11: end for
12: return true
13: end if
14: end for
15: return false

Algorithm 3 shows the details.
The algorithm’s two calls to Algorithm 2 each take

O(n log n) time. To provide a maximum number of intervals
constructed by the loops on lines 3 and 4 of Algorithm 3,
consider a very contrived environment wherein all vertices
v ∈ W except the four vertices ofχs andχg, lie between
the two nodes. Given that at least three vertices are needed
to form an obstacle that can split an interval and at most
four intervals are formed from each obstacle, then there can
be at most4(n − 4)/3 intervals generated between the two
nodes. The test to determine whether a vertex lies inside
the quadrilateral takes constant time, therefore a maximum
number of intervals inO(n) leads to a total run time in
O(n2).

4) Segment node to point node (with corner-finding):
To build edges that reach point nodes from segment nodes,
we use a variation on the corner-finding technique refer-
enced in Section V-B.1. The key extension we need is a
function called CORNERFINDINGTARGET that returns the

I3

I4I1

I2

χg

χs

safe intervals

χs

χg

Fig. 7. [top] An example segment-to-segment test, in which there are two
intervalsI1 andI2 of safe actions fromsrc[χs] and two such intervalsI3
andI4 from tar[χs]. [bottom] The final result includesI1∩I3 andI2∩I4.
A third interval,I1∩I4 is safe from both endpoints, but is correctly rejected
by the algorithm because its quadrilateral contains an obstacle.

Algorithm 4 SEGMENTTOPOINTTEST(χs, χg, θmax,W)

1: (S1, S2)← CORNERFINDINGTARGET(χg, θmax,W)
2: for all S ∈ {S1, S2} do
3: if SEGMENTTOSEGMENTTEST(χs, S, θmax,W) then
4: return true
5: end if
6: end for
7: return false

largest segments from which the corner-finding algorithm is
guaranteed to succeed. There are always two such segments,
one for each of the edges incident toχg. Details on how
to compute such segments inO(n) time appear in our prior
work [8]. Using these segments, the edge test becomes a
simple application of Algorithm 3 to these two candidates.
Refer to Algorithm 4, whose run timeO(n2) is dominated
by the call to Algorithm 3.

5) Point node to point node with oscillation and corner-
finding: A weakness in our approach to segment node
generation is apparent in environments containing long edges
with no environment vertices in between. An example of this
structure is a long “hallway,” in which there are 4 vertices at
the ends and none in the middle. In this scenario, Algorithm 1
would generate segment nodes nearly as long as the hallway
itself. An example is visible at the far right side of Figure 5.
It is extremely difficult to generate outgoing edges from such

Algorithm 5 LONGHALLTEST(χs, χg, u, θmax,W, l)

1: u1 ← u+ θmax

2: u2 ← u− θmax

3: p1 ← χs

4: p2 ← χs

5: e1 ← nil
6: e2 ← nil
7: i← 0
8: while e1 = e2 and i < l do
9: p′1 ← p1

10: p′2 ← p2
11: 〈p1, e1〉 ← SHOOTRAY(p1, u1, w)
12: 〈p2, e2〉 ← SHOOTRAY(p2, u2, w)
13: q ← quadrilateral formed byp1, p2, p′1, andp′2
14: for all verticesv ∈W do
15: if q containsv then
16: goto 28
17: end if
18: end for
19: if ||(src[e1]− χs)|| < ||(tar[e1]− χs)|| then
20: u1 ← angle(tar[e1]− src[e1])−

π
4
+ θmax

21: u2 ← angle(tar[e1]− src[e1])−
π
4
− θmax

22: else
23: u1 ← angle(src[e1]− tar[e1]) +

π
4
− θmax

24: u2 ← angle(src[e1]− tar[e1]) +
π
4
+ θmax

25: end if
26: i← i+ 1
27: end while
28: return SEGMENTTOPOINTTEST(〈p′1, p

′

2〉, χg, θmax,W)

nodes using the techniques described above.
To address this shortcoming, we provide an algorithm

whereby the robot attempts to make progress by alternating
motions between the hallway walls. The algorithm chooses
two initial action, offset fromangle(src[χg] − src[χs]) by
π/4 in either direction and executes Algorithm 5 using each
of these initial actions as the inputu.

As described in Sections V-B.2 and V-B.3, we can calcu-
late the forward projection of a robot’s possible states from a
single point or segment under a given action. The algorithm
proceeds by computing a series of forward projections under
actions chosen to beπ/4 radians away from the edge reached
by the projection. This process continues until either (1)
one of the forward projections is unsafe, in the sense of
containing an environment vertex or reaching two or more
different environment edges or (2) the algorithm reaches a
limit of l iterations. We provide this limit as it is not obvious
that the algorithm will halt. After this process is complete,
we invoke SEGMENTTOPOINTTEST to attempt to reachχg.
This algorithm’s run time is clearlyO(n2), dominated by the
call to Algorithm 4.

C. Searching for connections

Sections V-A and V-B describe a graph with as many
as O(n4) nodes andO(n8) edges, each of which requires

several tests to include or discard. As a result, a brute force
approach that performs the edge tests on all node pairs would
be infeasible. Instead, we pre-process the environment and
provide a heuristic to prefer pairs of nodes that are more
likely to result in an edge between and also to be useful for
navigation between a given starting node and ending node.

To compare two given node pairs(χs,1, χg,1) and
(χs,2, χg,2), we apply a sequence of tests as listed below. We
apply these tests as a sequence of “tiebreakers,” continuing
to each subsequent test only when the both node pairs have
equal values for the previous test.

1) Prefer the pair for which the final nodeχg,i is a point
node.

2) Prefer the pair for which the final nodeχg,i is closer,
in geodesic distance, to the global goalxG.

3) Prefer the pair for which the final nodeχg,i is smaller.
4,5) Repeat tests 2 and 3 for the initial nodesχs,i.
The intuition is to drive the search toward nodes that are
nearer to the goal, noting that it is more challenging to gen-
erate outgoing edges from larger nodes. We also implement
a filtering technique in which node pairs that are separated
by three or more “turns” in the shortest path between them
are discarded outright. Such node pairs are unlikely to be
connected by any of our edge test algorithms.

The full planner uses a priority queue of node pairs,
ordered by this heuristic. It also maintains aconnected setC
of nodesχ for which a plan reachingχ from xS is known,
and anunconnected setU containing all other nodes. The
connected setC is initialized to contain onlyxS and the
priority queue is seeded with all pairs originating atxS . In
each iteration, a node pair is extracted from the queue and
we execute each of the applicable edge tests described above
to attempt to connect the nodes to each other. If any of edge
tests succeed, we removeχg from U , add it toC, and insert
the node pairs{χg} × U into the queue. IfxG is inserted
into C, then a plan is complete, and the action sequence can
be extracted from the sequence of edges connectingxS to
xG. If there is no way for a connection to be made between
the start and goal nodes using the methods we’ve presented
above, the algorithm will terminate with an empty queue,
having attempted all possible pairs.

To speed the heuristic calculations, we preprocess the
environment, by the construction of a visibility graph on
all vertices of the environment, along with all-pairs shortest
path data for this visibility graph. We use this structure
to calculate the shortest path distance and the number of
turns between each pair of environment vertices. In the case
of point nodes, geodesic distance and turns are calculated
directly. In the case of segment nodes, we overestimate the
distance by using the environment edge on which the node
lies. Specifically, for distances involving a segment nodeχ,
we use the mean of two distances: (1) the distance from
src[χ] to the closest environment vertex of the segment
on which χ lies, and (2) the distance fromtar[χ] to the
closest environment vertex of the segment on whichχ lies.
In the case of a small segment node near its edge’s endpoint,
options (1) and (2) may be the same.

Fig. 8. A plan generated by our algorithm in a non-rectilinear environment.
The plan is simulated 20 times and shown in parallel. The different paths
are caused by interference up to±θmax = π

36
.

VI. I MPLEMENTATION AND EXPERIMENTS

A. Simulated implementation

We explored the performance of our planner by imple-
menting it in C++, using CGAL [2] as a geometry engine
modeling the robot and environment. Figures 1, 8, and
9 are three of the environments on which we performed
experiments. Figure 8 is a non-rectilinear environment with
42 vertices, divided by an obstacle inducing two very long
halls. Figure 9 is an environment containing 172 vertices and
several instances of long halls and T-junctions. Figure 1 isa
rectilinear environment with 44 vertices used to collect data
on the performance of several naı̈ve approaches to the edge
search.

The experiment illustrated in Figure 8 was run with
θmax = π

36
. The effect of uncertainty is evident in the cones

created by the robot’s different paths. This environment
offers unique challenges due to the long halls and the
obstacles set between the convex vertices of the graph. Our
planner required 364 edges and 114,847 edge connection
attempts to generate the solution shown. The solution to
problem presented in Figure 9 usedθmax = π

72
and required

193 edges and 24,004 connection attempts.
To evaluate our heuristic, we solved the planning problem

depicted in Figure 1 using our heuristic method, and com-
pared its performance to similar planners that use a random
distribution, a stack, and a queue. The following table details
the results, which confirm the success of our approach. It
is worth noting the final plan found by each method were
identical.

Heuristic comparison:
heuristic random stack queue

edges found 13 493 711 353
connection attempts 1,201 198,736 167,590 167,590

B. Physical implementation

We have implemented the algorithm on an iRobot Create,
as shown in Figure 10. Because the Create platform does
not have a compass sensor, it was necessary to simulate the
compass via the Create’s IR range sensor and encoders. This
was done via noting the direction of each wall along which
the robot ends its translation. Once adjacent to that wall, the

Fig. 9. A plan generated by our algorithm and simulated 20 times, each
different due to interference in rotation up to±θmax. In this experiment,
θmax = π

72
.

Fig. 10. An iRobot Create executing a plan generated by our planner.

robot uses its range sensor to rotate to a pose approximately
parallel to the wall, such that its right side is against the
wall. We then used the robot’s encoders to rotate a necessary
offset for the proper pose facing. This technique allowed
us to circumvent the accumulation of error normally seen
in pure dead-reckoning or encoder measurement. While the
simulated compass technique held, the Create performed as
in simulation.

VII. D ISCUSSION AND CONCLUSION

We have presented a planning algorithm which generates
plans that a robot having only a compass, map, and contact
sensor can use to navigate non-trivial environments contain-
ing obstacles. The planner considers the bound on error in
the robot’s actions and chooses plans to move the robot
between sets of states in the environment, driving it from a
singleton initial set to a singleton goal set through the useof
specialized high-level actions. The planner represents the sets
as nodes in a graph and the existence of an edge guarantees
safe transitions between nodes. In our previous work, our
algorithm sought to fill the graph, then generate plans via a
simple breadth-first search. The enhanced graph in this work
is too large and complex to calculate explicitly, so insteadwe

use a heuristic to focus the search for edges and terminate
the algorithm once it has exhausted all possible pairs or
successfully generated a solution. We have also presented
data to support the power of our heuristic and several non-
trivial environments through which our planner succeeded in
navigating.

We are also working to prove the hardness of a complete
solution to this problem. In our current work, we have
several limiting restrictions in that we only consider one-step
plans between nodes, generate a finite discretized selection
of segment nodes, and limit segment nodes to subsets of
environment edges. It appears likely that a complete solution
will consider plans of lengthn, will provide some mechanism
to use exactly the segment nodes necessary for those plans,
and will not restrict segment nodes to a single environment
edge.

ACKNOWLEDGMENTS

We gratefully acknowledge support from NSF (IIS-0953503) and
DARPA (N10AP20015).

REFERENCES

[1] M. Blum and D. Kozen, “On the power of the compass (or, why
mazes are easier to search than graphs),” inProc. IEEE Symposium
on Foundations of Computer Science, 1978, pp. 132–142.

[2] “C GAL, Computational Geometry Algorithms Library,”
http://www.cgal.org.

[3] B. R. Donald, “On information invariants in robotics,”Artificial
Intelligence, vol. 72, pp. 217–304, 1995.

[4] M. Erdmann and M. T. Mason, “An exploration of sensorless manipu-
lation,” IEEE Transactions on Robotics and Automation, vol. 4, no. 4,
pp. 369–379, Aug. 1988.

[5] M. A. Erdmann, “Understanding action and sensing by designing
action-based sensors,”International Journal of Robotics Research,
vol. 14, no. 5, pp. 483–509, 1995.

[6] L. Erickson, J. Knuth, J. M. O’Kane, and S. M. LaValle, “Proba-
bilistic localization with a blind robot,” inProc. IEEE International
Conference on Robotics and Automation, 2008.

[7] A. Lazanas and J. C. Latombe, “Landmark-based robot navigation,”
in Proc. National Conference on Artificial Intelligence (AAAI), 1992.

[8] J. S. Lewis and J. M. O’Kane, “Guaranteed navigation withan
unreliable blind robot,” inProc. IEEE International Conference on
Robotics and Automation, 2010.

[9] T. Lozano-Ṕerez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,”International Journal of Robotics
Research, vol. 3, no. 1, pp. 3–24, 1984.

[10] J. M. O’Kane and S. M. LaValle, “Localization with limited sensing,”
IEEE Transactions on Robotics, vol. 23, pp. 704–716, Aug. 2007.

[11] ——, “On comparing the power of robots,”International Journal of
Robotics Research, vol. 27, no. 1, pp. 5–23, Jan. 2008.

[12] N. Roy and S. Thrun, “Coastal navigation with mobile robots,” in
Advances in Neural Processing Systems, 1999, pp. 1043–1049.

[13] L. Szirmay-Kalos and G. Marton, “Worst-case versus average case
complexity of ray-shooting,”Computing, vol. 61(2), no. 2, pp. 103–
131, 1998.

[14] B. Tovar, L. Guilamo, and S. M. LaValle, “Gap Navigation Trees:
Minimal representation for visibility-based tasks,” inProc. Workshop
on the Algorithmic Foundations of Robotics, 2004.

