
Guaranteed navigation with an unreliable blind robot

Jeremy S. Lewis and Jason M. O’Kane

Abstract— We consider a navigation problem for a robot
equipped with only a map, compass, and contact sensor. In
addition to the limitations placed on sensing, we assume that
there exists some bounded uncertainty on rotations of our
robot, due to precision errors from the compass. We present an
algorithm providing guaranteed transitions in the environment
between certain pairs of points. The algorithm chains these
transitions together to form complete navigation plans. The
simplicity of the robot’s design allows us to concentrate on
the nature of the navigation problem, rather than the design
and implementation of our robotic system. We illustrate the
algorithm with an implementation and simulated results.

I. I NTRODUCTION

The ability to navigate reliably through a cluttered en-
vironment is a fundamental capability for mobile robots.
Navigation can be a challenging problem because of the dual
difficulties of finding a path from the robot’s starting location
to its goal, and of executing such a path successfully in
spite of unpredictable actuation and limited sensing. Typical
navigation methods take a decoupled approach, in which
path selectionandpath executionare handled separately. The
former phase chooses a path for the robot to follow without
considering sensing issues, and the latter uses the robot’s
sensors to execute the chosen path. The primary limitation
of that approach is that it is unsuitable for situations in
which the robot must choose its path, or portions thereof,
specifically to reduce or eliminate uncertainty.

In this paper, we present a unified approach that considers
uncertainty directly in the process of path selection. Our
approach has parallels to prior work on coastal navigation
[26], but applies in aminimalistsetting, considering a robot
equipped with no sensors other than a compass and a contact
sensor. Our study of this very simple robot model is moti-
vated by the obvious desire to understand how navigation
problems can be solved with simple, inexpensive robots, but
also by a broader interest in understanding what information
is truly required to complete the navigation task.

Although prior work has considered similar robot models
for other tasks [24], [25], in this paper, we consider a
much more realistic model for robot motion that includes
substantial errors, and show that many navigation problems
can still be solved under this model.

The basic intuition of the algorithm is to find a sequence
of jumps, called high-level transitions, between corners in
the environment. Each high-level transition is composed of
repeated back-and-forth motions between the incident edges
of the target vertex. These motions make progress toward the

J. S. Lewis and J. M. O’Kane are with the Department of Computer
Science and Engineering, University of South Carolina, 301Main St.,
Columbia, SC 29208, USA.{lewisjs4,jokane}@cse.sc.edu

Fig. 1. A robot in a complex environment executing a plan generated by
our algorithm. The robot uses convex corners to reduce its state uncertainty
several times throughout the plan.

target, but cannot be guaranteed to reach it at any particular
step because of the possibility of motion errors. If progress
is made with each motion, however, the robot can guarantee
to become arbitrarily close to the target node as the number
of motions increases. To determine whether such a jump is
possible, we use a formal notion of thepreimageof the target
vertex. The interesting feature of these transitions is that they
tolerate uncertainty well—during their execution, the robot
does not know its own position exactly—but terminates only
after the robot has re-localized itself in a new place.

By finding pairs of environment vertices between which
such high-level transitions can be made, the algorithm forms
a directed graph of high-level transitions, through which it
then searches for a complete navigation plan.

The remainder of the paper is structured as follows. In
Section II, we discuss related research. Section III gives afor-
mal problem statement. Our algorithm appears in Section IV,
and we present an implementation in Section V. Section VI
concludes the paper with discussion and a preview of future
work.

II. RELATED WORK

Our planning algorithm is related to the idea of “pre-
image backchaining” introduced by Lozano-Pérez, Mason
and Taylor [20]. Their research describes the notion of
a fine-motion strategyas an effective counter to position
uncertainty in compliant motions. Our approach is similar
in that we consider an error cone—that is, a range of
possible uncertainty values for each translation made by our
robot—that increases the set of possible states from a single

known state to some larger set of states derived from a known
bound on error.

Erickson, et al, [15] also use this idea of an error cone
to solve a global active localization problem. They describe
a system whereby actions are carefully chosen to drive
the probability of the robot’s position toward a single cell
in a coarse discretization of the environment. We are not,
however, using a probabilistic approach, but rather a worst-
case analysis. The other obvious difference is that we are
solving a navigation problem and thus treat our points as
landmarks, indirectly providing additional information about
the robot’s state.

The idea of landmark-based navigation was also proposed
by Lazanas and Latombe [19]. They suggest the use of
landmarks such that while the robot is in proximity of a
landmark, the robot is able to execute error-free actions.
They also assert that the robot is able to recognize when
it has achieved its goal. In contrast, our robot has no sensor
which would allow it to do so, nor does our planner depend
on the robot explicitly sensing that it has achieved its goal
state. Our planner, also, never assumes error-free actionsby
the robot nor an exact knowledge of any state after leaving
the initial state. Instead, we use carefully a crafted plan that
ensures the robot has reached its goal at plan completion, in
spite of its lack of a goal-detecting sensor.

Our approach is similar to Erdmann and Mason’s work
on sensorless manipulation [12]. Our work follows suit with
an inspection of the robot’s environment, rather than any
engineering of the environment as in [20]. The synthesis of
these works results in a planner that uses parts of the environ-
ment as landmarks, by describing a careful iterative motion
process to eliminate uncertainty periodically throughoutthe
robot’s execution. By determining landmarks from plentiful
environment features, in this case, convex vertices, we show
that a very simple robot is able to solve problems previously
considered only through changing the environment in some
way or the addition of more sensors.

Our goal of considering simplified sensing and actuation
systems while solving meaningful problems is not new. A
number of different tasks have been addressed with this
approach, including manipulation in general [3], [13], [14],
[20], part orientation specifically [2], [4], [12], [16], [22],
[28], navigation [5], [10], [17]–[19], [21], and mapping [1],
[8], [9], [23], [27]. More generally, others have explored the
question of the minimal sensing requirements to complete a
given task [6], [11], [14]. This methodology of minimalist
robotics research can arguably be traced back to Whitney
[29]. The idea of the approach is that it is often useful to
minimize the complexity of a robotic system in order to focus
instead on the problem the robot intends to solve.

III. PROBLEM STATEMENT

This section formalizes the navigation problem we con-
sider.

A point robot moves in a closed, bounded, polygonal
region W ⊂ R

2 of the plane. The robot has a complete
and accurate map of its environment. A vertexv of W is

convexif the neighborhood ofv in W is convex. Formally,
let B(v, ǫ) denote the open ball with radiusǫ centered atv.
A vertex v is defined as convex if there exists someǫ > 0
such thatB(v, ǫ)∩W is a convex set. Informally, notice that
convex vertices are formed whenever the two incident edges
of a vertex form an angle less than or equal toπ radians.

The robot is equipped with a compass and a contact sensor,
but no other sensors. Note specifically that the robot has
no clock nor any method of odometry, and consequently
cannot measure the distances it moves. Using its compass,
the robot can orient itself in a desired direction relative to a
global reference frame, but because of noise in the sensor,
this rotation is subject to potentially large, bounded error.
Using its contact sensor, can translate in this direction until
it reaches the boundary of the environment.

Our model for the motions of this robot has the following
elements:

1) Thestate spaceX = W is simply the robot’s environ-
ment. Because we encapsulate the robot’s use of its
compass as part of the actions, we need not record the
robot’s orientation as part of the state.

2) The action spaceU ∈ [0, 2π) is the set of planar
angles. To execute an actionu ∈ U , the robot orients
itself in direction u, subject to the error described
below, then moves forward in this direction until it
reaches the environment boundary.

3) Time proceeds in a series ofstages, numberedk =
1, 2, In each stage, the robot chooses and completes
a single action. At stagek, the robot’s state is denoted
xk and its action is denoteduk.

4) Rotation errors are modeled as interference by an
imaginary adversary callednature. In each stage, na-
ture chooses anature actionθk ∈ Θ. Nature’s action
spaceΘ = [−θmax,+θmax] is an interval of possible
error values. Note that because we are interested in
worst-case guarantees of success, we need not consider
any probabilities overΘ. The robot has no knowledge
of nature’s choice, nor any way to observe it directly
or indirectly.

5) The state transition functionf : X × U × Θ → X

describes how the state changes in response to the
robot’s actions, so that the current statexk, combined
with the robot’s actionuk and nature’s actionθk,
determines the next statexk+1:

xk+1 = f(xk, uk, θk). (1)

Specifically, f(xk, uk, θk) is defined as the opposite
endpoint of the longest segment inX, starting at
xk and moving in directionuk + θk. Note that, due
to error, the robot does not knowxk+1 exactly. For
convenience, we occasionally abuse this notation to
apply several stages’ worth of actions at once, so that

xk+i = f(xk, uk, θk, uk+1, θk+1, . . . , uk+i, θk+i).
(2)

The robot’s goal, givenW andθmax, along with initial and
goal statesxI , xG ∈ W and an accuracy boundδ, is to

C

A B

S

C

A B

S

Fig. 2. The system of points: A, B, C, S

choose a sequence of actionsu1, . . . , uK so that

||xG − f(xI , u1, θ1, . . . , uK , θK)|| < δ (3)

for all possible nature action sequencesθ1, . . . , θk ∈ Θ. That
is, we seek actions that drive the robot fromxI to a point
close to xG, regardless of nature’s actions. The accuracy
bound δ is needed because the robot’s motion error and
sensor limitations prevent it from knowing that is has reached
xG exactly.

IV. A LGORITHM DESCRIPTION

This section describes our algorithm to solve the naviga-
tion problem introduced in Section III. The basic structureof
the algorithm is to form a sequence ofhigh-level transitions,
each composed of several actions. Each high-level transition
moves the robot between a pair of environment vertices. The
key feature that makes such transitions useful is that, after
each high-level transition completes, the robot has nearly
eliminated its uncertainty about its position.

The algorithm proceeds by identifying pairs of vertices
between which such a high-level transition can be made,
then using graph search techniques to assemble a sequence of
these high-level transitions into a complete plan. SectionIV-
A describes the basic strategy the robot uses to make its high-
level transitions, and Section IV-B shows how to determine
whether this approach can successfully make a high-level
transition between two given vertices. Finally, Section IV-
C describes how we use this vertex-pair transition test to
build a directed graph, from which the complete plan can be
generated.

A. Corner finding algorithm

Given two distinct environment verticesS andA, how can
the robot use its unreliable motions to move reliably from
S to A? Let B and C be the predecessor and successor
of A in a counterclockwise ordering of the vertices ofW

respectively. We refer to the segment formed byA andB as
AB and refer to the segment formed byA andC asAC.

To travel from S to A, the robot makes a series of
motions back and forth betweenAB and AC. To simplify

A

C

S = x0

x1x3

x2

x4

B

θmax

Fig. 3. Robot executing steps of corner-finding algorithm when AB is
target segment.

Algorithm 1 FINDCORNER(S,A,B,C, u0, θmax)

1: x0 ← S

2: for k ← 1 to n do
3: Execute actionuk−1

4: if k mod 2 = 1 then
5: uk ← angle(A−B)− θmax

6: else
7: uk ← angle(A− C) + θmax

8: end if
9: end for

the description, we describe in detail the case in which the
robot’s first movement takes it fromS to a point x1 on
AB. The complete algorithm considers bothAB andAC as
potential initial segments, making the obvious changes to the
corner finding and preimage computation algorithms. After
this first motion, the robot alternates between two actions:

1) Whenever the robot is onAB, it chooses

u = angle(A−B)− θmax. (4)

2) Whenever the robot is onAC, it chooses

u = angle(A− C) + θmax. (5)

The intuition is that, at each step, the robot seeks to move
toward A as directly as possible. However, because of the
possibility of rotation errors, the robot must aim outward
from the edge on which it currently rests by an amount
equal to the maximum possible magnitude of this error.
See Figure 3. The robot repeats the process some specified
number of times, denotedn. This process is similar to the
angle adjustment method used by Erickson et al, [15]. Details
appear in Algorithm 1.

B. Computing preimages

Algorithm 1 depends on given verticesA and S, along
with an initial actionu0. To apply this corner-finding algo-
rithm as part of a successful global plan, however, the robot
must find a value foru0 under which the corner-finding
algorithm is guaranteed to succeed. This section presents
our approach to finding such au1, based on the notion of
preimages.

2θmax

α 2θmax

π − α − 2θmax

α + 2θmax

π − α − 4θmax

A
xm

xm+1

C

B

xm+2

Fig. 4. Showing that△(xm+1, xm+2, A) ⊂ △(xm, xm+1, A).

The preimageof vertexA from vertexS is defined as the
set of actions the robot can execute as the first actionu0

of Algorithm 1, and be guaranteed not to collide with any
obstacle inW except the two segmentsAC and AB. The
following lemma provides the basis for the algorithm we use
to compute preimages.

Lemma 1: Let α denote the measure of angle formed atA

with B andC. If α < π−4θmax, and the robot is guaranteed
to make a collision free transition fromx1 to x2, then the
robot is also guaranteed to make the subsequent transitions
to x3, . . . , xn without collision.

Proof: Use induction on the stage indexk. As a base
case, note that the conclusion is given fork = 1. For the
induction step, assume that the statement is true fork = m

to show that it is true fork = m + 1. Refer to Figure 4. In
the transition fromxm to xm+1, the robot may pass through
any point in the triangle formed byxm, xm+1, andA. By the
inductive hypothesis, therefore, we know that the interiorof
this triangle does not contain any obstacles. Straightforward
reasoning about the angles in this arrangement shows that
∠(xm, xm+1, xm+2) = π − α − 4θ, which by supposition
is greater than0. As a result, the triangle formed byxm,
xm+1, andxm+2 is non-degenerate, andxm+2 is closer to
A thanxm. This implies that the triangle formed byxm+1,
xm+2, andA is fully contained within the triangle formed
by xm, xm+1 and A. Since the latter triangle contains no
obstacles, the former must also contain no obstacles. This
ensures that the transition fromxm+1 to xm+2 is collision
free, completing the proof.

The implication of Lemma 1 is that there are only two
ways in which the robot can have a collision while exe-
cuting Algorithm 1: colliding with an obstacle on its initial
translation fromS to x1, or along its second transition from
x1 to x2. Our algorithm proceeds by finding intervals of
actions that are guaranteed to safely complete these first two
transitions.

1) From S to x1: This section extensively references
Algorithm 2. To check for instances of obstacles between
S and AB, we define the robot’s error cone (lines 2:2-8).
For a given actionu, this cone is defined as the region is
bounded by rays originating atS with directionsu + θmax

andu− θmax. We sweep the error cone aroundS and note
all the angles at which the leading or trailing edge of the

C

BA

θmax

S = x0

Fig. 5. Determining two critical actions of the system.

Algorithm 2 FIRSTTRANSITIONPREIMAGE(A,B,C, S)

1: for i← 0 to 1 do
2: for all verticesv ∈W do
3: u← angle(vj − S) + (−1)iθmax

4: if Intersects(ray(S, u), AB) then
5: critActions.insert(u)
6: end if
7: end for
8: end for
9: sortClockwise(critActions)

10: for s← 1 to j do
11: f ← s− 1
12: for all verticesv ∈W do
13: mid← critActions[f]+critActions[s]

2
14: if v ∈ triangle(S,mid + θmax,mid − θmax, AB)

then
15: delete(critActions[f])
16: break loop
17: else
18: preimage.add(critActions[f], critActions[s])
19: end if
20: end for
21: end for
22: returnpreimage

cone intersects some vertexv ∈ W . An example appears
in Figure 5. We refer to the actions that generate these
intersections ascritical actions.

Critical actions represent directions at which a preimage
segment might begin or end. Once all the critical actions are
known, for each consecutive pair in an ordered clockwise
sequence, a mid-direction is chosen and along that direction,
an error cone is drawn (line 2:14). If the error cone contains
no vertices ofW , then the area between those two critical
actions is collision free and the segment formed by the
intersection of rays along the two critical actions and the
target segment is included in the preimage (line 2:18). If
any vertices are found, then collision avoidance cannot be
guaranteed and thus the area is excluded from the preimage
(line 2:15).

BA

C

S

θmax

2θmax

Fig. 6. Determining right side of preimage along segmentAB.

Algorithm 3 SECONDTRANSITIONPREIMAGE(A,B,C, S)

1: δ ← −(angle(A−B)− 2θmax)
2: q ← B

3: for all verticesv ∈W do
4: p← intersect(ray(v, δ), AB)
5: if dist(A, p) ≥ dist(A, q) then
6: q ← p

7: end if
8: end for
9: preimage.insert(angle(S −A), q)

10: returnpreimage

2) From x1 to x2: This section extensively references
Algorithm 3. To ensure that all jumps between the two target
segments are obstacle-free, we must determine a triangle
representing the largest collision-free error cone for thejump
from x1 to x2. To find the triangle, we determine a vector
representing the outermost edge of the cone (line 3:1). We
then draw rays from each vertex inW in the opposite
direction (line 3:4). The points at which transitions from
S would cause these rays intersect with the target segment
result in critical actions. To check these points, however,it
is only necessary to note which of the critical actions lie
closest toA alongAB (lines 3:5-6). This point becomes the
farthest end of our preimage segment(s) (line 3:9).

Algorithm 4 shows how to compute the preimage. The
preimage computed by Algorithm 4 is a set of zero or more
disjoint sets from which the initial action,u0, is chosen.
It is safe for the robot to choose any action in any of the
sets. In our algorithm, we do not suggest an explicit method
for choosing somecorrect action,u0. That decision would
be based on factors which we are not considering, such as
optimality, thus any action in a non-empty preimage is a
correct u0 for our algorithm.

C. Finding a global path

The two above sections define how we compute a preim-
age between two vertices. If that preimage is non-empty, then
it could be said that there exists a directed edge between
the given vertices,S and A. By noting which vertices are
connected by which directed edges we represent the problem

Algorithm 4 COMPUTEPREIMAGE(A,B,C, S)

1: return FirstTransitionPreimage(A,B,C, S) ∩
SecondTransitionPreimage(A,B,C, S)

Fig. 7. A trivial environment depicting two preimages. The first, simply a
contiguous set of critical actions. The second, a more complicated example
with a disjoint set of critical actions.

of moving through an environment via any number of high-
level transitions as a graph search. Using one of the usual
methods for computing paths through graphs, in our case a
breadth-first search, we search the graph and if a path through
the environment is obtained, the robot has a guarantee that it
can, using its corner-finding routine and preimages, transition
from its initial state and into its goal state.

V. I MPLEMENTATION AND EXPERIMENTS

We implemented this algorithm in simulation using CGAL
[7] as the geometry engine modeling our robot and environ-
ment. The algorithm was implemented in C++ and all anima-
tions were performed with OpenGL. Throughout all of these
initial experiments,θmax is set to π

50 radians–an arbitrarily
chosen value. We present two non-trivial environments in
these initial simulations. The environment from Figure 8 isa
rectilinear environment with 44 vertices. The graph for this
environment took 3 minutes 16 seconds to complete. The
non-rectilinear environment in Figure 12 has 62 vertices and
its graph was computed in 6 minutes 24 seconds. It is given
to illustrate a more extreme example of the sorts of problems
our algorithm can solve.

Figure 7 is an example of two of these preimages, given for
a simple environment. Each illustration depicts the starting
point of the systemS as the point denoted by the triangular
icon. The target vertex,A, is given as the shaded vertex. The
arrows originating atS represent the two ends of a set or
sets of angles forming the preimage of the system. The first
illustration is the most simple case, a single set of critical
actions which the robot can execute to ensure a collision-free
traversal.

The second illustration uses an obstacle to demonstrate a
slightly more complex example. The preimage now contains
disjoint sets. Contrast Figure 7 with Figure 8. Figure 8
illustrates a more complicated system. Without error, the
most obvious course of action for the robot would be to drive
directly into its goal vertex. This figure illustrates an example

Fig. 8. A less obvious preimage in a more realistic environment and a
preimage containing multiple sets of critical angles, all of which are included
in the preimage.

of a system that wouldn’t be solved by that plan, even in an
error-free environment. The second illustration in Figure8
shows a situation in which multiple critical angles are found
due to the arrangement of vertices in the environment. Here,
all of the sets of critical angles should be included in the
preimage.

Knowing what the preimages between vertices look like,
now allows the robot to make plans that guarantee successful
traversal through its environment. For the experiments in-
volving the simulated robot, we begin the robot with certain
knowledge of its position. From that point, we simulate
its use of a map, contact sensor, and compass to allow
it to execute its corner-finding algorithm. Using the graph
determined previously, the robot is able to make plans, i.e.
search the graph, to find high-level transitions which carry
it from xInitial to xGoal. It is important to note that for the
simulation to be accurate, we do not ever reset the robot’s
position during any portion of its corner-finding algorithm,
nor during any point during or after high-level transitions.
Uncertainty is allowed to accumulate naturally during each
movement in a transition, using a pseudo-random number to
generate eachθk. Each time the robot makes a decision to
execute some action, it is offset by nature a random amount
bounded by±θmax. The number of iterations of the corner-
finding routine,n, is set to20.

Figure 9 is a plan the simulated robot devised to transition
from the initial state, again represented by the triangle
icon, to the goal state, the shaded vertex. The arrow heads
which occur at each of the convex vertices into which the
robot uses its corner-finding algorithm to drive itself are
depicting the repeated transition back-and-forth betweenthe
two segmentsAB andAC. Our robot has no sensor to detect
goal achievement, so it is forced to executen iterations of
the corner-finding routine.

The arrows in this figure are drawn along the actual paths
the robot follows, offset byθ. Notice that the initial transition
from somex0 to x1 isn’t as close to the goal vertex as it
could be. Since the preimage is a set of angles and possibly
multiple sets of disjoint angles, the robot has a decision to
make, “along which direction should I translate?” Because
our algorithm is concerned only with feasibility, rather than
optimality, we decided the robot should aim for the center
angle of the largest contiguous set of angle in the preimage.

Fig. 9. A plan generated by our algorithm in a realistic environment.

This has the effect of always aiming as far from obstacles
as the robot can.

Figure 10 is given as the analogue to Figure 9. That is,
in the graph of nodes and edges, the nodes representing
the initial and goal vertices in, Figure 9 and Figure 10 are
connected with two edges. Contrast these figures with Figure
11. Again, the initial state is marked by the triangle icon, the
goal state is marked by the shading, but these two vertices
only have one edge between them. It is, in fact, true that
there is no way for the robot to get back into that portion
of the environment once it exits. This missing edge is only
partially a consequence of error, but is also weakness of
our algorithm’s dependence on its corner-finding routine.
The corner-finding routine must have some “line of sight”
between the convex vertex describing its initial state and one
of the segments forming the convex vertex of its target state.
There is a small direct path between a convex vertex on the
bottom right of the environment and the segment forming the
initial convex vertex of that area. The path is, however, too
small to allow our algorithm to generate actions guaranteeing
a successful traversal.

In spite of limitation illustrated by Figure 10, our al-
gorithm does not need to be restricted to rectilinear en-
vironments. Figures 12 and 13 show an environment with
unusual features. The two plans devised by the robot allow
guaranteed traversals between some of the more extreme
features. We did include in this environment features which
would provide limitations based both on the uncertainty
involved and the limitations of the corner-finding routine.
Note that due to the length of the path traversing from the
left side of the environment to the right, that withθmax = π

50
there is no guaranteed safe path. There is, also, a portion
of the map for which the corner-finding routine fails—it
isn’t possible to get into nor out of the center section of
the environment.

Fig. 10. This figure illustrates the second edge betweenxI andxG depicted
andxI andxG from Figure 9.

Fig. 11. A plan fromxI to xG, with no way for the robot to return to its
initial state.

Fig. 12. A full plan devised by the algorithm to navigate a non-rectilinear
environment.

Fig. 13. This figure illustrates a very extreme problem, which our algorithm
was able to successfully determine a plan to navigate.

VI. D ISCUSSION AND CONCLUSION

In this paper we presented a strategy whereby a robot
having only a map, contact sensor, and compass navigates
between vertices in a planar environment. We presented a
corner-finding routine and using an analysis of that routine,
were able to determine all critical actions for the robot–
critical actions defined as indicators of a possible collision
with some part of its environment. By determining which
of these critical actions, when paired in a clockwise order,
give a guaranteed set of angles along which such a collision
does not occur, we were able to compute a preimage. The
preimage between two vertices in the environment was then
used to map the vertices of the environment to the nodes of a
graph and the presence of a non-empty preimage as an edge
between those nodes. The complete plan is generated by a
graph search on this graph.

A. Future Work

1) Bounds on Uncertainty: In Section V we arbitrarily
choose a value forθmax for our experiments. The value
of θmax has a great deal of impact on the results of each
preimage calculation; a preimage may be empty for one value
of θmax and not for another. The preimage’s dependence on
θmax means that for any given system,A,B,C, andS, there
are bounds onθmax itself which determine the largest value
for which a non-empty preimage exists. If this value was
known for each vertex pair in the environment, we could
then calculate the largestθmax for which a given instance of
the navigation problem can be solved.

This line of reasoning could also lead to a probabilistic
model of the preimage. Larger values ofθmax could be
used and would lead to changes in probabilities associated,
then, with the edges of the graph. In this case, it would
be necessary to consider the area of each error cone as it
grows with increased uncertainty. By calculating how much
of this error cone’s area is taken up by obstacles it would
be possible to determine the probability of a collision with
its environment during a transition. This, of course, assumes
that eachθ ∈ Θ has an equally likely chance to occur.

2) Completeness: Though our current corner-finding rou-
tine is robust enough to navigate realistic environments with
guarantees of success, it is not complete. The most obvious
example of this incompleteness is the corner-finding routine’s
dependence on a large enough direct path from any given
vertex to one of the segments forming the convex vertex
into which the robot transitions. A complete algorithm would
need to, at least, overcome this problem.

One approach would be to note that we treat the entire
environment as obstacle, except the two segments for which
we’re aiming andA. Instead, every edge of the environment
could function as target segments and rather than aiming to
avoid them, we could use them to reach places previously
unattainable.

Another consideration for completeness is the corner-
finding routine’s method of computing direction. Currently,
we attempt to drive as directly intoA from any givenxk

as θmax allows. Its easy to imagine a situation in which
an obstacle lies close enough toA along one of its target
segments to cause a collision. Though our overall algorithm
isn’t so sensitive to this, as we can choose which segment
is our initial, there are situations in which this would cause
the preimage to be empty.

By extending the algorithm in a way that guarantees
completeness, then we can make stronger statements about
the bounds on uncertainty. If we were to find a complete
an algorithm for our problem description, then preimages
could be directly mapped to the above-mentioned bound on
θmax—that is, preimages would depend completely on the
uncertainty of the system.

3) Optimality: In our presentation, we have made no
claims of optimality. Currently we are investigating the
problem of optimal navigation for this robot.

ACKNOWLEDGMENTS

This work is partially supported by a grant from the Uni-
versity of South Carolina, Office of Research and Health
Sciences Research Funding Program.

REFERENCES

[1] E. U. Acar and H. Choset, “Complete sensor-based coveragewith
extended-range detectors: A hierarchical decomposition interms of
critical points and voronoi diagrams,” inProc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001.

[2] S. Akella, W. Huang, K. M. Lynch, and M. T. Mason, “Parts feeding
on a conveyor with a one joint robot,”Algorthmica, vol. 26, no. 3, pp.
313–344, Mar. 2000.

[3] S. Akella and M. Mason, “Posing polygonal objects in the plane by
pushing,” International Journal of Robotics Research, vol. 17, no. 1,
pp. 70–88, Jan. 1998.

[4] R.-P. Berretty, K. Goldberg, M. Overmars, and F. V. der Stappen, “Trap
design for vibratory part feeders,”International Journal of Robotics
Research, vol. 20, no. 11, Nov. 2001.

[5] A. Blum, P. Raghavan, and B. Schieber, “Navigating in unfamiliar
geometric terrain,”SIAM Journal on Computing, vol. 26, no. 1, pp.
110–137, 1997.

[6] M. Blum and D. Kozen, “On the power of the compass (or, why
mazes are easier to search than graphs),” inProc. IEEE Symposium
on Foundations of Computer Science, 1978, pp. 132–142.

[7] “C GAL, Computational Geometry Algorithms Library,”
http://www.cgal.org.

[8] H. Choset and J. Burdick, “Sensor based motion planning: Incremental
construction of the hierarchical generalized Voronoi graph,” Interna-
tional Journal of Robotics Research, vol. 19, no. 2, pp. 126–148, 2000.

[9] ——, “Sensor based motion planning: The hierarchical generalized
Voronoi graph,”International Journal of Robotics Research, vol. 19,
no. 2, pp. 96–125, 2000.

[10] X. Deng, T. Kameda, and C. H. Papadimitriou, “How to learn an
unknown environment I: The rectilinear case,”Journal of the ACM,
vol. 45, no. 2, pp. 215–245, 1998.

[11] B. R. Donald, “On information invariants in robotics,”Artificial
Intelligence, vol. 72, pp. 217–304, 1995. [Online]. Available:
citeseer.ist.psu.edu/article/donald95information.html

[12] M. Erdmann and M. T. Mason, “An exploration of sensorlessmanipu-
lation,” IEEE Transactions on Robotics and Automation, vol. 4, no. 4,
pp. 369–379, Aug. 1988.

[13] M. A. Erdmann, “Using backprojections for fine motion planning with
uncertainty,”International Journal of Robotics Research, vol. 5, no. 1,
pp. 19–45, 1986.

[14] ——, “Understanding action and sensing by designing action-based
sensors,”International Journal of Robotics Research, vol. 14, no. 5,
pp. 483–509, 1995.

[15] L. Erickson, J. Knuth, J. M. O’Kane, and S. M. LaValle, “Proba-
bilistic localization with a blind robot,” inProc. IEEE International
Conference on Robotics and Automation, 2008.

[16] K. Y. Goldberg, “Orienting polygonal parts without sensors,”Algorth-
mica, vol. 10, pp. 201–225, 1993.

[17] I. Kamon and E. Rivlin, “Sensory-based motion planning with global
proofs,” IEEE Transactions on Robotics and Automation, vol. 13,
no. 6, pp. 814–822, Dec. 1997.

[18] I. Kamon, E. Rivlin, and E. Rimon, “Range-sensor based navigation
in three dimensions,” inProc. IEEE International Conference on
Robotics and Automation, 1999.

[19] A. Lazanas and J. C. Latombe, “Landmark-based robot navigation,”
in Proc. National Conference on Artificial Intelligence (AAAI), 1992.

[20] T. Lozano-Ṕerez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,”International Journal of Robotics
Research, vol. 3, no. 1, pp. 3–24, 1984.

[21] V. J. Lumelsky and S. Tiwari, “An algorithm for maze searching with
azimuth input,” inProc. IEEE International Conference on Robotics
and Automation, 1994, pp. 111–116.

[22] M. Moll and M. Erdmann, “Manipulation of pose distributions,”
International Journal of Robotics Research, vol. 21, no. 3, pp. 277–
292, 2002.

[23] C. Ó. Dúnlaing and C. K. Yap, “A retraction method for planning the
motion of a disc,”Journal of Algorithms, vol. 6, pp. 104–111, 1982.

[24] J. M. O’Kane and S. M. LaValle, “Localization with limited sensing,”
IEEE Transactions on Robotics, vol. 23, pp. 704–716, Aug. 2007.

[25] ——, “On comparing the power of robots,”International Journal of
Robotics Research, vol. 27, no. 1, pp. 5–23, Jan. 2008.

[26] N. Roy and S. Thrun, “Coastal navigation with mobile robots,” in
Advances in Neural Processing Systems, 1999, pp. 1043–1049.

[27] B. Tovar, L. Guilamo, and S. M. LaValle, “Gap Navigation Trees:
Minimal representation for visibility-based tasks,” inProc. Workshop
on the Algorithmic Foundations of Robotics, 2004.

[28] A. F. van der Stappen, R.-P. Berretty, K. Goldberg, and M. H.
Overmars, “Geometry and part feeding,” inSensor Based Intelligent
Robots, 2000, pp. 259–281.

[29] D. E. Whitney, “Real robots don’t need jigs,” inProc. IEEE Interna-
tional Conference on Robotics and Automation, 1986.

