
Guaranteed Coverage with a Blind Unreliable Robot

Jeremy S. Lewis,1 Daniel A. Feshbach,2 and Jason M. O’Kane1

Abstract— We consider the problem of coverage planning
for a particular type of very simple mobile robot. The robot
must be able to translate in a commanded direction (specified
in a global reference frame), with bounded error on the
motion direction, until reaching the environment boundary.
The objective, for a given environment map, is to generate
a sequence of motions that is guaranteed to cover as large a
portion of that environment as possible, in spite of the severe
limits on the robot’s sensing and actuation abilities.

We show how to model the knowledge available to this kind
of robot about its own position within the environment, show
how to compute the region whose coverage can be guaranteed
for a given plan, and characterize regions whose coverage
cannot be guaranteed by any plan. We also describe a heuristic
algorithm that generates coverage plans for this robot, based
on a search across a specially-constructed graph. Simulation
results demonstrate the effectiveness of the approach.

I. INTRODUCTION

The problem of robotic coverage planning —that is, of

designing strategies for robots that ensure that they pass

near to every point in the environment— has generated

sustained interest from the research community [15], [26].

Solutions to such problems have applications in environmen-

tal monitoring [47], cleaning and lawncare [52], humanitar-

ian demining [48], and painting [6]. Most of the existing

coverage techniques rely on precise control of the robot’s

motion. For example, techniques based on the boustrophedon

decomposition [16], [50] require the robot to be able to travel

accurately in straight lines along the coverage passes, and

also to be able to transit precisely between the passes. The

primary alternative, realized with great success in the original

Roomba [56], is to move with some degree of randomness. In

that case, one expects the probability of complete coverage

to increase as the robot continues its movement, though any

guarantees are only probabilistic.

In contrast, this paper considers a coverage problem in

which a robot that is very simple —with no feedback sensing,

and with highly error-prone actuation— can nonetheless

guarantee to cover a certain portion of its environment.

Specifically, we consider a robot model with only two

movement primitives. First, the robot can rotate in place

to face a given direction, though this rotation is subject

to some unknown bounded disturbance. Second, the robot

can move forward from its current position until reaching

the environment boundary. The robot cannot measure the

distance traveled (it has no odometer nor clock) nor does it

1J. S. Lewis and J. M. O’Kane are with the Department of Computer
Science and Engineering, University of South Carolina, Columbia, South
Carolina, USA.

2D. A. Feshbach is with the Department of Computer Science at
Haverford College, Haverford, Pennsylvania, USA.

Fig. 1. A maze-like environment. Our algorithm generates plans that are
guaranteed to cover particular regions of the environment. Results from
several runs of the algorithm, showing the region guaranteed to be covered
by the plans for error bounds ranging from 0.5 degrees to 4.5 degrees of
error on each motion, are shown in corresponding colors: 0.5◦, 1◦,
1.5◦, 2◦, 2.5◦, 3◦, 3.5◦, 4◦, and 4.5◦. Layers are stacked
by increasing error because the lower (more precise) layers cover everything
the layers above them cover. For example, very little red is visible because
very little area covered at 0.5 degrees is not also covered at 1 degree.

have any other sensors to provide feedback about its motion

through the world. Our interest in such simple robot models

derives both from a practical desire to limit the complexity

and expense of robots deployed for such tasks, but also

from a desire to understand the underlying information

requirements of important robotic tasks.

We describe an algorithm that computes a sequence of

motions for this robot to attempt to cover as much of the

environment as possible before returning to its start state. The

algorithm must confront the dual challenges of navigation

and coverage. Navigation with this robot model can be

challenging because the available sensor data is so limited,

the robot may easily lose track of its own position; coverage

with this robot model can be challenging because if the robot

does not know its own position with relatively high accuracy,

it cannot be certain of which parts of the environment are

being covered.

Figure 1 shows an example of our algorithm’s output,

in which the differently-colored shaded regions illustrate

regions that can be covered by this approach for varying

bounds on the amount of rotational error. The idea of the al-

gorithm is to construct a directed graph. Vertices of the graph

represent contiguous sets of possible states, represented as

line segments along the boundary, in which the robot might

know its true state lies. Edges of the graph correspond to

achievable transitions between these segments, labeled with

the region that is guaranteed to be covered by that transition.

After constructing this graph, the planning algorithm is then

a process of identifying edges that (a) would be beneficial

to cross because they would cover some new portion of the

environment, (b) can be reached from the starting position,

and (c) can be returned from.

After a brief review of related work in Section II, this

paper makes several new contributions. (i) We introduce,

in Section III, a new coverage planning problem, suitable

for a robot equipped with only an error-prone compass, a

contact sensor, and a map of the environment. (ii) We show,

in Section IV, how to model the incomplete knowledge

that this kind of robot has about its position within the

environment. (iii) We characterize, in Section V, the regions

whose coverage can be guaranteed for a given plan. We

also characterize regions that cannot be covered by any plan.

(iv) We describe, in Section VI, an algorithm that generates

state space graphs and searches them to find coverage plans.

(v) We present, in Section VII, simulation results demonstrat-

ing the effectiveness of the approach. Concluding discussion

appears in Section VIII.

II. RELATED WORK

A. Coverage

The various flavors of coverage problems have been stud-

ied so extensively that a full review is impossible here.

Recent research has studied the role of environment de-

composition [1], [25], [30], [59], particularly on grids [2],

[23], [29], [51]; coordination of multiple robots [7], [33],

[34], [36], [49], [50], [61]; and different path types such as

spirals [12], [28] or Dubins curves [34], [39], [53], [58],

[60]. Alam, Bobadilla, and Shell [5] consider probabilistic

coverage of grid cells using weighted random movement

with a very similar minimal robot. Our work is unique in

guaranteeing coverage of particular regions using a robot

with such limited sensing and actuation capacities.

We refer the reader to the surveys by Choset [15] and by

Galceran and Carreras [26] for a more complete picture.

B. Minimalism in planning

This work draws inspiration from the significant body of

prior work on minimalism in robotics. This work, which

builds from pioneering work by Erdmann, Mason, and Gold-

berg, and others [19], [20], [27], [43], has been applied to

problems in manipulation [3], [4], [8], [21], [41], [44], [57],

navigation [9], [18], [31], [32], [37], [42], and mapping [13],

[14], [35], [45], [55]. The robust coverage work of Bretl and

Hutchinson [10] might also be viewed as minimalist, as it

forms plans guaranteed to succeed despite motion accuracy

limitations. Das, Becker, and Bretl likewise considered cov-

erage problems for robots with uncertainty [17].

Perhaps most closely related is prior work that considers

localization [22], [46] and navigation [40] problems for robot

models very similar to the one we use here. We build upon

C

W

uk + θk

xk

xk+1

Fig. 2. An illustration of the basic notation. At stage k, the robot moves in
direction uk+θk , from xk to xk+1, covering a portion of the environment
W along the way. Both xk and xk−1 are points along the boundary of C.
However, the robot does not necessarily know xk , and certainly does not
know θk .

those results to show how coverage planning problems can

also be solved under this robot model.

III. PROBLEM STATEMENT

This section formalizes our robot model and the coverage

problem we address in the paper.

A. Robot model

A disk-shaped robot with radius ρ moves through a known,

bounded, planar, polygonal environment W ⊆ R
2. Using the

center of the robot as its reference point, the configuration

space C is the set of positions within W with distance at

least ρ from the boundary of the environment:

C = {x ∈W | B(x, ρ) ⊂W}.

We follow the usual convention by writing B(p, r) to denote

the open ball in R
2 with radius r, centered at p. Note that,

though W has a polygonal boundary, the boundary of C may

include both line segments and circular arcs. See Figure 2.

Informally, the robot’s goal is ‘drive over’ —that is, to move

within distance at most ρ of— as much of W as possible.

We model time as a series of discrete stages k =
1, 2, . . . ,K. The robot’s state at stage k is denoted xk ∈
C. In each stage, the robot selects a movement direction

uk ∈ [0, 2π]/∼, in which ∼ is an equivalence relation that

identifies 0 with 2π. This motion is perturbed by an unknown

error θk ∈ [−θmax, θmax], in which θmax is a known bound

on the accuracy of the robot’s angular orientation. Because

we are interested in guarantees of coverage, we do not

assume that any probability model applies to the selection

of each θk; the disturbances may be selected at random, or

adversarially, or through any other mechanism.

From a given state xk, the robot moves in direction uk +
θk. The motion continues until the edge of the robot’s body

reaches the boundary of W (or, equivalently, until the center

of the robot reaches the boundary of C.) The state resulting

from from this motion is denoted xk+1, and we denote this

state transition function by f , so that

xk+1 = f(xk, uk, θk).

The starting state x1 is assumed to be known.

This robot model could be implemented, for example, with

a robot equipped with a noisy compass and a contact sensor,

but no way of measuring the distances it travels. An unusual

feature of the model is that, because there is no meaningful

feedback from any sensors, the robot’s strategy can be fully

described as a sequence of motion directions. There is no

need to consider any branching or looping in plans executed

by this robot.

B. Minimalist coverage

We can now consider the coverage problem for this type

of robot.

Definition 1: A point p ∈ W is covered by a given

sequence of actions u1, . . . , uK and disturbances θ1, . . . , θK
if there exist k ∈ {1, . . . ,K} and α ∈ [0, 1] such that

||p− (αxk + (1− α)xk+1)|| ≤ ρ.
Note that Definition 1 refers to a specific sequence of

disturbances, and recall that the specific disturbance values

are unknown to the robot. Thus, we are interested, as the

next definition clarifies, in points that we can guarantee

are covered, regardless of the specific disturbances in any

particular execution.

Definition 2: A point p ∈ W is certainly covered by a

given sequence of actions u1, . . . , uK if p is covered by that

action sequence under any disturbance sequence θ1, . . . , θK .

Definition 3: The certainly covered region, denoted

CCR(u1, . . . , uK), is the set of points in W that are certainly

covered by u1, . . . , uK .

The goal is to select actions that certainly cover some

desired fraction of the environment. Specifically, the problem

is:

Given an environment W , a start state x1, a

robot radius ρ, and the error bound θmax, select

a sequence of actions u1, . . . , uK to maximize

Area(CCR(u1, . . . , uK))/Area(W).

In the remainder of the paper, we describe a specific heuristic

approach to this algorithmic problem.

IV. SAFE ACTIONS AND POSSIBLE STATES

Because of the unknown disturbances, as the robot moves

through W , it will in general be uncertain of its position.

In our approach, we reason about this uncertainty using a

worst-case model. That is, we keep track of which states are

possible, based on the history, and which are not.

Specifically, we say that a state x ∈ C is a consistent with

a series of actions u1, . . . , uk if there exists some sequence

of disturbances θ1, . . . , θk, under which the robot’s final

position xk is equal to x. In our approach, we follow our

own precedent [40] by considering only plans for which

the set of states consistent with the action history is a line

segment along the boundary of C. We write pkqk to denote

this segment of possible states at stage k. For consistency,

we use the naming convention that a positive rotation of

the vector qk − pk about pk is into W . When the robot’s

position happens to be known with certainty (as happens, for

qk+1

pk+1u
+
θ m

a
x

u−
θmax

qk

pk

qk+1

u
+
θ m

a
x

u−
θmax

qk

pk

pk+1

Fig. 3. [left] An example of a safe action. [right] This action is unsafe,
because pk+1 and qk+1 lie on different edges of the boundary.

example, before the first action is executed) then pk = qk
and the segment is a single point.

We say that an action uk is safe from a segment pkqk
along the boundary of C if the resulting set pk+1qk+1 of

possible states for stage k + 1 is likewise a segment along

the boundary of C. See Figure 3.

Given a segment of possible states pkqk and the next action

uk, we can use the following procedure to simultaneously

test whether uk is safe from pkqk and, if so, to compute

pk+1qk+1. First, we define a function ShootRay(x, u) which

returns the first point of intersection with δC from a ray

emanating from the point x in the direction u. This is

a standard operation from computational geometry [11],

[54]. To account for all possible disturbances, pk+1qk+1 is

calculated from pkqk as follows:

pk+1 = ShootRay(qk, u− θmax)

qk+1 = ShootRay(pk, u+ θmax)

Next, we test to ensure that the area through which a

translating robot may attempt to pass between pkqk and

pk+1qk+1 is fully within C. A quadrilateral is formed by

pkqk+1pk+1qk and each edge is checked against δC to ensure

no intersections exist. It is also necessary to ensure the

quadrilateral contains no vertices of C to ensure no holes

are fully contained within. If the quadrilateral is indeed

empty, and if pk+1 and qk+1 lie on the same segment of

the boundary of C, then uk is safe, and we return pk+1qk+1.

Otherwise, we declare uk unsafe. (A similar algorithm orig-

inally appeared in the context of the navigation problem for

a similar robot model [40].)

V. CHARACTERIZING THE CERTAINLY COVERED REGION

Before considering the broader question of choosing se-

quences of actions to cover the environment, we must first

characterize how the CCR changes as the robot moves.

Specifically, in this section, we present two results, one

positive and one negative. First, in Section V-A, we show

how to compute the set of states that are certainly covered a

given motion of the robot. Then, in Section V-B, we state a

condition under which certain points can never be certainly

covered by any action sequence.

qk+1

pk+1

pk

qk

u−
θma

x

u
+
θ m

ax

ρ

Fig. 4. Computing the CCR for a single safe action, as described in
Theorem 1.

A. The region covered by a single movement

Suppose that, at stage k, we know that the robot’s state

xk lies within some segment pkqk along the boundary of C.

From there the robot executes action uk. What can we say

about the points, if any, that are certainly covered by this

motion?

Definition 2 would appear to require us to reason about

each of the infinitely many possible disturbances θk to

establish that a point is certainly covered. Fortunately, we

can show that it is sufficient to consider only the extremal

disturbances −θmax and +θmax instead.

Before stating the result, we need the following prelimi-

nary definition.

Definition 4: Given two points p and p′ and a radius r the

stadium between p and p′ with radius r, denoted Stad(p, q, r)
is the locus of points within distance r of any point along

the segment pp′.

Visually, the stadium between p and q is a rectangle bisected

by the segment pq, capped by two semicircles of radius r
centered at p and q ().

Now we can describe the region covered by a single

motion.

Theorem 1: Suppose the robot has executed a sequence

of safe actions u1, . . . , uk−1. Let segment pkqk ⊂ C denote

the segment of possible states at stage k. Consider a safe

action uk, and let pk+1qk+1 denote the segment of possible

states resulting from this motion. Then

CCR(u1, . . . , uk) = CCR(u1, . . . , uk−1)

∪ (Stad(pk, p
′
k, ρ) ∩ Stad(qk, q

′
k, ρ)) . (1)

Proof: First, note that for any p, if p ∈
CCR(u1, . . . , uk−1), then p ∈ CCR(u1, . . . , uk). Thus, we

need only to consider the points certainly covered by the

motion from xk to xk+1. Let R denote this set. We must

show that R = Stad(pk, p
′
k, ρ) ∩ Stad(qk, q

′
k, ρ).

(⊆) Let p ∈ R. Note that, since p is certainly covered

by this motion, it must be specifically covered in

the case where xk = pk and θk = θmax. Thus,

p ∈ Stad(pk, p
′
k, ρ). A similar argument shows that

p ∈ Stad(qk, q
′
k, ρ).

(⊇) Let p ∈ Stad(pk, p
′
k, ρ) ∩ Stad(qk, q

′
k, ρ). We need to

show that p ∈ R, which means that for every possible

starting point xk ∈ pkqk for the motion, and every

possible disturbance θk ∈ [−θmax,+θmax], the robot

passes within distance ρ of p. The set of locations

from which this occurs, for a particular xk and θk,

is Stad(xk, f(xk, uk, θk), ρ). Because this must hold

for all xk and θk, we know that if

p ∈
⋂

xk

⋂

θk

Stad(xk, f(xk, uk, θk), ρ),

then p ∈ R. However, this intersection is fully deter-

mined by the two extremal stadia Stad(pk, p
′
k, ρ) and

Stad(qk, q
′
k, ρ), which are known by construction to

contain p. Thus p is also in R.

Theorem 1 leads directly to an algorithm for computing the

CCR achieved by any motion sequence: Start from the empty

set, and iterate over the actions. At each step, compute the

union of the previously covered region with the intersection

of stadia described in Equation 1.

B. Regions that cannot be covered

We can use a similar idea to the proof of Theorem 1 to

rule out certain states from being certainly covered by any

sequence of motions.

Theorem 2: Given a point p ∈ W , an error bound θmax,

and a robot radius ρ, let q denote the nearest point on the

boundary of W to p. If

||p− q|| > ρ
tan θmax + 1

tan θmax
, (2)

then p cannot be certainly covered by any motion sequence.

Proof: Theorem 1 characterizes the region certainly

covered at each step as the intersection of two stadia. This

intersection is largest when the robot begins at a known

position (that is, when pk = qk) and extends the furthest

into the interior of W when the motion direction uk is

perpendicular to the environment boundary. Thus, if p can be

certainly covered at all, it can be certainly covered starting

at xk and moving directly toward p. It is a simple matter

of trigonometry to determine that the most distant point this

region has distance ρ tan θmax+1
tan θmax

from q. See Figure 5.

The intuition is that by imagining the robot at the point

nearest to p, with no position uncertainty, we construct the

best-case opportunity to include p in the CCR. If p cannot

be certainly covered under those ideal conditions, then there

is no hope to certainly cover p.

2θmax

q

p

xk

ρ

an
gl
e(
p
−
q)
+
θ m

ax

ang
le(p
− q)−

θma
x

Fig. 5. Point p is too far from the boundary to be certainly covered by
any plan under our robot model. See Theorem 2.

VI. ALGORITHM DESCRIPTION

In this section, we describe a method to maximize

Area(CCR(u1, . . . , uK)). The method takes into account the

uncertain nature of the robot model’s motions and constructs

a plan which covers the environment while maintaining a set

of states known to contain the robot’s true state.

The approach is divided into two parts. The first generates

the graph, generating parameter-described layers of line

segments on the boundary of W as nodes, and then adding

edges where there are safe actions between segments. The

second generates the actual action sequence, by determining

which edges in this graph may be traversed in a cycle

(Algorithm 1).

A. Generating the Graph

Our method begins by generating line segments to be

graph nodes, by repeatedly calling a procedure ADD-

LAYER(C, G, l, omax). Each call creates a ‘layer’ (set) of

segments all of a given length l to add as nodes of G. The

segments may overlap, and are placed evenly along each

sufficiently long (at least as long as l) face of C, with the

offset between segment starts (and thus amount of overlap)

based on parameter omax. The specific choices of l and omax

are tunable parameters. The face is filled from one end to the

other with segments of length l, start points spaced o ≤ omax

apart, until the final segment ends at the endpoint of the

face. The idea of how o is calculated is to fill the face with

segments omax apart until one includes the end of the face,

then move the segments closer together (preserving uniform

spacing) until the final segment ends exactly on the end of

the face. Specifically, if lf is the length of the face, then

o =
lf−l

⌈(lf−l)/omax⌉
. See Figure 6. ADDLAYER(C, G, l, omax) is

o ≤ omax l

Fig. 6. Placing a layer of segments, along one face of C. The segments
are shown vertically offset from the face, and drawn in different colors, to
distinguish them visually and show their overlap. Each vertex in the graph
corresponds to one such segment.

called several times with different values for l and omax to

build up several distinct layers of segments.

After the segments are generated and added as nodes to the

graph, edges are found by looping through ordered pairs of

nodes and adding them where appropriate. A directed edge

exists between nodes ni and nj if there exists an action uij

under which the robot can be guaranteed a safe translation

from ni to nj . Each edge is labeled with this uij , and also

with the region the action certainly covers as calculated with

Theorem 1.

B. Building cycles in the graph

After the graph is generated, we have a collection of

edges, each labeled with a region of the environment that

would be covered if the robot were to cross that edge. It

might tempting to simply find edges that are reachable from

the start position and greedily attempt to cross them. That

approach is problematic because the graph is unlikely to be

strongly connected; selecting a path that crosses one edge,

without regard for the forward connectivity of the resulting

node to other locations, may leave the robot stuck in a portion

of the graph from which it cannot escape to cover elsewhere.

As a result, our approach to generating the coverage

plans is based on generating a series of cyclical ‘forays’

from a node containing the start position, out through the

environment to cover some new territory, and then back

to the start node. To begin, we first calculate the shortest

paths between all pairs of nodes, using the Floyd-Warshall

algorithm [24]. The resulting shortest path matrix has enough

information to efficiently determine, for any ordered pair of

nodes the graph, whether a directed path exists from the first

node to the second node.

We then iterate over the edges of the graph, maintaining

a sequence of actions u1, . . . , uk planned to execute, along

with CCR(u1, . . . , uk). For each each e, we check three

properties:

1) Is the source node of e reachable from the start node?

2) Is e labeled with a non-empty certainly covered region,

which is not already contained in the current CCR?

3) Is the start node reachable from the end node of e?

If all three properties hold, then e represents an opportunity

to cover some new portion of the environment. In that case,

we generate (using the Floyd-Warshall matrix to determine

which states to visit) actions that transit from the start node,

across e, and back to the start. For each of the edges crossed

by these actions, we include the corresponding certainly

covered region in the overall CCR, and remove them from

Algorithm 1 COMPUTECOVERAGEEDGES(pq,G)

1: P ← ALLPAIRSSHORTESTPATH(G)
2: for all edges ei ∈ G do

3: if P (pq, source[ei]) 6= ∅
and P (target[e], pq) 6= ∅
and CCR[ei]− CCR(u1, . . . , uk) 6= ∅ then

4: Generate actions that travel to e, cross it, and return

to the start. Update CCR(u1, . . . , uk) for each of

these actions.

5: end if

6: end for

Fig. 7. A simple environment with two large holes. The robot began in
the lower left corner and became stuck there as θmax reached 3 degrees
().

consideration in the outer loop. (Note that some of these

edges may be labeled with empty coverage regions, for

example because they correspond to segments of uncertainty

that are too large. This phenomenon explains why the final

CCR produced by the algorithm need not be a connected

set.)

After each edge has been considered, the planning process

terminates. The results is a sequence of actions —the cover-

age plan itself— that crosses every edge that can be crossed

without becoming trapped away from the start vertex, along

with the CCR corresponding to that coverage plan.

VII. SIMULATION RESULTS

We implemented our algorithm using C++. We used robot

with ρ = 0.3, and the layers of segments specified in Table I

as our graph nodes. We selected four environments. Figure 1

is a maze-like environment to represent a building or office

space. Figure 7 is a simple environment with two large holes

separating the convex vertices of the environment. Figure 8

is a large, mostly empty environment to illustrate points far

from any edge which the robot cannot be guaranteed to cover,

unless θmax is very small. Finally, Figure 9 is a more natural

cave-like environment.

To characterize the performance of our algorithm as error

grows, we conducted several coverage tests in each environ-

ment, increasing θmax in each iteration. In all executions, the

robot’s initial position is along the longest possible cycle in

the graph. Figures 1, 7, 8, and 9 show the results as color-

Fig. 8. An environment with a relatively large open middle. As θmax

increased beyond 0.5 degrees (), the ability to cover large sections of that
area was lost.

TABLE I

LAYERS OF SEGMENTS USED IN SIMULATION

l (length) omax (offset)

3 2
2 1

1.5 1
1 0.5

0.5 0.375
0.25 0.1

coded “heat maps” to illustrate the regions that the plans

guarantee to cover, using differing colors for each value of

θmax: 0.5◦, 1◦, 1.5◦, 2◦, 2.5◦, 3◦, 3.5◦,

4◦, and 4.5◦. The colors of the heat map are stacked

in order of increasing θmax because the lower layers cover

all the area of all layers above them. Figure 10 shows the

area of the certainly covered region, relative to the areas of

the environment, for each of these tests. In all cases except

the environment in Figure 8, the algorithm achieved close to

100% coverage through θmax = 1 degrees.

VIII. CONCLUSION

This paper introduced a minimalist coverage problem for

an extremely simple class of mobile robots, and showed that

even a robot with only an unreliable compass and a contact

sensor can still be used to generate plans that are certain to

cover significant portions of its environments, in spite of the

uncertainty inherent in its motions. However, we have also

left a number of stones unturned.

It may be helpful to augment how the graph represents

the state space. In particular, it seems likely to be beneficial

to include the vertex nodes and the corner-finding subplans

Fig. 9. A more natural cave-like environment. As error grew, the robot
retained the ability to navigate around most of the environment until θmax

reached 4 degrees (), but lost the ability to cover the more spacious open
areas past 2 degrees (). This environment demonstrates the method’s ability
to deal with non-uniform features.

Maze: Figure 1
Simple: Figure 7
Open: Figure 8
Cave: Figure 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
n
v
ir
on

m
en
t
R
at
io

C
ov
er
ed

θmax In Degrees

Fig. 10. A plot comparing the ratio of each environment the algorithm can
guarantee to cover as accuracy degrades when θmax is allowed to grow.

from our earlier work on navigation [40]. Including these el-

ements in the graph will provide the robot with opportunities

to re-localize itself at certain points of the environment. This

decrease in position uncertainty may generate opportunities

to cover some regions that cannot be covered by the current

method.

Of perhaps the greatest importance is to improve the mech-

anism by which the graph is generated. The current approach

requires parameter tuning to find segment layers that work

well for an environment, and leaves open the possibility that

adding more particular segments could increase coverage,

either by making edges which cover additional area or by

enabling more cyclical navigation. Instead, we may be able

to generate the graph in a manner aware of what it can cover

and what it can navigate to and from. If we can identify

an uncovered but coverable (as per Section V-B) region,

generate a pair of segments with a safe action that would

certainly cover it, and navigate to and from that edge adding

new graph nodes as necessary, then we could generate the

entire graph by iterating over the uncovered but coverable

regions.

Finally, we focused in this paper solely on the feasibility

of coverage plans for our robot model, to the exclusion of

optimality concerns. One approach to generating short cover-

age paths would be to model the problem as a rural Chinese

postman problem, a known NP-hard problem, in which the

objective is to find the shortest path that crosses each of a

selection of edges in a weighted directed graph [38].

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grants No. 1526862 and 1659514.

REFERENCES

[1] E. U. Acar and H. Choset, “Sensor-based coverage of unknown
environments: Incremental construction of morse decompositions,”
The International Journal of Robotics Research, vol. 21, no. 4, pp.
345–366, April 2002.

[2] N. Agmon et al., “The giving tree: constructing trees for efficient
offline and online multi-robot coverage,” Annals of Mathematics and

AI, vol. 52(2-4), pp. 143–168, 2008.

[3] S. Akella, W. Huang, K. M. Lynch, and M. T. Mason, “Parts feeding
on a conveyor with a one joint robot,” Algorthmica, vol. 26, no. 3, pp.
313–344, Mar. 2000.

[4] S. Akella and M. Mason, “Posing polygonal objects in the plane by
pushing,” International Journal of Robotics Research, vol. 17, no. 1,
pp. 70–88, Jan. 1998.

[5] T. Alam, L. Bobadilla, and D. A. Shell, “Minimalist robot navigation
and coverage using a dynamical system approach,” in 2017 First IEEE

International Conference on Robotic Computing (IRC), April 2017, pp.
249–256.

[6] P. N. Atkar, D. C. Conner, A. Greenfield, H. Choset, and A. A. Rizzi,
“Uniform coverage of simple surfaces embedded in R

3 for auto-
body painting,” in Proc. Workshop on the Algorithmic Foundations

of Robotics, 2004.

[7] G. S. C. Avellar, G. A. S. Pereira, L. C. A. Pimenta, and P. Iscold,
“Multi-UAV Routing for Area Coverage and Remote Sensing with
Minimum Time,” Sensors, vol. 15(11), p. 27783, 2015.

[8] R.-P. Berretty, K. Goldberg, M. Overmars, and F. V. der Stappen, “Trap
design for vibratory part feeders,” International Journal of Robotics

Research, vol. 20, no. 11, Nov. 2001.

[9] A. Blum, P. Raghavan, and B. Schieber, “Navigating in unfamiliar
geometric terrain,” SIAM Journal on Computing, vol. 26, no. 1, pp.
110–137, 1997.

[10] T. Bretl and S. Hutchinson, “Robust coverage by a mobile robot
of a planar workspace,” in Proc. IEEE International Conference on

Robotics and Automation, 2013.

[11] B. Chazelle and L. G. Guibas, “Visibility and intersection problems
in plane geometry,” Discrete and Computational Geometry, vol. 4, pp.
551–589, 1989.

[12] Y.-H. Choi, T.-K. Lee, S.-H. Baek, and S.-Y. Oh, “Online complete
coverage path planning for mobile robots based on linked spiral
paths using constrained inverse distance transform,” in Proc. IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2009.

[13] H. Choset and J. Burdick, “Sensor based motion planning: Incremental
construction of the hierarchical generalized Voronoi graph,” Interna-

tional Journal of Robotics Research, vol. 19, no. 2, pp. 126–148, 2000.

[14] ——, “Sensor based motion planning: The hierarchical generalized
Voronoi graph,” International Journal of Robotics Research, vol. 19,
no. 2, pp. 96–125, 2000.

[15] H. Choset, “Coverage for robotics - a survey of recent results,” Annals

of Mathematics and Artificial Intelligence, vol. 31, pp. 113–126, 2001.

[16] H. Choset and P. Pignon, “Coverage path planning: The boustrophe-
don decomposition,” in Proc. International Conference on Field and

Service Robotics, 1997, pp. 3–91.

[17] C. Das, A. Becker, and T. Bretl, “Probably approximately correct
coverage for robots with uncertainty,” in Proc. IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2011.

[18] X. Deng, T. Kameda, and C. H. Papadimitriou, “How to learn an
unknown environment I: The rectilinear case,” Journal of the ACM,
vol. 45, no. 2, pp. 215–245, 1998.

[19] M. Erdmann and M. T. Mason, “An exploration of sensorless manipu-
lation,” IEEE Transactions on Robotics and Automation, vol. 4, no. 4,
pp. 369–379, Aug. 1988.

[20] M. A. Erdmann, “Using backprojections for fine motion planning with
uncertainty,” International Journal of Robotics Research, vol. 5, no. 1,
pp. 19–45, 1986.

[21] ——, “Understanding action and sensing by designing action-based
sensors,” International Journal of Robotics Research, vol. 14, no. 5,
pp. 483–509, 1995.

[22] L. Erickson, J. Knuth, J. M. O’Kane, and S. M. LaValle, “Proba-
bilistic localization with a blind robot,” in Proc. IEEE International

Conference on Robotics and Automation, 2008.
[23] P. Fazli, A. Davoodi, P. Pasquier, and A. Mackworth, “Complete

and robust cooperative robot area coverage with limited range,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2010, pp. 5577–5582.
[24] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM,

vol. 5, no. 6, pp. 345–, June 1962. [Online]. Available:
http://doi.acm.org/10.1145/367766.368168

[25] Y. Gabriely and E. Rimon, “Spiral-stc: an on-line coverage algorithm
of grid environments by a mobile robot,” in Proc. IEEE Int. Conf. on

Robotics and Automation, 2002.
[26] E. Galceran and M. Carreras, “A survey on coverage path planning

for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp.
1258–1276, 2013.

[27] K. Y. Goldberg, “Orienting polygonal parts without sensors,” Algorth-

mica, vol. 10, pp. 201–225, 1993.
[28] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, and C. Bustacara, “BSA: a

complete coverage algorithm,” in Proc. IEEE International Conference

on Robotics and Automation, 2005.
[29] N. Hazon and G. Kaminka, “Redundancy, efficiency and robustness in

multi-robot coverage,” in IEEE International Conference on Robotics

and Automation (ICRA), 2005, pp. 735–741.
[30] W. Huang, “Optimal line-sweep-based decompositions for coverage

algorithms,” in Proc. the IEEE Int. Conf. on Robotics and Automation,
vol. 1, 2001, pp. 27 – 32.

[31] I. Kamon and E. Rivlin, “Sensory-based motion planning with global
proofs,” IEEE Transactions on Robotics and Automation, vol. 13,
no. 6, pp. 814–822, Dec. 1997.

[32] I. Kamon, E. Rivlin, and E. Rimon, “Range-sensor based navigation
in three dimensions,” in Proc. IEEE International Conference on

Robotics and Automation, 1999.
[33] N. Karapetyan, K. Benson, C. McKinney, P. Taslakian, and I. Rekleitis,

“Efficient multi-robot coverage of a known environment,” in Proc.

IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vancouver, BC, Canada, Sept. 2017.

[34] N. Karapetyan, J. Moulton, J. S. Lewis, A. Q. Li, J. M. O’Kane, and
I. Rekleitis, “Multi-robot dubins coverage with autonomous surface
vehicles,” in Proc. IEEE International Conference on Robotics and

Automation, 2018, to appear.
[35] M. Katsev, A. Yershova, B. Tovar, R. Ghrist, and S. M. LaValle,

“Mapping and pursuit-evasion strategies for a simple wall-following
robot,” IEEE Transactions on Robotics, vol. 27, no. 1, pp. 113–128,
2011.

[36] C. S. Kong, A. P. New, and I. Rekleitis, “Distributed coverage
with multi-robot system,” in Proc. IEEE International Conference on

Robotics and Automation, 2006.
[37] A. Lazanas and J. C. Latombe, “Landmark-based robot navigation,”

in Proc. National Conference on Artificial Intelligence (AAAI), 1992.
[38] J. K. Lenstra and A. Rinnooy Kan, “Complexity of vehicle routing and

scheduling problems,” Networks, vol. 11, no. 2, pp. 221–227, 1981.
[39] J. S. Lewis, W. Edwards, K. Benson, I. Rekleitis, and J. M. O’Kane,

“Semi-boustrophedon coverage with a dubins vehicle,” in Proc.

IEEE/RSJ International Conference on Intelligent Robots and Systems,
2017.

[40] J. S. Lewis and J. M. O’Kane, “Planning for provably reliable naviga-
tion using an unreliable, nearly sensorless robot,” International Journal

of Robotics Research, vol. 32, no. 11, pp. 1339–1354, September 2013.
[41] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor, “Automatic synthesis

of fine-motion strategies for robots,” International Journal of Robotics

Research, vol. 3, no. 1, pp. 3–24, 1984.
[42] V. J. Lumelsky and S. Tiwari, “An algorithm for maze searching with

azimuth input,” in Proc. IEEE International Conference on Robotics

and Automation, 1994, pp. 111–116.
[43] M. Mason, “Kicking the sensing habit,” AI Magazine, vol. 14, no. 1,

pp. 58–59, 1993.
[44] M. Moll and M. Erdmann, “Manipulation of pose distributions,”

International Journal of Robotics Research, vol. 21, no. 3, pp. 277–
292, 2002.

[45] C. Ó. Dúnlaing and C. K. Yap, “A retraction method for planning the
motion of a disc,” Journal of Algorithms, vol. 6, pp. 104–111, 1982.

[46] J. M. O’Kane and S. M. LaValle, “Localization with limited sensing,”
IEEE Transactions on Robotics, vol. 23, pp. 704–716, Aug. 2007.

[47] J. M. Palacios-Gasós, Z. Talebpour, E. Montijano, C. Sagüés, and
A. Martinoli, “Optimal path planning and coverage control for multi-
robot persistent coverage in environments with obstacles,” in Proc.

IEEE International Conference on Robotics and Automation. IEEE,
2017, pp. 1321–1327.

[48] M. Y. Rachkov, L. Marques, and A. T. de Almeida, “Multisensor
demining robot,” Autonomous robots, vol. 18, no. 3, pp. 275–291,
2005.

[49] I. Rekleitis, V. Lee-Shue, A. P. New, and H. Choset, “Limited
communication, multi-robot team based coverage,” in Proc. IEEE

International Conference on Robotics and Automation, 2004.
[50] I. Rekleitis, A. New, E. S. Rankin, and H. Choset, “Efficient bous-

trophedon multi-robot coverage: an algorithmic approach,” Annals of

Mathematics and AI, vol. 52(2-4), pp. 109–142, 2008.
[51] A. Renzaglia, L. Doitsidis, S. A. Chatzichristofis, A. Martinelli, and

E. B. Kosmatopoulos, “Distributed multi-robot coverage using micro
aerial vehicles,” in Mediterrean Conference on Control Automation

(MED), June 2013, pp. 963–968.
[52] H. Sahin and L. Guvenc, “Household robotics: autonomous devices

for vacuuming and lawn mowing,” IEEE Control Systems, vol. 27,
no. 2, pp. 20–96, 2007.

[53] K. Savla, F. Bullo, and E. Frazzoli, “The coverage problem for
loitering dubins vehicles,” in Decision and Control, 2007 46th IEEE

Conference on, Dec 2007, pp. 1398–1403.
[54] L. Szirmay-Kalos and G. Marton, “Worst-case versus average case

complexity of ray-shooting,” Computing, vol. 61(2), no. 2, pp. 103–
131, 1998.

[55] B. Tovar, L. Guilamo, and S. M. LaValle, “Gap Navigation Trees:
Minimal representation for visibility-based tasks,” in Proc. Workshop

on the Algorithmic Foundations of Robotics, 2004.
[56] B. Tribelhorn and Z. Dodds, “Evaluating the Roomba: A low-cost,

ubiquitous platform for robotics research and education,” in Proc.

IEEE International Conference on Robotics and Automation, 2007.
[57] A. F. van der Stappen, R.-P. Berretty, K. Goldberg, and M. H.

Overmars, “Geometry and part feeding,” in Sensor Based Intelligent

Robots, 2000, pp. 259–281.
[58] A. Xu, C. Viriyasuthee, and I. Rekleitis, “Efficient complete coverage

of a known arbitrary environment with applications to aerial opera-
tions,” Autonomous Robots, vol. 36, no. 4, pp. 365–381, 2014.

[59] Z. Yao, “Finding efficient robot path for the complete coverage of a
known space,” in Proc. IEEE International Conference on Robotics

and Automation, 2006.
[60] X. Yu, T. A. Roppel, and J. Y. Hung, “An optimization approach for

planning robotic field coverage,” in Proc. Annual Conference of the

IEEE Industrial Electronics Society, 2015.
[61] X. Zheng, S. Jain, S. Koenig, and D. Kempe, “Multi-robot forest

coverage,” in Proc. IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2005.

