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Abstract—We consider a navigation problem for a robot
equipped with only a map, compass, and contact sensor. In
addition to the limitations placed on sensing, we assume that
there exists some bounded uncertainty on rotations of our
robot, due to precision errors from the compass. We present an
algorithm providing guaranteed transitions in the environment
between certain pairs of points. The algorithm chains these
transitions together to form complete navigation plans. The
simplicity of the robot’s design allows us to concentrate on
the nature of the navigation problem, rather than the design
and implementation of our robotic system. We illustrate the
algorithm with an implementation and simulated results.

I. INTRODUCTION

The ability to navigate reliably through a cluttered en-
vironment is a fundamental capability for mobile robots _ . .
. Arobot in a complex environment executing a plan gaedray
Navigation can be a challenging problem because of the d'v@?r algorithm. The robot uses convex corners to reduce its atzertainty
difficulties of finding a path from the robot'’s starting loicat ~ several times throughout the plan.
to its goal, and of executing such a path successfully in
spite of unpredictable actuation and limited sensing. Ggfpi
navigation methods take a decoupled approach, in whighrget, but cannot be guaranteed to reach it at any panticula
path selectiorandpath executiorare handled separately. Thestep because of the possibility of motion errors. If progres
former phase chooses a path for the robot to follow withous made with each motion, however, the robot can guarantee
considering sensing issues, and the latter uses the robdtisbecome arbitrarily close to the target node as the number
sensors to execute the chosen path. The primary limitatiamf motions increases. To determine whether such a jump is
of that approach is that it is unsuitable for situations impossible, we use a formal notion of theeimageof the target
which the robot must choose its path, or portions thereofiertex. The interesting feature of these transitions isttey
specifically to reduce or eliminate uncertainty. tolerate uncertainty well—during their execution, the robo
In this paper, we present a unified approach that considesses not know its own position exactly—but terminates only
uncertainty directly in the process of path selection. Ouafter the robot has re-localized itself in a new place.
approach has parallels to prior work on coastal navigation By finding pairs of environment vertices between which
[26], but applies in aninimalistsetting, considering a robot such high-level transitions can be made, the algorithm $orm
equipped with no sensors other than a compass and a contadlirected graph of high-level transitions, through whith i
sensor. Our study of this very simple robot model is motithen searches for a complete navigation plan.
vated by the obvious desire to understand how navigation The remainder of the paper is structured as follows. In
problems can be solved with simple, inexpensive robots, bfection I, we discuss related research. Section Il givies-a
also by a broader interest in understanding what informatiomal problem statement. Our algorithm appears in Section IV,
is truly required to complete the navigation task. and we present an implementation in Section V. Section VI
Although prior work has considered similar robot modelgoncludes the paper with discussion and a preview of future
for other tasks [24], [25], in this paper, we consider gyork.
much more realistic model for robot motion that includes
substantial errors, and show that many navigation problems I
can still be solved under this model.
The basic intuition of the algorithm is to find a sequence Our planning algorithm is related to the idea of “pre-
of jumps, called high-level transitions, between corners iimage backchaining” introduced by LozanéfBz, Mason
the environment. Each high-level transition is composed efnd Taylor [20]. Their research describes the notion of
repeated back-and-forth motions between the incidentsedge fine-motion strategyas an effective counter to position
of the target vertex. These motions make progress toward thacertainty in compliant motions. Our approach is similar
in that we consider an error cone—that is, a range of
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known state to some larger set of states derived from a knoveonvexif the neighborhood oty in W is convex. Formally,

bound on error. let B(v,¢) denote the open ball with radiuscentered ab.
Erickson, et al, [15] also use this idea of an error coné vertex v is defined as convex if there exists some- 0

to solve a global active localization problem. They deseribsuch thatB (v, )W is a convex set. Informally, notice that

a system whereby actions are carefully chosen to driveonvex vertices are formed whenever the two incident edges

the probability of the robot’s position toward a single cellof a vertex form an angle less than or equaltoadians.

in a coarse discretization of the environment. We are not, The robot is equipped with a compass and a contact sensor,

however, using a probabilistic approach, but rather a worgbut no other sensors. Note specifically that the robot has

case analysis. The other obvious difference is that we am® clock nor any method of odometry, and consequently

solving a navigation problem and thus treat our points asannot measure the distances it moves. Using its compass,

landmarks, indirectly providing additional informatiobaut the robot can orient itself in a desired direction relativeat

the robot’s state. global reference frame, but because of noise in the sensor,
The idea of landmark-based navigation was also propos#uis rotation is subject to potentially large, bounded erro

by Lazanas and Latombe [19]. They suggest the use bfsing its contact sensor, can translate in this directiotil un

landmarks such that while the robot is in proximity of ait reaches the boundary of the environment.

landmark, the robot is able to execute error-free actions. Our model for the motions of this robot has the following

They also assert that the robot is able to recognize whafements:

it has achieved its goal. In contrast, our robot has no sensor1) Thestate spaceX = I is simply the robot’s environ-

which would allow it to do so, nor does our planner depend ment. Because we encapsulate the robot’s use of its

on the robot explicitly sensing that it has achieved its goal compass as part of the actions, we need not record the

state. Our planner, also, never assumes error-free adiions robot's orientation as part of the state.

the robot nor an exact knowledge of any state after leaving 2) The action spaceU € [0,2r) is the set of planar
the initial state. Instead, we use carefully a crafted plaat t angles. To execute an actiane U, the robot orients
ensures the robot has reached its goal at plan completion, in jtself in direction u, subject to the error described
spite of its lack of a goal-detecting sensor. below, then moves forward in this direction until it

Our approach is similar to Erdmann and Mason’s work reaches the environment boundary.
on sensorless manipulation [12]. Our work follows suit with  3) Time proceeds in a series sfages numberedk =
an inspection of the robot’s environment, rather than any 1,2,....In each stage, the robot chooses and completes
engineering of the environment as in [20]. The synthesis of  a single action. At stagk, the robot’s state is denoted
these works results in a planner that uses parts of the enviro xy and its action is denoted,.
ment as landmarks, by describing a careful iterative motion 4) Rotation errors are modeled as interference by an

process to eliminate uncertainty periodically throughthet imaginary adversary calledature In each stage, na-
robot’s execution. By determining landmarks from pleritifu ture chooses aature actiond,, € ©. Nature’s action
environment features, in this case, convex vertices, we/sho space® = [0z, +0maz] iS an interval of possible

that a very simple robot is able to solve problems previously  error values. Note that because we are interested in

considered only through changing the environment in some  worst-case guarantees of success, we need not consider

way or the addition of more sensors. any probabilities ove®. The robot has no knowledge
Our goal of considering simplified sensing and actuation of nature’s choice, nor any way to observe it directly

systems while solving meaningful problems is not new. A or indirectly.

number of different tasks have been addressed with this5) The state transition functionf : X x U x © — X

approach, including manipulation in general [3], [13], [14 describes how the state changes in response to the
[20], part orientation specifically [2], [4], [12], [16], [, robot’s actions, so that the current state combined
[28], navigation [5], [10], [17]-{19], [21], and mapping J[1 with the robot's actionu, and nature’s actiorfy,

[8], [9], [23], [27]. More generally, others have explordtet determines the next statg, , ;:

question of the minimal sensing requirements to complete a

given task [6], [11], [14]. This methodology of minimalist Thir =[x, uk, Ok)- 1)

robotics research can arguably be traced back to Whitney Specifically, f(zx, g, 6)) is defined as the opposite
[29]. The idea of the approach is that it is often useful to endpoint of the longest segment i, starting at
minimize the complexity of a robotic system in order to focus 2, and moving in directionu, + 6. Note that, due
instead on the problem the robot intends to solve. to error, the robot does not know;; exactly. For
convenience, we occasionally abuse this notation to

I1l. PROBLEM STATEMENT ) :
apply several stages’ worth of actions at once, so that

This section formalizes the navigation problem we con-
sider. Tryi = f(@r, Uky Ok U1, Okg1s - oo Uiy Okgei)-

A point robot moves in a closed, bounded, polygonal 2
region W C R? of the plane. The robot has a completeThe robot’s goal, giveV andé,,.., along with initial and
and accurate map of its environment. A vertexof W is  goal statese;,z¢ € W and an accuracy bound, is to
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Fig. 3. Robot executing steps of corner-finding algorithmewi B is
target segment.
Fig. 2. The system of points: A, B, C, S _
Algorithm 1 FINDCORNER(S, A, B, C, ug, Omax)
. 1 x9S
choose a sequence of actioms . .., ux So that 2 for k«— 1ton do
3:  Execute actionu;_q
— 01,... 0 <9 3 .
lva = flar w0 u, x| 3) 4: if kmod 2 =1 then
for all possible nature action sequenégs. . .,6, € ©. That 5 uy < angle(A — B) — Opas
is, we seek actions that drive the robot fram to a point 6 else
close tozxq, regardless of nature’s actions. The accuracy7: uy < angle(A — C) + Opmax

bound § is needed because the robot’s motion error ands: end if
sensor limitations prevent it from knowing that is has remth 9: end for
xc exactly.

IV. ALGORITHM DESCRIPTION the description, we describe in detail the case in which the
This section describes our algorithm to solve the navigaobot's first movement takes it frons' to a pointz; on
tion problem introduced in Section lll. The basic structafe AB. The complete algorithm considers botis and AC as
the algorithm is to form a sequencelifjh-level transitions ~ potential initial segments, making the obvious changebéo t
each composed of several actions. Each high-level transiticorner finding and preimage computation algorithms. After
moves the robot between a pair of environment vertices. THBis first motion, the robot alternates between two actions:
key feature that makes such transitions useful is thatr afte 1) Whenever the robot is oA B, it chooses
each high-level transition completes, the robot has nearly
eliminated its uncertainty about its position. u = angle(A — B) ~ nas- (4)
The algorithm proceeds by identifying pairs of vertices 2) Whenever the robot is 0AC, it chooses
between which such a high-level transition can be made,
then using graph search techniques to assemble a sequence of u = angle(A — C') + Onao- ®)

these high-level transitions into a complete plan. Sedén  The intuition is that, at each step, the robot seeks to move
A describes the basic strategy the robot uses to make its higgward A4 as directly as possible. However, because of the
level transitions, and Section IV-B shows how to determingossib”ity of rotation errors, the robot must aim outward
whether this approach can successfully make a high-levgbm the edge on which it currently rests by an amount
transition between two given vertices. Finally, Section IVequal to the maximum possible magnitude of this error.
C describes how we use this vertex-pair transition test tee Figure 3. The robot repeats the process some specified
build a directed graph, from which the complete plan can bgymber of times, denoted. This process is similar to the
generated. angle adjustment method used by Erickson et al, [15]. Betall

A. Corner finding algorithm appear in Algorithm 1.

Given two distinct environment verticésand A, how can B. Computing preimages
the robot use its unreliable motions to move reliably from Algorithm 1 depends on given vertice$ and S, along
S to A? Let B and C be the predecessor and successorith an initial actionug. To apply this corner-finding algo-
of A in a counterclockwise ordering of the vertices 16f  rithm as part of a successful global plan, however, the robot
respectively. We refer to the segment formedAdwnd B as must find a value forug under which the corner-finding
AB and refer to the segment formed Byand C' as AC. algorithm is guaranteed to succeed. This section presents
To travel from S to A, the robot makes a series of our approach to finding such @, based on the notion of
motions back and forth betweefiB and AC. To simplify  preimages.
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Fig. 4. Showing thatA (41, Tm+2, A) C A(Tm, Tm+1, A).

) ) ] Fig. 5. Determining two critical actions of the system.
The preimageof vertex A from vertex$S is defined as the

set of a_ctions the robot can execute as the first ag]zion Algorithm 2 FIRSTTRANSITIONPREIMAGE(A, B, C, S)
of Algorithm 1, and be guaranteed not to collide with any— T i —0told
obstacle ini¥ except the two segmentdC' and AB. The 1: orf ! H” Ot' 0 W d
following lemma provides the basis for the algorithm we use 2 lorall verlicesv € o
3 u «— angle(v; —S) + (=1)"0maz

to compute preimages. _ .
Lemma 1: Let o denote the measure of angle formediat 4 if Intersects(ray, u), AB) then

with B andC. If a < 7—46,,4., and the robot is guaranteed ° Z?:Adw”s"nsert@)
to make a collision free transition from; to zo, then the . ?jnf :
robot is also guaranteed to make the subsequent transition;s_ en?jnforor

to xzs,...,x, without collision.

Proof: Use induction on the stage indéx As a base
case, note that the conclusion is given for= 1. For the
induction step, assume that the statement is true ferm
to show that it is true fokk = m + 1. Refer to Figure 4. In

9: sortClockwisefrit Actions)
10: for s« 1toj do
fes—1

12:  for all verticesv € W do
critActions|f]+crit Actions|s]

the transition fromz,, to z,, 1, the robot may pass through ** mid — = 2 .

any point in the triangle formed ¥, 2,1, andA. By the 1% if v € triangle, mid + Omaz, mid — Omaz, AB)
inductive hypothesis, therefore, we know that the intecibr then . )

this triangle does not contain any obstacles. Straighticw > deleterit Actions|f])

reasoning about the angles in this arrangement shows thst elsbereak loop

L(Tm, T , T, = m — « — 46, which by supposition ) ) . . )
is(gréaatglrthlharBﬁA)\s a result, the triangle %rmgg by,,, & preimage.adderit Actions|f], crit Actions|s])
Tm+1, andz,, 1o IS NON-degenerate, and,, - is closer to 19: end if

A thanzx,,. This implies that the triangle formed by, 1, 22 en?jn%rfor

ZTm+2, @and A is fully contained within the triangle formed
by x,,, x,n11 and A. Since the latter triangle contains no
obstacles, the former must also contain no obstacles. This
ensures that the transition from,, 1 to .2 is collision
free, completing the proof. m cone intersects some vertexe W. An example appears
The implication of Lemma 1 is that there are only twoin Figure 5. We refer to the actions that generate these
ways in which the robot can have a collision while exeintersections asritical actions
cuting Algorithm 1: colliding with an obstacle on its initia  Critical actions represent directions at which a preimage
translation fromS to 1, or along its second transition from segment might begin or end. Once all the critical actions are
1 10 x5. Our algorithm proceeds by finding intervals ofknown, for each consecutive pair in an ordered clockwise
actions that are guaranteed to safely complete these fiost twequence, a mid-direction is chosen and along that directio
transitions. an error cone is drawn (line 2:14). If the error cone contains
1) From S to z;: This section extensively referencesno vertices ofiV, then the area between those two critical
Algorithm 2. To check for instances of obstacles betweeactions is collision free and the segment formed by the
S and AB, we define the robot’s error cone (lines 2:2-8).intersection of rays along the two critical actions and the
For a given actioru, this cone is defined as the region istarget segment is included in the preimage (line 2:18). If
bounded by rays originating & with directionsu + 6,,,,..  any vertices are found, then collision avoidance cannot be
andu — 0,,,... We sweep the error cone aroufdand note guaranteed and thus the area is excluded from the preimage
all the angles at which the leading or trailing edge of théline 2:15).

22: returnpreimage




§  Algorithm 4 COMPUTEPREIMAGE(A, B, C, S)

1: return FirstTransitionPreimagé( B, C, S) N
SecondTransitionPreimagé(B, C, S)

Fig. 6. Determining right side of preimage along segméaii.

Algorithm 3 SECONDTRANSITIONPREIMAGE(A, B, C, S)

: § «— —(angle(A — B) — 201m42) Fig. 7. A trivial environment depicting two preimages. Thetfismply a
v contiguous set of critical actions. The second, a more coatelicexample

=

2q—B . with a disjoint set of critical actions.

3: for all verticesv € W do

4: p <« intersect(ray{, 0), AB)

5. if dist(4,p) > dist(4, q) then of moving through an environment via any number of high-
6: q<—p level transitions as a graph search. Using one of the usual
7. endif methods for computing paths through graphs, in our case a
8: end for breadth-first search, we search the graph and if a path throug
9: preimage.insertangle(S — A), q) the environment is obtained, the robot has a guaranteetthat i
10: returnpreimage can, using its corner-finding routine and preimages, ttamsi

from its initial state and into its goal state.

2) From x; to xo: This section extensively references V. IMPLEMENTATION AND EXPERIMENTS
Algorithm 3. To ensure that all jumps between the two target e implemented this algorithm in simulation using CGAL
segments are obstacle-free, we must determine a triangfd as the geometry engine modeling our robot and environ-
representing the largest collision-free error cone forjtinegp ~ Ment. The algorithm was implemented in C++ and all anima-
from z; to z». To find the triangle, we determine a vectortions were performed with OpenGL. Throughout all of these
representing the outermost edge of the cone (line 3:1). Waitial experimentsf,,.. is set toZ; radians—an arbitrarily
then draw rays from each vertex i in the opposite Chosen value. We present two non-trivial environments in
direction (line 3:4). The points at which transitions fromthese initial simulations. The environment from Figure & is
S would cause these rays intersect with the target segmdggtilinear environment with 44 vertices. The graph fosthi
result in critical actions. To check these points, howeiter, €nvironment took 3 minutes 16 seconds to complete. The
is only necessary to note which of the critical actions ligon-rectilinear environment in Figure 12 has 62 verticed an
closest toA along AB (lines 3:5-6). This point becomes theits graph was computed in 6 minutes 24 seconds. It is given
farthest end of our preimage segment(s) (line 3:9). to illustrate a more extreme example of the sorts of problems

Algorithm 4 shows how to compute the preimage. Th@ur algorithm can solve.
preimage computed by Algorithm 4 is a set of zero or more Figure 7 is an example of two of these preimages, given for
disjoint sets from which the initial actiony,, is chosen. a simple environment. Each illustration depicts the sigrti
It is safe for the robot to choose any action in any of th@oint of the systent' as the point denoted by the triangular
sets. In our algorithm, we do not suggest an explicit methdgon. The target vertexd, is given as the shaded vertex. The
for choosing someorrect action, uo. That decision would arrows originating atS represent the two ends of a set or
be based on factors which we are not considering, such 86ts of angles forming the preimage of the system. The first
optima”ty, thus any action in a non-empty preimage is glustration is the most simple case, a single set of ciitica

correct v, for our algorithm. actions which the robot can execute to ensure a collisie@-fr
- traversal.
C. Finding a global path The second illustration uses an obstacle to demonstrate a

The two above sections define how we compute a preinglightly more complex example. The preimage now contains
age between two vertices. If that preimage is non-emptwy thelisjoint sets. Contrast Figure 7 with Figure 8. Figure 8
it could be said that there exists a directed edge betwedlustrates a more complicated system. Without error, the
the given verticesS and A. By noting which vertices are most obvious course of action for the robot would be to drive
connected by which directed edges we represent the probletinectly into its goal vertex. This figure illustrates an exae
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Fig. 8. A less obvious preimage in a more realistic environmeit @
preimage containing multiple sets of critical angles, all bfeh are included
in the preimage.

of a system that wouldn’t be solved by that plan, even in a
error-free environment. The second illustration in Fig8re
shows a situation in which multiple critical angles are fdun
due to the arrangement of vertices in the environment. Here,

all of the sets of critical angles should be included in the Fig. 9. A plan generated by our algorithm in a realistic eswinent.
preimage.

Knowing what the preimages between vertices look like,
now allows the robot to make plans that guarantee successﬁlﬂ. has the effect of al - far f bstacl
traversal through its environment. For the experiments in- IS has the efiect of always aiming as far from obstacles
volving the simulated robot, we begin the robot with certaif> the robot can.
knowledge of its position. From that point, we simulate Figure 10 is given as the analogue to Figure 9. That is,
its use of a map, contact sensor, and compass to alld the graph of nodes and edges, the nodes representing
it to execute its corner-finding algorithm. Using the grapfhe initial and goal vertices in, Figure 9 and Figure 10 are
determined previously, the robot is able to make plans, i.60nnected with two edges. Contrast these figures with Figure
search the graph, to find high-level transitions which carrl. Again, the initial state is marked by the triangle icdrg t
it from 1nizia1 10 ZGoar. It IS important to note that for the goal state is marked by the shading, but these two vertices
simulation to be accurate, we do not ever reset the robo@ly have one edge between them. It is, in fact, true that
position during any portion of its corner-finding algorithm there is no way for the robot to get back into that portion
nor during any point during or after high-level transitionsOf the environment once it exits. This missing edge is only
Uncertainty is allowed to accumulate naturally during eacRartially a consequence of error, but is also weakness of
movement in a transition, using a pseudo-random number @ir algorithm’s dependence on its corner-finding routine.
generate each;,. Each time the robot makes a decision torhe corner-finding routine must have some “line of sight”
execute some action, it is offset by nature a random amouggtween the convex vertex describing its initial state amel o
bounded by+6,,,.,. The number of iterations of the corner-of the segments forming the convex vertex of its target state
finding routine,n, is set t020. There is a small direct path between a convex vertex on the

Figure 9 is a plan the simulated robot devised to transitioRottom right of the environment and the segment forming the
from the initial state, again represented by the triangllanitia| convex vertex of that area. The path is, however, too
icon, to the goal state, the shaded vertex. The arrow hea®f@all to allow our algorithm to generate actions guarantgei
which occur at each of the convex vertices into which thé successful traversal.
robot uses its corner-finding algorithm to drive itself are In spite of limitation illustrated by Figure 10, our al-
depicting the repeated transition back-and-forth betwten gorithm does not need to be restricted to rectilinear en-
two segmentsi B and AC. Our robot has no sensor to detectvironments. Figures 12 and 13 show an environment with
goal achievement, so it is forced to executéterations of unusual features. The two plans devised by the robot allow
the corner-finding routine. guaranteed traversals between some of the more extreme

The arrows in this figure are drawn along the actual patifeatures. We did include in this environment features which
the robot follows, offset by. Notice that the initial transition would provide limitations based both on the uncertainty
from somex, to x; isn't as close to the goal vertex as itinvolved and the limitations of the corner-finding routine.
could be. Since the preimage is a set of angles and possilpte that due to the length of the path traversing from the
multiple sets of disjoint angles, the robot has a decision tieft side of the environment to the right, that with,... = 5
make, “along which direction should | translate?” Becausthere is no guaranteed safe path. There is, also, a portion
our algorithm is concerned only with feasibility, ratheath of the map for which the corner-finding routine fails—it
optimality, we decided the robot should aim for the centeisn't possible to get into nor out of the center section of
angle of the largest contiguous set of angle in the preimagghe environment.



Fig. 10. This figure illustrates the second edge betweeandz depicted
andz; andzg from Figure 9.

Fig. 11. A plan fromz; to =, with no way for the robot to return to its
initial state.

Fig. 12. A full plan devised by the algorithm to navigate a fmeatilinear
environment.

Fig. 13. This figure illustrates a very extreme problem, whighalgorithm
was able to successfully determine a plan to navigate.

VI. DISCUSSION AND CONCLUSION

In this paper we presented a strategy whereby a robot
having only a map, contact sensor, and compass havigates
between vertices in a planar environment. We presented a
corner-finding routine and using an analysis of that roytine
were able to determine all critical actions for the robot—
critical actions defined as indicators of a possible calhsi
with some part of its environment. By determining which
of these critical actions, when paired in a clockwise order,
give a guaranteed set of angles along which such a collision
does not occur, we were able to compute a preimage. The
preimage between two vertices in the environment was then
used to map the vertices of the environment to the nodes of a
graph and the presence of a non-empty preimage as an edge
between those nodes. The complete plan is generated by a
graph search on this graph.

A. Future Work

1) Bounds on Uncertainty: In Section V we arbitrarily
choose a value fob,,,, for our experiments. The value
of 0,,.. has a great deal of impact on the results of each
preimage calculation; a preimage may be empty for one value
of 0., and not for another. The preimage’s dependence on
0.nq: Means that for any given system, B, C, andS, there
are bounds o, itself which determine the largest value
for which a non-empty preimage exists. If this value was
known for each vertex pair in the environment, we could
then calculate the large8t, ... for which a given instance of
the navigation problem can be solved.

This line of reasoning could also lead to a probabilistic
model of the preimage. Larger values 6f,,, could be
used and would lead to changes in probabilities associated,
then, with the edges of the graph. In this case, it would
be necessary to consider the area of each error cone as it
grows with increased uncertainty. By calculating how much
of this error cone’s area is taken up by obstacles it would
be possible to determine the probability of a collision with
its environment during a transition. This, of course, asssim
that each¥ € © has an equally likely chance to occur.



2) Completeness. Though our current corner-finding rou- [8] H. Choset and J. Burdick, “Sensor based motion planningremental

tine is robust enough to navigate realistic environmentk wi
guarantees of success, it is not complete. The most obvioqgl
example of this incompleteness is the corner-finding regin
dependence on a large enough direct path from any giv
vertex to one of the segments forming the convex vert
into which the robot transitions. A complete algorithm waebul

need to, at least, overcome this problem.

One approach would be to note that we treat the entire
environment as obstacle, except the two segments for whigiz]
we’re aiming andA. Instead, every edge of the environment
could function as target segments and rather than aiming g,
avoid them, we could use them to reach places previously

unattainable.

we attempt to drive as directly intd from any givenzy

as 0,,., allows. Its easy to imagine a situation in which
an obstacle lies close enough tbalong one of its target [16]
segments to cause a collision. Though our overall algorithrrl17
isn't so sensitive to this, as we can choose which segment
is our initial, there are situations in which this would caus

the preimage to be empty.

By extending the algorithm in a way that guarantees
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