CURE: Simulation-Augmented Auto-Tuning in
Robotics

Md Abir Hossen ', Sonam Kharade ', Jason M. O’Kane ', Senior Member, IEEE,
Bradley Schmerl ™, Senior Member, IEEE, David Garlan , Life Fellow, IEEE, and Pooyan Jamshidi

Abstract—Robotic systems are typically composed of vari-
ous subsystems, such as localization and navigation, each en-
compassing numerous configurable components (e.g., selecting
different planning algorithms). Once an algorithm has been
selected for a component, its associated configuration options
must be set to the appropriate values. Configuration options
across the system stack interact non-trivially. Finding optimal
configurations for highly configurable robots to achieve desired
performance poses a significant challenge due to the interactions
between configuration options across software and hardware
that result in an exponentially large and complex configuration
space. These challenges are further compounded by the need
for transferability between different environments and robotic
platforms. Data efficient optimization algorithms (e.g., Bayesian
optimization) have been increasingly employed to automate the
tuning of configurable parameters in cyber-physical systems.
However, such optimization algorithms converge at later stages,
often after exhausting the allocated budget (e.g., optimization
steps, allotted time) and lacking transferability. This paper
proposes CURE—a method that identifies causally relevant con-
figuration options, enabling the optimization process to operate
in a reduced search space, thereby enabling faster optimization
of robot performance. CURE abstracts the causal relationships
between various configuration options and the robot performance
objectives by learning a causal model in the source (a low-cost
environment such as the Gazebo simulator) and applying the
learned knowledge to perform optimization in the target (e.g.,
Turtlebot 3 physical robot). We demonstrate the effectiveness and
transferability of CURE by conducting experiments that involve
varying degrees of deployment changes in both physical robots
and simulation.

Index Terms—robotics and cyberphysical systems, causal in-
ference, optimization, robot testing.

I. INTRODUCTION

Robotic system is composed of hardware and software

components that are integrated within a physical ma-
chine. These components interact to achieve specific goals
in a physical environment. Unfortunately, robots are prone to
a wide variety of faults [1]. Incorrect configurations (called
misconfigurations) in robotic algorithms are one of the most
prevalent causes of such faults [2]-[4]. Misconfigurations can
cause various bugs [5], [6] leading to crashes, robots becoming

This work was supported by National Science Foundation (Award
2107463) and National Aeronautics and Space Administration (Award
80ONSSC20K1720).

M. A. Hossen, S. Kharade, and P. Jamshidi are with the University
of South Carolina, SC, USA (e-mail: abir.hossen786@gmail.com; skha-
rade @mailbox.sc.edu; pjamshid@cse.sc.edu)

J. M. O’Kane is with Texas A&M University, TX, USA (e-mail:
jokane @tamu.edu)

B. Schmerl, and D. Garlan are with the Carnegie Mellon University, PA,
USA (e-mail: schmerl@cs.cmu.edu; garlan@cs.cmu.edu)

. Reusing
learned
causal model

Real environment

. Leaming in simulation
Deploying to real robots

Reusing
learned
causal model

Real environment

Fig. 1: Sim-to-real: applying the knowledge of the learned causal
model using Turtlebot 3 in simulation to the Turtlebot 3 physical
robot. Sim-to-real & Platform change: transferring the causal model
learned using Husky in simulation to the Turtlebot 3 physical robot.

unstable, deviations from planned trajectory, controller faults,
and non-responsiveness. Several studies have reported miscon-
figurations as one of the key reasons for cyber-physical system
failures. Such misconfigurations caused 19.6% of Unmanned
Aerial Vehicle (UAV) bugs [7], 27.25% of autonomous vehicle
bugs [8] (a faulty configuration in actuation layer even caused
the vehicle to collide with a static object on the curb [9]) and
55% of traffic dispatch algorithm bugs [10]. All of these issues
were fixed by configuration changes.

Most robotic algorithms require customization through con-
figuration parameters to suit certain tasks and situations. For
example, most UAV controllers include a wide range of config-
urable parameters that can be customized to different vehicles,
flight conditions, or even particular tasks (e.g., when speed
is more important than energy use). Finding configurations
that optimize performance on a given task is a challenging
problem for designers and end users [11]. A developer might
request a feature such as “Create a tool to automatically tune
navigation2 node parameters using state-of-the-art machine
learning techniques.” [12]. In another instance, a developer
encounters a planner performance issue [13] and asks “7
have tuned this for almost 5-6 hours. Sometimes it is go-
ing towards the goal but still failing in the middle of the
trajectory.” After several back-and-forth communications, the
algorithm designer concludes, “I cannot provide personalized
tuning assistance to every user.” Additionally, developers aim
to maintain the performance of the tuned parameters when
deployment changes (e.g., from ROSI to ROS2) to avoid re-
tuning. Specifically, the optimal configuration determined in

https://orcid.org/0000-0002-7956-0515
https://orcid.org/0000-0001-7905-9387
https://orcid.org/0000-0002-1536-4822
https://orcid.org/0000-0001-7828-622X
https://orcid.org/0000-0002-6735-8301
https://orcid.org/0000-0002-9342-0703

one environment often becomes suboptimal in another, as
demonstrated in Fig. 2.

Our Solution. In this work, we propose CURE (Causal
Understanding and Remediation for Enhancing Robot Per-
formance), a multi-objective optimization method that finds
optimal configurations for robotic platforms, converges faster
than the state-of-the-art, and transfers well from simulation to
real robot and even to new untrained platforms. CURE has two
main phases. In Phase 1, CURE reduces the search space by
eliminating configuration options that do not affect the per-
formance objective causally. For this, we collect observational
data in a low-cost source environment, such as simulation.
Then, a causal model is learned on the basis of the data, repre-
senting the underlying causal mechanisms that influence robot
performance. We then estimate the causal effects of options
on performance objectives. Finally, we reduce the search space
to a subset of options that have non-negligible causal effects.
In Phase 2, CURE performs traditional Bayesian optimization
in the target environment, but only over the reduced search
space, to find the optimal configuration. We show that CURE
not only finds the optimal configuration faster than the state-of-
the-art, but the learned causal model in the simulation speeds
up optimization in the real robot. The results demonstrate
that the learned causal model is transferable across similar
but different settings, that is, environments, mission/tasks, and
for new robotic platforms. In other words, the existence of
a common abstract structure (the causal relations between
options, system-level variables, and performance objectives) is
invariant across domains, and the behavior of specific features
of the environment remains constant across domains.
Evaluations. We evaluated CURE in terms of its effectiveness
and transferability across two tasks: navigation and manipula-
tion. The navigation task forms the core of our experiments,
using two highly configurable robotic systems (Husky and
Turtlebot 3) under varying degrees of deployment changes.
The manipulation task involves simulating a robot arm (Franka
Emika Panda) in Gazebo to demonstrate CURE’s adapt-
ability by complementing the effectiveness evaluation. We
compared CURE with traditional multi-objective Bayesian
optimization (MOBO) using the AX framework [14], and
RidgeCV [15], [16] integrated with MOBO to reduce the
search space. Our results indicate that compared to MOBO,
CURE finds a configuration that improves performance by
2x and achieves this improvement with gains in efficiency
of 4.6x when we transfer the knowledge learned from Husky
in simulation to Turtlebot 3 physical robot.

Contributions. The contributions of our work are as follows:

« We propose CURE, a multi-objective optimization
method that operates in the reduced search space involv-
ing causally relevant configuration options and allows
faster convergence.

« We conducted a comprehensive empirical study by com-
paring CURE with state-of-the-art optimization methods
in both simulation and real robots under different severi-
ties of deployment changes, and studied effectiveness and
transferability.

o The code and data are available at: https://github.com/
softsys4ai/cure

II. RELATED WORK

In this work, we focus on performance optimization through
the lens of causality. Specifically, we learn a causal model from
a low-cost environment and utilize causal knowledge to opti-
mize performance in the target system. This section groups re-
lated work into four categories: optimizing robotic parameters,
machine learning for performance modeling, transfer learning
strategies, and causal analysis in configurable systems.

a) Optimization techniques in robotic configurations:
Researchers have considered robotic algorithms as a black box,
as the objective functions in most robotic problems can only
be accessible through empirical experiments. Evolutionary
algorithms [17], [18] have been used to find optimal configu-
rations in Dynamic-Window Approach (DWA) [19] algorithm.
However, the application of evolutionary algorithms in robotic
systems is hindered by the limited availability of observations
and the difficulty in extracting meaningful information from
these observations due to the presence of noise. Approaches
such as variational heteroscedastic Gaussian process regression
(VHGP) [20] and Bayesian optimization with safety con-
straints [21] attempt to address these challenges, but struggle
with high-dimensional search spaces, yield only local improve-
ments, and lack transferability across different environments
and platforms. Furthermore, the complexity of environmental
dynamics models, coupled with the biases introduced by opti-
mization formulation, poses significant challenges. Moreover,
formalizing safety constraints that allow for computationally
efficient solutions, specifically solutions in polynomial time
with closed-form expressions, is complex if at all feasible.

b) Learning based methods for performance modeling:
Expanding on traditional optimization techniques, machine
learning methods offer diverse approaches to improve robotic
performance. Approaches such as learning from demonstra-
tion [22], learning human-aware path planning [23], and
mapping sensory inputs to robot actions [24], [25] have been
widely applied to robot navigation beyond fine-tuning config-
uration parameters, as opposed to heavily relying on human
expertise. These methods aim to replace classical methods,
casting doubt on the robustness, generality, and safety of the
systems. To provide a deeper understanding of performance
behavior in robotic algorithms, performance influence mod-
els [26]-[28] can be used. These models predict system per-
formance by capturing important options and interactions that
influence performance behavior using machine learning and
sampling heuristics. However, performance influence models
face limitations in adapting to unexpected environments due
to not being able to capture changes in the performance
distribution and often produce incorrect explanations [4]. In
addition, the collection of training data for these models is
costly and requires extensive human supervision.

c) Transfer learning for performance modeling: Ad-
dressing the challenges of adapting to unexpected environ-
ments and costly data collection in learning-based meth-
ods, transfer learning accelerates optimization by selectively
reusing knowledge from previous tasks. Techniques such as
simulation-to-real learning [29], [30] and transferring Pareto
frontiers across different platforms [31] improve sampling effi-
ciency and improve training data sets. Each of these techniques

https://github.com/softsys4ai/cure
https://github.com/softsys4ai/cure

uses the predicted transfer learning frameworks based on cor-
relational analysis. However, changes in the environment and
robotic platform can cause a distribution shift. The ML models
used in these transfer learning approaches are vulnerable to
spurious correlations [32], [33].

d) Causal analysis in configurable systems: While ma-
chine learning techniques excel in uncovering correlations
between variables, their ability to identify causal links is
limited [34]. Using the information encoded in causal models,
we can benefit from analyses that are only possible when
we explicitly employ causal models, such as interventional
and counterfactual analyses [34], [35]. Causal analysis has
been used for various debugging and optimization tasks in
configurable systems, including finding the root cause of
intermittent failures in database applications [36], detecting
and understanding the root causes of the defect [37], [38],
and improving fault localization [39]. The causality analysis in
these studies is confined to a single environment and platform,
while our approach transfers causal knowledge across different
environments and platforms. In robotic systems, the causal
models learned in simulation are used to find explanations
for failures in real robots [4], [40]. However, such methods
are limited to identifying root causes of failures, whereas our
approach extends beyond diagnosis to also prescribe remedies,
new configuration option values that rectify the failure.

III. PROBLEM FORMULATION AND CHALLENGES

In this section, we first motivate our work by illustrating
how an optimal configuration found in one environment often
becomes suboptimal in another. We then formally define the
problem and describe the challenges.

A. Motivating scenario

We motivate our work by demonstrating the non-
transferability of traditional Bayesian optimization through
a simple experiment for robot navigation. In particular, we
explore two deployment scenarios: (i) Sim2Real: transferring
the optimal configurations for energy consumption identified
from simulations to the Turtlebot 3 physical robot (Fig. 2a),
and (ii) Real2Real: transferring the optimal configurations for
position error! identified from Husky to Turtlebot 3 (Fig. 2b).
In both scenarios, we observe that the optimal configurations
identified by Bayesian optimization in the source environments
fail to retain their optimality in the target environment. We
observe that energy consumption increases by 2.57x, and a
significant increase in position error is observed by 8.64 x 10°
times.

B. Problem formulation

Consider a highly configurable robot with d distinct config-
urations. Let X; indicate the configuration parameter ¢, which
can be assigned a value from a finite domain Dom(X;).
In general, X; may be set to (i) a real number (e.g. the
number of iterative refinements in a localization algorithm, the

ldefined as the Euclidean distance between goal position and robot’s actual
position

iii

Hus! Turtlebot 3
g 14.0 Configurations K
c(vnj 12.5 A Optimal in Sim. _.0.25F A Optimal in Turtlebot 3
“ 11.0f m Optimal in Phy. é B Optimal in Husky
2 o5y — 0.20f
<o 8.0f o
E 65 5 015
=]
o
g 50 S 0.10 7.55E-01
> 3.5} = |
? 2.0»}15 Wh S oosf
5f 2.96 Wh 8.74E-07
g OO TSR Y 00k < e
1 3 5 7 9 11 13 15 X1 Xes X100 X150 X200
Energy (Turtlebot 3 Phy.) Configurations

(2) (b)

Fig. 2: Non-transferability of optimal configurations across different
environments/platforms: (a) optimal configuration for Turtlebot 3 in
simulation differs from its physical counterpart; and (b) optimal
configuration for Turtlebot 3 is not suitable in Husky.

frequency of the controller) within specified bounds, denoted
as X; € [Xi,)?i], where X, and X, are the lower and
upper bounds, respectively, (ii) binary (e.g., whether to enable
recovery behaviors) or (iii) categorical (e.g., planner algorithm
names). The configuration space is mathematically a Cartesian
product of all the domains of the parameters of interest
X = Dom(X1) x -+ x Dom(Xy4). Then, a configuration
x, which is in the configuration space * € X, can be
instantiated by setting a specific value for each option within
its domain, x = (X; = x1, Xo = xa,..., X4 = z4). Finding
a configuration that uniformly optimizes all objectives is typ-
ically not possible; instead, there is a trade-off between them.
Pareto optimal solutions signify the prime balance among all
objectives. In the context of minimization, a configuration x
is said to dominate another configuration =’ if f(x) < f(x').
A configuration € X is called Pareto-optimal if it is not
dominated by any other configuration =’ € X, where x # x’.
The goal is to find x*, a configuration that gives rise to Pareto-
optimal performance in the multi-objective space (e.g., f1 :
failure rate, fo : mission time, fs : energy consumption),
given some constraints (h : safety). Here, we assume that
the performance measure can be evaluated in experiments
for any configuration =, and we do not know the underlying
functional representation of the performance. The problem can
be generalized by defining an arbitrary number of performance
objectives (if they can be computed over a finite time horizon).
Mathematically, we represent performance objectives as black-
box functions that map from a configuration space to a real-
valued one: f(x) : X — R. In practice, we learn f by
sampling the configuration space and collecting the observa-
tions data, i.e., y; = f(x;) + ¢; with € ~ N(0,02). In other
words, we only partially know the response function through
observations D = {(z;,y:)}L,,|D| < |X|. We define the
problem formally as follows:

¥ = argmin fi(x), fo(x), ..., fm(x),s.t.: h(x) >0, (1)

zeX

where * € X is a Pareto-optimal configuration and adhere
to the safety constraints.

————Phase I——— |

|

Phase II

ﬁerf. evaluations from

\#ROS @GAZEBy

ﬂieduce X via causal inﬂ /

argew
""""""""""""""" 7))
the source e}
I 4
Y i
|- ‘ Turtlebot3 phy. .
I = i g Dr = {x1,...Xn} =
5 Stn e {(xoy)st e n+ /s 2
Husky in Gazebo i =~ S1n ¢ (b w)lin TR g
N " 00 p N
Ds = {x1,..-xm} HUDUD {000 Sgr : \/\\m
i ;) + €, Vx; € D, | 00000000 1 © © D :
s & Jalx) + e, va € D \ Cavsal effects . ACEY frimas

. configuration

| Causal structure discovery

Reduce search space Pareto-optimal config.

Compute causal effect ‘

E[gi | do (Xii= z;)]

| FCI

Constraints

Select top K causal Xt < arg maxxu(x|M,S1;1)

effect options

Fig. 3: CURE overview.

C. Challenges

In this article, our objective is to propose a solution to
address the following key challenges:

a) Software-hardware interactions and exponentially
growing configuration space: A robotic system consists of
software components (e.g., localization, navigation, and plan-
ning), hardware components (e.g., computer and sensors on-
board), and middleware components (e.g., ROS), with most
components being configurable. The configuration space of
only 100 parameters with only 10 possible values for each
comprises of 101°° possible configurations. (For comparison,
the number of atoms in the universe is estimated to be only
1082.) Therefore, the task of finding Pareto-optimal configu-
rations for highly configurable robots and other cyberphys-
ical systems is orders of magnitude more difficult because
of software-hardware interactions, compared with software
systems.

b) Reality gap and negative transfer from sim to real:
Robot simulators have been extensively used in testing new
behaviors before the new component is used in real robots.
However, the measurements from simulators typically contain
noise, and the observable effect for some configuration options
may not be the same in a real robot operating in a real
environment, and in some cases, such effect may even have the
opposite effect. Therefore, any reasoning based on the model
predictions learned based on simulation data may become
misleading. Such a reality gap between the sim and real exists
due to unobservable confounders as a result of simplifications
in the sim. Still, there exist stable relationships between
configuration options and performance objectives in the two
environments that can facilitate performance optimization of
real robots.

¢) Multiple objectives: It is common to find multiple
performance objectives in mission specifications (e.g., mission
time, energy, and safety). Typically, the objectives involved
in the specification are independent of each other [41], but
in some cases they can be correlated and conflicting; for
example, faster task completion could lead to higher energy
consumption. Therefore, finding the optimal configuration (for

a given robotic platform in a specific environment and for a
specific task) should be treated as a multi-objective optimiza-
tion problem.

d) Costly acquisition of training data and the safety
critical nature of robotic systems: Algorithm parameters can
be manually adjusted by experiments on real robots or by using
massive amounts of training data when the robotic system
contains elements that are difficult to hard-code (e.g., computer
vision components) [42]. However, collecting training data
from real robots is time-consuming and often requires constant
human supervision [43]. To guarantee the safe behavior of
the robot, the practitioner must either meticulously select
configurations that are safe or acquire an ample amount of
representative data that lead to safe behavior.

IV. CURE: CAUSAL UNDERSTANDING AND REMEDIATION
FOR ENHANCING ROBOT PERFORMANCE

To solve the optimization problem described in §1II, we pro-
pose a novel approach, called CURE. The high-level overview
of CURE is shown in Fig. 3. CURE works in two phases. In
Phase I, CURE reduces the search space for the optimization
problem using data from the source environment, while in
Phase II, CURE performs a black-box optimization in the
reduced search space on the target platform. To elaborate
on the details, in Phase I, CURE learns a structural causal
model that enforces structural relationships and constraints
between variables using performance evaluations from the
source platform (e.g., Husky in simulation). Specifically, we
learn a causal model for a set of random samples’ taken in
the source environment®. The configuration options are then
ranked by measuring their average causal effect on the per-
formance objectives through causal interventions. Options with
the largest causal effect are selected to reduce the search space.

2Instead of random samples, other partial designs (e.g., Latin Hypercube)
could have been used, however, we experimentally found that random samples
give rise to more reliable conditional independence tests in the structure
learning algorithm.

3Here the source environment could be a simulator like Gazebo or another
robotic platform. The assumption is that the source is an environment in which
we can intervene at a lower cost.

Next, in Phase II, CURE performs a black-box optimization
in the reduced search space given a fixed sampling budget in
the target platform (e.g., the physical Turtlebot 3). Specifically,
CURE searches for Pareto-optimal configurations in the target,
iteratively fits a surrogate model to the samples, and selects
the next sample based on an acquisition function until the
budget is exhausted. CURE’s high-level procedure is described
in Algorithm 1.

A. Phase I: Reducing the search space via causal inference

Phase I begins by recording performance metrics for s
initial configurations {(z1,y1),...,(xs,ys)} in the source
environment (Algorithm 1: lines 1-2). We define three types
of variables to learn the causal structure: (i) software-level
configuration options (e.g., hyperparameters in different al-
gorithms [44]) and hardware-level options (e.g., sensor fre-
quency), (ii) intermediate performance metrics (e.g., different
system events in ROS) that map the influence of configura-
tion options on performance objectives, and (iii) end-to-end
performance objectives (e.g., task completion rate, mission
time). We also define structural constraints (e.g., X; - X;)
over the causal structure to incorporate domain knowledge that
facilitates learning with low sample sizes*.

To discover the causal structure, we use an existing structure
learning algorithm Fast causal inference (FCI). We select FCI
because (i) it can identify unobserved confounders [35], [45],
and (ii) it can handle variables of various typologies, such
as nominal, ordinal, and categorical given a valid conditional
independence test. Algorithm 2 describes the details of our
causal learning procedure. It starts by constructing an undi-
rected fully connected graph G, where the nodes represent
the variables (options, intermediate variables, performance
metrics). Next, we evaluate the independence of all pairs
of variables conditioned on all remaining variables using
Fisher’s z test [46] to remove the edges between independent
variables. Finally, a partial ancestral graph (PAG) is gener-
ated (Algorithm 2: line 2), orienting the undirected edges using
the edge orientation rules [35], [45], [47].

A PAG is composed of directed, undirected, and partially
directed edges. The partially directed edges must be fully
resolved to discover the true causal relationships. We employ
the information-theoretic LatentSearch algorithm proposed by
Kocaoglu [48] to orient partially directed edges in PAG
through entropic causal discovery (line 3). For each partially
directed edge, we follow two steps: (i) establish if we can
generate a latent variable (with low entropy) to serve as a
common cause between two vertices; (ii) if such a latent
variable does not exist, then pick the direction which has
the lowest entropy. For the first step, we assess whether there
could be an unmeasured confounder (say 2) that lies between
two partially oriented nodes (say X and Y). LatentSearch
outputs a joint distribution ¢(X,Y,Z) that can be used to
compute the entropy H(Z) of the unmeasured confounder Z.
Following the Kocaoglu guidelines, we set an entropy thresh-
old 4, = 0.8 x min{H(X),H(Y)}. If the entropy H(Z)

“4e.g., there should not be any causal connections between configuration
options and their values are determined independently.

Algorithm 1: CURE

Input: Configuration space X, Maximum budget
Npax, Response function f, Kernel function
Ky, Hyper-parameters 8, Design sample size
n, and learning cycle N;
Output: =* and learned model M
Dimension Reduction Phase
1 Sample s < Ny, random configurations from X
within the bounds X; € [X;, X;] to form the initial
design sample set Dg = {x1,..., s}
2 Obtain performance measurements of the initial design
in the source environment,
Yi fg(.’EL) + €;,V; € Dg
3 G + Learn a causal model on Dg using Algorithm 2.
4 Estimate the average causal effects of the configuration
options by intervening on X;:
CEx, < 1/N)L E[Y; | do (X, = 2,)] -
E[Y; | do (X; = a)], where a is the default value of
option X;.
5 Reduce the search space by selecting the top K
options with the largest causal effect: XcX
Configuration Optimization Phase
6 Choose an initial sparse design (Sobol sequences) in X
to find an initial design samples Dr = {x1,...,x,}
7 Obtain performance measurements of the initial design
in the target environment,
Y; fT(wl) +¢;,Vx; € Dr
8 Sl:n — {(wi,yi)}?:l;t +—n—+1
M(x|S1.n, 0) « Fit a GP model to the design
10 while t < Ny, do
11 if (t mod N; = 0) then
12 0 < Learn the kernel hyper-parameters by
maximizing the likelihood

E-4

13 else

14 Find next configuration x,; by optimizing the
selection criteria over the estimated response
surface given the data,

x; + arg max,, u(x|M,Sq1.4-1)

15 Obtain performance for the new configuration
i, Y — fr(x) + e

16 Add the newly measured configuration to the
measurement set: S1.; = {S1.1—1, (¢, ye) }

17 Re-fit a new GP model M(z|S1., 0)

18 t—t+1

1 (z*,y*) = minS;. N,

max

of the unmeasured confounder falls below this threshold, then
we declare that there is a simple unmeasured confounder Z
(with a low enough entropy) to serve as a common cause
between X and Y and accordingly replace the partial edge
with a bidirected («—) edge. When there is no latent variable
with sufficiently low entropy, there are two possibilities: (i) the
variable X causes Y'; then there is an arbitrary function f(-)
such that Y = f(X, E), where F is an exogenous variable
(independent of X)) that accounts for system noise; or (ii) the

vi

Algorithm 2: Causal Model Learning

Input: Design samples D = {x1,...,&y,} from X
with outcomes y; = f(x;) + ¢;,Vx; € D
Output: Acyclic-directed mixed graph G apmc
1 Initialize a fully connected undirected graph G
2 Apply Fisher’s z test to remove the edges between
independent variables and then orient the edges to get
Gpaa-
3 for each partial edge in Gpag do
4 L Resolve the partial edge using the LatentSearch
algorithm [48].
5 The resolved graph composed of directed and
bi-directed edges: Gapma

variable Y causes X; then there is an arbitrary function g(-)
such that X = g(Y, E), where E is an exogenous variable
(independent of Y") that accounts for noise in the system. The
distribution of E and E can be inferred from the data. With
these distributions, we measure the entropies H (E) and H (E).
If H(E) < H(FE), then it is simpler to explain X causes Y’
(that is, the entropy is lower when Y = f(X,FE)) and we
choose X — Y. Otherwise, we choose ¥ —» X.

The final causal model is an acyclic-directed mixed
graph (ADMG). When interpreting a causal model, we view
the nodes as variables and the arrows as the assumed direc-
tion of causality, whereas the absence of an arrow shows
the absence of direct causal influence between variables.
To quantify the influence of a configuration option on a
performance objective, we need to locate the causal paths.
A causal path Px..y is a directed path that originates from
a configuration option X to a subsequent non-functional
property S (e.g. planner failed) and ends at a performance
objective Y. For example, X — S — Y denotes X causes
Y through a subsequent node S on the path. We discover
Px .,y by backtracking the nodes corresponding to each of
the performance objectives until we reach a node without a
parent. We then measure the average causal effect (ACE), by
measuring the causal effects of the configuration options on
the performance metrics and taking the average over the causal
paths. We then rank the configuration options according to
their ACE: {(X;, CEx,)}{_,, where CEx, > CEx,,, for all
i < d. Finally, we select a subset of configuration options with
the highest ACE: {X; | (X;,CEx;),1 <i< K}, K <d, and
reduce the search space to X C X (Algorithm 1: lines 4-5).

B. Phase II: Performance optimization through black-box op-
timization with limited budget

In the configuration optimization phase (lines 6-18), we
search for Pareto optimal configurations using an active learn-
ing approach that operates in the reduced search space in the
target environment. Here the target environment is typically
the target robotic platform that we want to optimize. The
assumption is that any intervention in the target environment is
costly and that we typically assume a small sampling budget.
In some situations, we could assume that the cost of mea-
suring configurations varies. For example, if the likelihood of

violating safety confidence is high for a specific configuration,
we could assign a higher cost to that configuration because it
may damage the robot. We leave this assumption for future
work. Specifically, we start by bootstrapping optimization by
randomly sampling the reduced configuration space to produce
an initial design D = {x1,...,x,}, where x; € X. After
obtaining the measurements regarding the initial design, CURE
then fits a GP model to the design points D to form our belief
about the underlying response function. The while loop in
Algorithm 1 iteratively updates the belief until the budget runs
out: As we accumulate the data Sy.; = {(x;, ;) }i_,, where
y; = fr(xz;) + ¢ with ¢ ~ N(0,0?), a prior distribution
Pr(fr) and the likelihood function Pr(S;.|fr) form the
posterior distribution: Pr(f7|S1.¢) o< Pr(S1.|fr) Pr(fr). We
describe the steps of Phase II as follows:

a) Bayesian optimization with GP: Bayesian optimiza-
tion is a sequential design strategy that allows us to perform
global optimization of black-box functions [49]. The main idea
of this method is to treat the black-box objective function
f(x) as a random variable with a given prior distribution
and then optimize the posterior distribution of f(x), given
experimental data. In this work, we use GPs to model this
black-box objective function at each point € X. That is, let
S1.¢+ be the experimental data collected in the first ¢ iterations,
and let o, be a candidate configuration that we can select
to run the next experiment. Then the probability that this
new experiment could find an optimal configuration using the
posterior distribution will be assessed:

Pr(ft+1|Sl:t> -’/Ut+1) ~ N(Nt(mt+1)> U?(thrl))a

where pi;(24+1) and o7 (x441) are suitable estimators of the
mean and standard deviation of a normal distribution used to
model this posterior. The main motivation behind the choice
of GPs as prior here is that it offers a framework in which
reasoning can be based not only on mean estimates, but also
on variance, providing more informative decision making. The
other reason is that all the computations in this framework are
based on a solid foundation of linear algebra. Fig 4 illustrates
Bayesian optimization based on GP using a one-dimensional
response surface. The blue curve represents the unknown true
posterior distribution, while the mean is shown in green,
and the confidence interval 95% is shaded. Stars indicate
measurements carried out in the past and recorded in S;,
(i.e., observations). The configuration corresponding to x; has
a large confidence interval due to the lack of observations in
its neighborhood. On the contrary, x4 has a narrow confidence
since neighboring configurations have been experimented with.
The confidence interval in the neighborhood of x2 and xj
is not large, and correctly our approach does not decide to
explore these zones. The next configuration x;y;, indicated
by a small circle on the right side of x4, is selected based on
a criterion that will be defined later. A GP is a distribution
over functions, specified by its mean and covariance:

Yy = f(w) NQP(M(CII),]C(CII7$/)), 2

where k(x, x’) defines the distance between « and «’. Assume
S1.t = {(@1.4,91:4)|lys := f(x;)} to be the collection of

true function observation

05|

i,

GP surrogate

-+ mean estimate

x1 x2 x3 x4

Fig. 4: An example of 1D GP model: GPs provide mean
estimates and uncertainty in estimations, i.e., variance.

observations ¢. The function values are drawn from a multi-
variate Gaussian distribution N (u, K), where p := p(@1.4),

k(x1, 1) k(x1,)
K= : : 3)
k(x:, o) k(x:, x)

In the while loop in CURE, given the observations we accu-
mulated so far, we intend to fit a new GP model:

Jre -~ K +0°I k
|:ft+1:| N(u,[kT k(Tii1,2i11) boo®

where k(x)T = [k(x,x1) k(x,x2) k(x,x;)] and I
is identity matrix. Given Eq. (4), the new GP model can be
drawn from this new Gaussian distribution:

Pr(fi1[Ste, @eg1) = N (pe(@eg1), 07 (Te41)), (5)

where

pu(x) = p(x) + k(@) (K +0*1) 7 (y — p) (6)
ol(x) = k(x,x) + o*T — k(x)T(K + o?I) " *k(z) (7)

These posterior functions are used to select the next point
Ly
b) Configuration selection criteria: The selection criteria
is defined as u : X — R that selects x;11 € X, should f(-)
be evaluated next (step 7):
11 = arg max u(x| M, Sy.+) (8)
zeX
Although there are several different criteria in the literature for
multiobjective optimization [50]-[52], CURE utilizes Expected
Hypervolume Improvement (EHVI). EHVI has demonstrated
its strength in balancing exploration and exploitation, and in
producing Pareto fronts with excellent coverage and faster
optimization [53]. EHVI operates by assessing the expected
improvement of a given point in the solution space in terms
of the hypervolume measure—a widely accepted metric for
comparing the quality of solutions in multi-objective opti-
mization. EHVI is particularly useful in robotic applications,
where the solution landscape can be highly complex and
multi-dimensional. The steps of Algorithm 1 are illustrated
in Fig 5. First, an initial design based on random sampling
is produced (Fig 5a). Second, a GP model is fitted to the
initial design (Fig 5b). The model is then used to calculate

vii

x ” ! true response function
GR fit

X x

response value

configuration domain

(@)

criteria evaluation

new selected point

)
Fig. 5: Illustration of configuration parameter optimization: (a)

initial observations; (b) a GP model fit; (c) choosing the next
point; (d) refitting a new GP model.

the selection criteria (Fig 5c). Finally, the configuration that
maximizes the selection criteria is used to run the next
experiment and provide data to reconstruct a more accurate
model (Fig 5d).

c) Model fitting: Here, we provide some practical con-
siderations to make GPs applicable for configuration opti-
mization. In CURE, as shown in Algorithm 1, the covariance
function k : X x X — R dictates the structure of the response
function that we fit to the observed data. For integer variables,
we implemented the Matérn kernel [54]. The main reason
behind this choice is that along each dimension of the con-
figuration response functions, a different level of smoothness
can be observed. Matérn kernels incorporate a smoothness
parameter v > 0 that allows greater flexibility in modeling
such functions. The following is a variation of the Matérn
kernel for v = 1/2:

ky—1/2(xi, ;) = 65 exp(—r),)

where r?(z;, x;) = (¢; — ;) TA(x; — x;) for some positive
semidefinite matrix A. For categorical variables, we implement
the following [55]:

ko(xi, @;) = exp(Sf_, (—000(x; # x;))),

where d is the number of dimensions (i.e., the number of con-
figuration parameters), 6, adjust the scales along the function
dimensions and ¢ is a function gives the distance between
two categorical variables using Kronecker delta [55], [56].
TL4CO uses different scales {0;,¢ = 1...d} on different
dimensions as suggested in [54], [56], this technique is called
Automatic Relevance Determination (ARD). After learning
the hyper-parameters (step 6), if the ¢-th dimension turns
out to be irrelevant, then 6, will be a small value, and
therefore will be discarded. This is particularly helpful in high-
dimensional spaces where it is difficult to find the optimal
configuration. Although the kernel controls the structure of
the estimated function, the prior mean p(x) : X — R
provides a possible offset for our estimate. By default, this

(10)

viii

— —

A\
++ \
SN\

\ R

(a) Husky in Gazebo

>~ Obstacle

trajectory

Turtlebot 3 L —

N Dynamic
! \ \ 574 obstacle
+

Targets €=
o — |

(b) Turtlebot 3 in Gazebo

Fig. 6: Simulated environments for Husky and Turtlebot 3. The
dashed lines in (b) show the trajectory of the dynamic obstacles.

function is set to a constant pu(x) := g, which is inferred
from observations [56]. However, the prior mean function is
a way of incorporating expert knowledge, and if it is avail-
able, then we can use this knowledge. Fortunately, we have
collected extensive experimental measurements and based on
our datasets, we observed that, for robotic systems, there is
typically a significant distance between the minimum and the
maximum of each function (Fig. 17, 18). Therefore, a linear
mean function p(x) = ax + b allows for more flexible
structures and provides a better fit for the data than a constant
mean. We only need to learn the slope for each dimension
and the offset (denoted py = (a, b)). Due to the heavy learning
computation (step 12 in Algorithm 1), this process is computed
only for every Nlth iteration. To learn the hyperparameters of
the kernel and also the prior mean functions, we maximize the
marginal likelihood [56] of the observations S;.;. To do that,
we train the GP model (6) with S;.;. We optimize the marginal
likelihood using multi-started quasi-Newton hill climbers [54].
For this purpose, we used the Ax + BoTorch library. Using the
kernel defined in (10), we learn @ := (0.4, f10.4,02) which
comprises the hyperparameters of the kernel and the mean
functions. The learning is performed iteratively, resulting in a
sequence of @; fori =1... LN%;"J

V. EXPERIMENTS AND RESULTS

To evaluate this work, we answer the following research

questions (RQs)

« RQ1 (Effectiveness): How effective is CURE in (i) en-
suring optimal performance; (ii) utilizing the budget; and
(iii) respecting the safety constraints compared to the
baselines?

o RQ2 (Transferability): How does the effectiveness of
CURE change when the severity of deployment changes
varies (e.g., environment and platform change)?

We answered these questions in a robot navigation task, using
Husky and Turtlebot 3 platforms. Additionally, to illustrate
adaptability of CURE to different tasks, we also demonstrate
RQI1 on a robot manipulation task, using the Franka Emika
Panda platform in Gazebo.

A. Experimental setup

a) Robot navigation: We simulate Husky and Turtlebot
3 in Gazebo to collect the observational data by measuring

pa[re] Jsuue[d

o1e1 uorerduwoo se],
ABiauyg

20uR)SIp 9[0vISqO
g PoIN0axe A19A008Y

0
1
001
002
00€
1
0
0
0ST

[002 goue)sip peesri],
0

| 0oz OWI} UOTSSTIA
L os 10118 UOTIISO

0
Planner failed
25

Recovery executed

RS

Position error s

O Jvves ~

Traveled distance ,_ |

0 fyvvy

Mission time
2000

Obstacle distance ! T
2 4

100 4
Energy 200 4 *
300 A

0
Task completion rate LE
. .

Fig. 7: Correlation between different performance objectives derived
from observational data.

the performance metrics (e.g., planner failed) and perfor-
mance objectives (e.g., energy consumption) under different
configuration settings to train the causal model. Note that
we use simulator data to evaluate the transferability of the
causal model to physical robots, but CURE also works with
data from physical robots. We deploy the robot in a con-
trolled indoor environment and direct the robot to navigate
autonomously to the target locations (Fig. 6a). The robot
was expected to encounter obstacles and narrow passageways,
where the locations of the obstacles were unknown prior to
deployment. The mission was considered successful if the
robot reached each of the target locations. We fixed the
goal tolerance parameters (xy_goal_tolerance=0.2, and
yaw_goal_tolerance=0.1) to determine whether a target
was reached. We defined the following properties for the
ROS Navigation Stack [44]: (i) Task completion rate: T, =
(3" TaskScompleted)/ (D Tasks); (ii) Traveled distance: Dis-
tance traveled from start to destination; (iii) Mission time:
Total time to complete a mission (iv) Position error: Euclidean
distance between the actual target position and the position
reached by the robot, Fy;s; = Z?Zl(ti —1;)2, where ¢ and
r denote the target and position reached by the robot, respec-
tively; (v) Recovery executed: Number of rotate recovery
and clear costmap recovery executed per mission; and
(vi) Planner failed: Number of times the planner failed to
produce a path during a mission.

b) Robot manipulation: We simulate the Franka Emika
Panda in Gazebo and perform a pick-and-place task using
the Moveit [57] motion planning framework. To learn a
causal model, we measure the following performance ob-
jectives under different configuration settings: (i) Average
trajectory jerk: Rate of change of acceleration, averaged
across all joints and time steps, we define average jerk =

2
LV, \/217.:1 (%‘W) , where N is the total num-

_0.24f —= MOBO
g -+++ RidgeCV-MOBO
5 0.22F
y - CURE
E 0.20f Threshold
E :
= 0.18
50.16 .
g A0 | Toefi e RidgeCV-MOBO
~0.14 , —— CURE
25 50 75 100 125 = 50 100 150 200
Energy (Wh) Iteration
(a) Pareto front (b) Hypervolume
1.0

---- MOBO
ww RidgeCV-MOBO
—— CURE

RidgeCV-MOBO

|I M 4 //‘
0.4 0 M Npy

Penalty

FAY

0.2 Ry,,
50 100 150 200 °0 50 100 150 200
Iteration Iteration
(c) Efficiency (d) Safety

Fig. 8: Effectiveness of CURE and baseline methods for the
navigation task: (a) Pareto front; (b) Hypervolume, (c) efficiency; and
(d) safety penalty response obtained by CURE and other approaches
for Husky in simulation. The vertical green line in (b) shows the
number of initial trails before fitting the GP model.

ber of time steps, a;(t) is the acceleration of joint j at time
t, and At is the time interval between consecutive time steps;
and (ii) Task execution time: The total execution time from
picking up an object to placing.

B. Evaluation

To learn a causal model from the source (a low-cost
environment), we generated the values for the configurable
parameters using random sampling and recorded the perfor-
mance metrics (the intermediate layer of the causal model
that maps the influence of the configuration options to the
performance objective) for different values of the configurable
parameters. We use a budget of 200 iterations for each method.
When running each method for the same budget, we compare
the Pareto front (PF) and Pareto hypervolume (HV'). The
Pareto front is the set of objective vectors corresponding to
all Pareto-optimal configurations in the configuration space
X. The Pareto hypervolume is commonly used to measure the
quality of an estimated Pareto front [58], [59]. We define the
Pareto front and hypervolume as follows:

PF = {(fj(z))jL, | ¢ € X is Pareto-optimal}, (11)

BV (@ ;) =A(|J I, 5],

xy€x* j=1

(12)

where HV (x*, f**f) resolves the size of the dominated space
covered by a non-dominated set x*, f"°f refers to a user-
defined reference point in the objective space, and A(.) refers
to the Lebesgue measure. In our experiments, we fixed the

400

w
(=3
=3

[N}
(=3
=3

Hypervoulme (when 7,=1)

[
(=3
=3

-

26 51 76 05 25 50 75 100

Iteration

(b) Efficiency

Iteration

(a) Hypervolume

Fig. 9: Effectiveness of CURE and baseline methods for the
manipulation task: (a) Hypervolume; and (b) Efficiency.

£t points to the maximum observed values of each objective
among all the methods.

To compare the efficiency of each method, we define an
efficiency metric n = (3, _; Tx)/(>_p—, k), where 7y is a
binary variable taking values 0 or 1, denoting the success of a
task during the k" iteration. We also compare the number of
unsuccessful execution (e.g., when the robot failed to complete
a task) and the number of constraint violations (e.g., when
the robot completed the task but violated a constraint). We
compared CURE with the following baselines:

« MOBO: We implement multiobjective Bayesian op-
timization (MOBO) using AX [l4]—an optimization
framework that can optimize discrete and continuous
configurations.

o RidgeCV [15], [16]: A feature extraction method that se-
lects the important features based on the highest absolute
coefficient. We use RidgeCV to determine the important
configuration options and generate a reduced search space
which consists of only the important configuration op-
tions. We then perform an optimization using MOBO on
the reduced search space.

C. RQI: Effectiveness

We evaluated the effectiveness of CURE in finding an
optimal configuration compared to the baselines. We collect
observational data by running a mission 1000 times from
Husky in simulation under different configuration settings and
recorded the performance objectives. In Fig. 7, the histograms
of performance objectives are depicted along the diagonal line,
while scatter plots illustrating pairs of performance objectives
are displayed outside the diagonal. The histograms of perfor-
mance objectives, namely planner failed, recovery executed,
obstacle distance, and energy, have shapes similar to one half
of a Gaussian distribution. Scatter plots depicting different
pairs of performance objectives, such as mission time, distance
traveled, and energy, exhibit positive linear relationships. We
selected energy and position error as the two performance
objectives given the imperative to incorporate uncorrelated
objectives in the multi-objective optimization framework, un-
derscored by their lowest correlation coefficient, ensuring the
diversity of the optimization criteria. We then learn a causal
model using observational data. The search space was reduced
according to the estimated causal effects on performance

N7

%)

100

(b) RidgeCV-MOBO

-» 175
)
10 1.0 150
' o
08 0.8 125 §
06 %5 0.6 \E) 100 ®
B Q
0.4 0.4 75 S
0.2 0.2
0.0 2 0 0.0 50
400 Oszy, 400 25
300 0 & 3‘1‘%‘0\
200 ™ 22, 30 100 9 \
6{9‘1 1‘(6\ 40 6‘\6{
se)
(c) CURE

Fig. 10: CURE demonstrates a denser surface response near the Pareto front and achieved higher 7;, in fewer iterations for the navigation

task, resulting in better budget utilization compared to baselines.

objectives and constraints by selecting top K configuration op-
tions (e.g., {Energy,,, x } U{PoseError;., i }U{Safety,,,x })
and performed optimization using Algorithm 1.

a) Setting: For the Husky robot, we set the objec-
tive thresholds Energyry, = 40 Wh and PoseErrort, =
0.18 m. We compute the hypervolume using Eq. (12)
by setting the f*f points at 400 for energy and
35 for position error within the coordinate system.
We incorporate the safety con-
straint h(x) by defining a
test case, where the robot
must maintain a minimum dis-
tance from obstacles to avoid
collisions. We incorporate a
user defined penalty func-
tion (Fig. 11) for each instance
0 < ah(x) < 1 that penal-
izes T if h(x) is violated. In
Fig. 11, Th; is a soft constraint
threshold and Tho is a hard
constraint threshold. That is, we penalize 7., gradually if
Thy > h(z) > Thy and give the maximum penalty if
h(z) < Thy to ensure safety. In our experiments, we set
Thy = 0.25 and Thy = 0.18. We defined the safety
constraint: T, — % fo:o aiph(x) > 0, where 0 is a user-
defined threshold. In our experiments, we set § = 0.8. For
the manipulation task, we set the f™f points at 16 for task
execution time and 113 for average trajectory jerk.

b) Results: CURE performed better than MOBO and
RidgeCV-MOBO in finding a Pareto front with a higher hyper-
volume, as shown in Fig. 8. In our experiments, we observed a
comparable Pareto front between CURE and MOBO (Fig. 8a),
which can be attributed to MOBO’s exploration of an extensive
search space that includes all possible configuration options.
On the contrary, CURE confines its exploration to a reduced
search space, composing only configuration options with a
greater causal effect on performance objectives. Although
CURE and MOBO have a similar Pareto front, CURE achieved
a higher hypervolume with a less amount of budget (Fig. 8b).
Fig. 10 illustrates the budget utilization of CURE and baseline
methods. CURE demonstrated better budget utilization, as
reflected in the increased density of purple-colored data points

Penalty

Soft
‘constraint

Thy Ty he

Hard constraint

(=}

Fig. 11: Penalty function.

surrounding the Pareto front and the achievement of a higher
7.~ in fewer iterations compared to the baseline methods.
When comparing the penalty response given, we observed
CURE selected configuration options that achieved the lower
penalty, as shown in Fig. 8d. Furthermore, CURE outper-
formed the baselines in terms of efficiency, achieving a 1.3 x
improvement over MOBO and achieved this improvement 2x
faster compared to MOBO (as shown in Fig. 8c). RidgeCV-
MOBO, however, underperformed, mainly because it was un-
able to identify the core configuration options influencing the
performance objectives (Fig. 8b, 8c, 10b). Moreover, CURE
continuously outperformed the baselines in the manipulation
task (Fig. 9). Therefore, CURE is more effective in finding
optimal configurations compared to the baselines.

D. RQ2: Transferability

Understanding CURE’s sensitivity to different degrees of
deployment changes, such as transfer of the causal model
learned from a source platform (e.g., Gazebo simulation) to a
target platform (e.g., real robot), is critical. Sensitivity anal-
ysis is especially crucial for such scenarios, considering that
distribution shifts can occur during deployment changes. We
answer RQ2 through an empirical study. We examine different
levels of severity in deployment changes, where severity is
determined by the number of changes involved. For example,
a deployment change is considered more severe when both
the robotic platform and the operating environment change, as
opposed to changes limited solely to the environment.

a) Setting: We consider Husky and Turltebot 3 in sim-
ulation as the source and Turtlebot 3 physical robot as the
target. We evaluate two deployment scenarios (Fig. 1): (i) Sim-
to-real: We trained the causal model using Algorithm 2 on
observational data obtained by conducting a mission 1000
times using Turtlebot 3 in Gazebo environment (Fig. 6b).
The robot was expected to encounter dynamic obstacles (the
trajectories of the obstacles are shown in Fig. 6b). The mission
was considered successful if Turtlebot 3 reached each of
the target locations. Subsequently, we used the causal model
learned from simulation (environment A) to the Turtlebot 3
physical robot for performance optimization in two distinct
environments (environment B and C). (ii) Sim-to-real (STR)

---- MOBO — = MOBO ---- MOBO #% MOBO
........ RidgeCV-MOBO + RidgeCV-MOBO wwee RidgeCV-MOBO RidgeCV-MOBO
—— CURE —- CURE —— CURE CURE e
= 100
0.20{ STR Env. B STR Env. B
- [— |
0.15 iy
: el
0.10 g
Py T
0.05 T~ — - | +
< 10 15 20 25 3.0 0-0075 30 50 : ET" p
R4 F Vv
209 @ 0.20f STR Env. C o1zl STR Env. C 100
3 e 501 A = ' 1
206 g0 £ 0.00t
g ¢ 0.10]'"-. 2 d."j 0.06} R
%0‘3 Vel £ 0.05 . 0.03¢ '

; | = - : =) o
005 30 50 £ 12345678 0.00 E
0.20f1 TR & P STR & PC

' STR & PC 0.06 100] STR & PC
0.15 Rl
DTt e, AN
g 0.10
0.3H% \ o
STR & PC 0.05 -,
0075 30 50 1.0 15 2.0 25 30 00075030 50

Iteration Energy (Wh)

(a) Hypervolume (b) Pareto front

Iteration

(c) Efficiency

Iteration

(d) Penalty (e) Violations and failures

Fig. 12: Transferability of CURE and baseline methods for the navigation task: (a) Hypervolume; (b) Pareto front; (c) Efficiency; (d) safety
penalty response; and (e) 6y and 7r; under varying severity of deployment changes.

& Platform change (PC): We consider the change of two
categories, the Sim-to-real and robotic platform change. In
particular, we applied the causal model used in RQ1 (learned
using Husky in simulation) to the Turtlebot 3 physical robot
in a real environment, as shown in Fig. 1. We use the
identical experimental setting for the Husky as described
in §V-C. For Turtlebot 3, we set the objective thresholds,
Energyry, = 2 Wh and PoseErrort, = 0.1 m. We compute
the hypervolume using Eq. (12) by setting the f™f points at
19.98 for energy and 3 for position error within the coordinate
system. We also set Th; = 0.25 and The = 0.15 in the
penalty function (Fig. 11).

b) Results: As shown in Fig. 12, CURE continuously
outperforms the baselines in terms of hypervolume (Fig. 12a),
Pareto front (Fig. 12b), efficiency (Fig. 12c), penalty re-
sponse (Fig. 12d), and violations and failures (Fig. 12e)
for each severity changes. Specifically, compared to MOBO,
CURE finds a configuration with 1.5x higher hypervolume
in Sim-to-real setting (low severity), and 2x higher hyper-
volume when we change the platform in addition to sim-to-
real (high severity). Moreover, CURE achieved efficiency gains
of 2.2x, and 4.6x over MOBO with low and high severity
of deployment changes, respectively. To provide insights into
the factors contributing to CURE’s enhanced performance, we
compared constraint violation 6y and task failure 7, revealing
reductions of 48% in 0y, while also demonstrating 28% lower
7r under high severity changes compared to RidgeCV-MOBO.
Therefore, we conclude that CURE performs better compared
to the baseline methods as the deployment changes become
more severe.

VI. PERFORMANCE AND SENSITIVITY ANALYSIS OF CURE

To explain CURE’s advantages over other methods, we
conducted a case study employing the same experimental setup
described in §V-C. We also demonstrate CURE’s sensitivity by

varying the top K values. Our key findings are discussed in
the following.

a) CURE’s efficient budget utilization is attributed to a
comprehensive evaluation of the core configuration options:
For a more comprehensive understanding of the optimiza-
tion process, we visually illustrate the response surfaces of
three pairs of options, each with varying degrees of ACE
in energy. Fig. 13b contains options with high ACE values,
while Fig. 13d contains only options with lower ACE values.
Options with ACE values close to the median are presented in
Fig. 13c. We observe that response surfaces with higher ACE
values are more complex compared to those with lower ACE
values. Figs. 13b-13d also show that CURE explored a range
of configurations within the range by systematically varying
configurations associated with higher ACE values than those
associated with lower ones. In particular, because they have the
lowest ACE, the pair of options involving trans_stopped_vel
and max_scaling_factor was not considered by CURE in the
optimization process, avoiding allocating the budget to less ef-
fective options. In contrast, both MOBO and RidgeCV-MOBO
wasted the budget exploring less effective options (Fig. 13d).
Note that the option pair involving Min_vel_x and scall-
ing_speed in Fig. 13b, which exhibits the highest ACE, was
not identified by RidgeCV-MOBO. We also observe that due
to having a larger search space (entire configuration space),
MOBO struggled to explore regions effectively (exhibits a
more denser data distribution) compared to CURE. In our
previous study [4], we evaluated the accuracy of the key con-
figuration options identified using causal inference through a
comprehensive empirical study. Therefore, CURE strategically
prioritize core configuration options with high ACE values,
ensuring efficient budget utilization and demonstrating a better
understanding of such complex behavior, while bypassing less
effective options.

e MOBOm RidgeCV# CURE

B ¢, nG 3 3¢ 1 G

0.35 112
104
% 0.30 96
88
» &
4 | 80
=} = 0.2
o =] 72
z 5 v 64
Q Tk 56
j‘ Ci 48
LiXx
. 40
-0.2 -0.1 .
Nodes min_vel x
(b) High ACE
8
8 g
g 8 72
= o 66
2 £ 60
= I 54
19)
& 3, 48
L < 42
A g 36

%50 0.075 0.100 0.125 0.150
trans_stopped_vel

(d) Low ACE

05 1.0 15 20
transform tolerance

(c) Median ACE

Fig. 13: (a) Significant overlap between causal structures (common
edges are represented as purple squares) developed in Husky (Gs) and
Turtlebot 3 (G:). Unique edges are represented as green and yellow
squares in Gs and G, respectively. (b) (c) and (d) represents contour
plot with options of different causal effects. The color bar indicates
the energy values, where lower values indicate better performance.

b) CURE leverages the knowledge derived from the
causal model learned on the source platform: In Fig. 13a, we
compare the adjacency matrix between causal graphs learned
from the source and target platforms, respectively. We compute
the adjacency matrix A from a causal graph G = (V, E),
where V' is the set of vertices and E is the set of edges, as
follows:
lf(l,]).EE (13)
otherwise
where (i,7) represents the edge from vertex i to vertex j.
In particular, both causal graphs share a significant overlap,
providing a rationale for CURE’s enhance performance when
transferring the causal model learned from a source (e.g, Husky
in simulation) to a target (e.g., Turtlebot 3 physical platform).
Therefore, a causal model developed on one platform or
environment can be leveraged as prior knowledge on another,
demonstrating the cross-platform applicability and usefulness
of the acquired causal understanding.

c) How sensitive is CURE when the value of top K
varies?: We investigate CURE’s performance with different K
values and how it affects the optimization process. We conduct
a single-objective optimization on the Turtlebot 3 platform to
demonstrate the sensitivity of CURE. As shown in Fig 14,
there is a trade-off between the top K values and the iterations
required to achieve high-quality solutions. Smaller K values
allow the optimization process to quickly find low energy
values but may limit exploration, leading to early plateauing.
Conversely, larger K values enable more extensive explo-
ration, leading to more gradual improvements and potentially
better solutions, but requiring more iterations. This is because,

1.60'_‘

1.55¢

[,
w
=3

1.45 Faees
1.40

1.35¢

SN
w
=4

Best Energy (Wh) value

50 100 150 200
Iterations (beyond initial trails)

Fig. 14: Sensitivity of CURE under different top K values.

when the search space is smaller, the optimization process
can exploit known good areas more effectively. In contrast, a
larger search space requires more exploration, which extends
the optimization process. One approach for selecting K is to
define a threshold on the ACE values and select options that
exceed this threshold. This can be done by using a threshold
defined as {X | XacE > pAcE + 0AcE}, Where pack is
the mean and oacg is the standard deviation of the ACE
values. Alternatively, a threshold based on the percentile of
ACE values can be employed, such as selecting options with
ACE values greater than the 75" percentile. We leave this
selection up to the practitioner as user preferences may vary
depending on the task, environment, and robotic system.

VII. DISCUSSION
A. Usability of CURE

The design we have proposed is general and extendable
to other robotic systems but would require some engineering
effort. In particular, to apply CURE to a novel problem, the
practitioner must identify (i) configuration options, (ii) perfor-
mance metrics, and (iii) key performance indicators (KPIs).
Note that the abstraction level of the variables in the causal
model depends on the practitioner and can go all the way
down to the hardware level. In defining the metrics and KPIs,
guidelines provided by the National Institute of Standards and
Technology (NIST) can be used [60], [61]. These guidelines
help classify variables as non-manipulable in the three-layer
causal model design [4], which simplifies the performance
modeling process by allowing a clear distinction between
configurable and performance variables. Moreover, we provide
various performance metrics and performance objectives for
mobile robot navigation and robot manipulation tasks in §V.

B. Limitations

a) Causal model error: The NP-hard complexity of
causal discovery introduces a challenge [62], implying that
the identified causal model may not always represent the
ground-truth causal relationships among variables. It is cru-
cial to recognize the potential for discrepancies between the
causal structure discovered and the actual structures. However,
such causal models can still be employed to achieve better
performance compared to ML-based approaches in systems
optimization [63] and debugging tasks [64], because causal
models avoid capturing spurious correlations [45].

b) Potential biases when transferring the causal model:
Caution must be exercised when reusing the entire causal
graph learned from the source platform, as differences between
causal graphs in the two platforms (as indicated by the green
and yellow squares in Fig. 13a, representing edges unique
to the source and target, respectively) can induce bias. It
is crucial to discover new causal connections (indicated by
the yellow squares in Fig. 13a) on the target platform based
on observations. Given the small number of edges to be
discovered, this task can easily be accomplished with a limited
number of observational samples from the target platform.

C. Future directions

a) Incorporating Causal Gaussian Process (CGP):
Using CGP in the optimization process has the potential
to capture the behavior of the performance objective better
compared to traditional GP [65]. Unlike GP, CGP represents
the mean using interventional estimates via do-calculus. This
characteristic renders CGP particularly useful in scenarios with
a limited amount of observational data or in areas where
observational data is not available.

b) Updating the causal model at run-time: There is
potential in employing an active learning mechanism that
combines the source causal model G, with a new causal model
G: learned from a small number of samples from the target
platform. This approach is particularly promising considering
the limitations discussed in §VII-B.

¢) Dynamically selecting top K at run-time: In our
framework, K is a hyperparameter and its value is defined
by the practitioner. Motivated by Fig 14, there is potential for
implementing a dynamic selection approach. This approach
would start with a lower K and progressively increase the K
if the objective reaches a plateau.

VIII. CONCLUSION

We presented CURE, a multi-objective optimization method
that identified optimal configurations for robotic systems.
CURE converged faster than the baseline methods and demon-
strated effective transferability from simulation to real robots,
and even to new untrained platforms. CURE constructs a
causal model based on observational data collected from a
source environment, typically a low-cost setting such as the
Gazebo simulator. We then estimate the causal effects of
configuration options on performance objectives, reducing the
search space by eliminating configuration options that have
negligible causal effects. Finally, CURE employs traditional
Bayesian optimization in the target environment, but confines
it to the reduced search space, thus efficiently identifying
the optimal configuration. Empirically, we have demonstrated
that CURE not only finds the optimal configuration faster
than the baseline methods, but the causal models learned in
simulation accelerate optimization in real robots. Moreover,
our evaluation shows the learned causal model is transferable
across similar but different settings, encompassing different
environments, mission/tasks, and new robotic systems.

xiii

APPENDIX A
ADDITIONAL DETAILS

A. Background and definitions

1) Configuration space X: Consider X; as the i'" con-

figuration option of a robot, which can be assigned a range
of values (e.g., categorical, boolean, and numerical). The
configuration space X is a Cartesian product of all options
and a configuration € X in which all options are assigned
specific values within the permitted range for each option.
Formally, we define:

« Configuration option: X1, Xo, -+, Xq4

e Option value: z1,...,24

o Configuration: * = (X1 = x1,...,Xq = z4)

« Configuration space: X = Dom(X1) x --- x Dom(Xy)

2) Partial Ancestral Graph (PAG): Each edge in the PAG
denotes the ancestral connections between the vertices. A PAG
is composed of the following types of edges:

¢ A — B: The vertex A causes B.

e A «— B: There are unmeasured confounders between
the vertices A and B.

e A o B: A causes B, or there are unmeasured con-
founders that cause both A and B.

e A oo B: A causes B, or B causes A, or there are
unmeasured confounders that cause both A and B.

For a comprehensive theoretical foundation on these ideas, we
refer the reader to [47], [66], [67]

3) Causal model G: A causal model is an acyclic-directed
mixed graph (ADMG) [68], [69] which encodes performance
variables, functional nodes (which defines functional depen-
dencies between performance variables such as how variations
in one or multiple variables determine variations in other
variables), causal links that interconnect performance nodes
with each other via functional nodes. An ADMG is defined
as a finite collection of vertices, denoted by V, and directed
edges E; (ordered pairs E;y C V x V, such that (v,v) ¢ E,
for any vertex v), together with bidirected edges, denoted by
Ej (unordered pairs of elements of V). If (v,w) € E} then
v > w, and if in addition (v,w) € E; then v & w.

4) Causal paths Px..y: We define P = (vg,v1,...
so that the following conditions hold:

7vn>

e ¥, is the root cause of the functional fault and v,, = yp.
eV0<i<n v, e VandV 0 <i<n, (v;v41) €
(E Y% E 5).

e V0 <i<j<n,v; is a counterfactual cause of v;.

o |P| is maximized.

5) Why do robotic systems fail?: A robotic system may
fail to perform a specific task or deteriorate from the desired
performance due to (i) Hardware faults: physical faults of the
robot’s equipment (e.g., faulty controller), (ii) Software faults:
faulty algorithms and/or faulty implementations of correct
algorithms (e.g., incorrect cognitive behavior of the robot),
(ii1) interaction faults: failures that result from uncertainties in
their environments. The software stack is typically composed
of multiple components (e.g., localization, navigation), each
with a plethora of configuration options (different planner
algorithms and/or parameters in the same planner algorithm).

Xiv

MOBO Posterior

Actual Function CURE Posterior
I I

7/ |
0z 0 015 010 -00s
min _vel x

O30 025 020 -015 010 005 000

min_vel x

min_vel x
Fig. 15: CURE demonstrates a better understanding about the
performance behavior compared to MOBO. The actual function was
derived from 1000 observational samples. The color bar indicates
energy values.

50} 54.2 s P
473
w0l ==Y
37.8
< 30f 33.8

20} 22.9

10f 14.4

0—oBO RidgeCV CURE
Method

Fig. 16: 6y and 7# for RQI.

TABLE I: Configuration options in move base.

Option Values/Range

Configuration Options

Husky Turtlebot 3
controller_frequency 30-70 5.0-15.0
planner_patience 30-70 3.0-70
controller_patience 3.0-7.0 10.0-20.0
conservative_reset dist 1.0-50 1.0-5.0
planner_frequency 0.0 5.0
oscillation_timeout 5.0 3.0
oscillation_distance 0.5 0.2

TABLE II: Configuration options in costmap common.

Option Values/Range

Configuration Options

Husky Turtlebot 3
publish_frequency 1.0 - 6.0 5.0 - 20.0
resolution 0.02-0.15 0.02-0.15
transform_tolerance 0.2 - 2.0 0.2-2.0
update_frequency 1.0 - 6.0 5.0 - 20.0

TABLE III: Configuration options in costmap common infla-
tion.

Option Values/Range

Configuration Options

Husky Turtlebot 3
cost_scaling_factor 1.0 - 20.0 3.0 - 20.0
inflation_radius 03-1.5 0.3-20

Similarly to software components, hardware components also
have numerous configuration options. Incorrect configurations
can cause a functional fault (the robot cannot perform a task
successfully) or a non-functional fault (the robot may be able
to finish tasks, but with undesired performance).

TABLE IV: Configuration options in DWAPIlannerROS.

. . Option Values/Range
Configuration Options

Husky Turtlebot 3
acc_lim_theta 15-52 20-45
acc_lim_trans 0.1-0.5 0.05-0.3
acc_lim_x 1.0-5.0 1.5-40
acc_lim_y 0.0 0.0
angular_sim_granularity 0.1 0.1
forward_point_distance 0.225 - 0.725 0.225 - 0.525
goal_distance_bias 5.0 - 40.0 10.0 - 40.0
max_scaling_factor 0.1 -0.5 0.1 -04
max_vel_theta 05-20 1.5-40
max_vel_trans 0.3 -0.75 0.15-04
max_vel_x 0.3 -0.75 0.15-04
max_vel_y 0.0 0.0
min_vel_theta 1.5-3.0 05-25
min_vel_trans 0.1 -0.2 0.08 - 0.22
min_vel_x -0.3 - 0.0 -0.3 - 0.0
min_vel_y 0.0 0.0
occdist_scale 0.05 - 0.5 0.01 - 0.15
oscillation_reset_angle 0.1 -0.5 0.1-0.5
oscillation_reset_dist 0.25 0.25
path_distance_bias 10.0 - 50.0 20.0 - 45.0
scaling_speed 0.15-0.35 0.15 - 0.35
sim_granularity 0.015 - 0.045 0.015 - 0.045
sim_time 0.5-35 0.5-25
stop_time_buffer 0.1-1.5 0.1-1.5
theta_stopped_vel 0.05 - 0.15 0.05 - 0.15
trans_stopped_vel 0.05 - 0.15 0.05 - 0.15
twirling_scale 0.0 0.0
vth_samples 10 - 30 20 - 50
vx_samples 3-10 10 - 30
vy_samples 0-15 0-5
xy_goal_tolerance 0.2 0.08
yaw_goal_tolerance 0.1 0.17

6) Non-functional fault: The non-functional faults (inter-
changeably used as performance faults) refer to cases where
the robot can perform the specified task but cannot meet the
specified performance requirements of the task specification.
For example, the robot reached the target location(s); however,
it consumed more energy. We define the non-functional prop-
erty N = {p1,...,pn}, where p1,...,p, represents different
non-functional properties of the robotic system (e.g., energy,
mission time) and p; is the value of jth N. The specified
performance goal is denoted as p;,. Performance failure occurs
when p; £ p;s. Extending the previous scenario, let E* be the
energy consumption during task i and let 7" be the mission
completion time. The specified performance goals for the task
are indicated as Es;_~; <= en,Ts_~; <= tt respectively.
A non-functional fault can be defined as Np = (E° >
en) V (T > tt).

TABLE V: Configuration options in moveit chmop planning.

Configuration options Option Values/Range

planning_time_limit 1.0 - 10.0
max_iterations 1-500
max_iterations_after_collision_free 1 - 10
smoothness_cost_weight 0.05-5.0
obstacle_cost_weight 0.0-1.0
learning_rate 0.001 - 0.5
smoothness_cost_velocity 0.0 - 10.0
smoothness_cost_acceleration 0.0 - 10.0
smoothness_cost_jerk 0.0 - 10.0
ridge_factor 0.0 - 0.01
use_pseudo_inverse True, False
pseudo_inverse_ridge_factor 0.00001 - 0.001
joint_update_limit 0.05 - 5.0
collision_clearance 0.05 - 2.0
collision_threshold 0.01 - 0.15
use_stochastic_descent True, False
enable_failure_recovery True, False
max_recovery_attempts 0-10

o@Position error

(b) Interaction with position error

o o —- (=
B o o® o N
Obstacle distance

(d) Interaction with safety constraint

(c) Interaction with 7¢,

Fig. 17: Pairwise interactions between high ACE configuration
options, performance objectives, and constraints, derived from ob-
servational data.

B. Additional details about experimental setup

1) Configuration Options in ROS nav core and Moveit:
Table I-IV shows the configuration space for each component
in the ROS navigation stack and Table V shows the configura-
tion space in Moveit chomp planning used in our experiments.
We fixed the goal tolerance parameters (xy_goal_tolerance,
and yaw_goal_tolerance) to determine if a target was
reached. Complex interactions between options (intra or inter
components) give rise to a combinatorially large configuration
space.

XV

60

20

%s, Position error

=)
=
o
3
N

0.075\9Q
050_%
>/
e
RN

(b) Interaction with position error

o
©

)
o
o
o
[=)]
Obstacle distance

o
N
(=}
(=]
Task success rate

o
=
)
a
(od
N
=3
~

010 & 0.029 .
0.0 3 Sip0-02 0.075,8
si 2&02(?.03 0.05 & 1171\91-&038.03 o®
im 050
. Orap, 0035 o9 anyjy,-0.046-050,2
’1“1&11[3‘,040 & g0
S

(c) Interaction with 7, (d) Interaction with safety constraint

Fig. 18: Pairwise interactions between low ACE configuration
options, performance objectives, and constraints, derived from ob-
servational data.

TABLE VI: ACE values of the configuration options.

ACE

Configuration Options Eneray gr(;soirtional T Safety
scaling_speed 199.349 65.980 0.454 0.633
min_vel_x 115.496 18.764 0.566 0.217
controller_frequency 25.370 3.695 0.050 0.019
publish_frequency 19.598 6.026 0223 0.016
sim_time 15.570 4.680 0.110 = 0.062
acc_lim_x 12.589 3.050 0.013 0.016
stop_time_buffer 12.130 3.292 0.069 0.011
inflation_radius 11.267 3.663 0.049 0.017
path_distance_bias 10.550 2.559 0.033 0.021
max_vel_theta 10.507 0.394 0.026 0.062
update_frequency 9.250 3.362 0.118 0.019
vth_samples 8.599 2.083 0.028 0.021
cost_scaling_factor 8.565 1.092 0.014 0.021
min_vel_theta 8.152 0.049 0.027 0.016
conservative_reset_dist 7.693 2.808 0.025 0.014
planner_patience 7.532 2.656 0.022 0.069
transform_tolerance 7.103 3.892 0.148 0.038
vy_samples 5.614 2.107 0.021 0.017
goal_distance_bias 5.159 1.365 0.028 0.013
vx_samples 4.901 0.847 0.088 0.014
forward_point_distance 4.877 1.100 0.032 0.006
controller_patience 4.116 4.613 0.031 0.016
acc_lim_theta 4.101 1.835 0.043 0.006
occdist_scale 2.803 0.804 0.035 0.000
acc_lim_trans 2.349 0.818 0.015 0.003
max_vel_trans 2.080 0.307 0.007 0.000
oscillation_reset_angle 1.791 0.715 0.028 0.007
max_vel_x 1.150 0.057 0.000 0.003
min_vel_trans 0.948 0.146 0.002 0.000
resolution 0.188 0.266 0.010 0.001
sim_granularity 0.114 0.000 0.001 0.000
trans_stopped_vel 0.106 0.042 0.002 0.000
max_scaling_factor 0.059 0.062 0.021 0.005
theta_stopped_vel 0.000 0.000 0.000 0.002

C. Additional details for evaluation

1) RQI additional details: We also compared 6y and 7z,
revealing reductions of 8.5% in 6y, while also demonstrating
lower 13.5% 77 compared to MOBO as shown in Fig. 16.

2) ACE values of configuration options: Table VI shows
the corresponding ACE values of the configuration options
on the performance objectives and constraints. We set the top
K = 5, represented by blue. Note that CURE reduces the
search space from 34 configuration options to 10 by eliminat-
ing configuration options that do not affect the performance
objective causally.

3) Observational data additional details: In Fig. 17 and
Fig. 18, we visualize the interactions between core config-
uration options (pairwise) and their influence on the energy,
position error, task success rate, and the safety constraint from
the observational data. We observe that the surface response
of configuration options with higher ACE values is complex
than those with lower ACE values.

APPENDIX B
ARTIFACT APPENDIX

This appendix provides additional information about CURE.
We describe the steps to reproduce the results reported in §V,
and §VII using CURE. The source code and data are provided
in a publicly accessible GitHub repository, allowing users to
test them on any hardware once the software dependencies are
met.

[Code: https://github.com/softsys4ai/cure]

A. Description

CURE is used for tasks such as performance optimization
and performance debugging in robotic systems. Given the cost
and human involvement associated with collecting training
data from physical robots for these tasks, CURE addresses
these challenges by learning the performance behavior of the
robot in simulations and transferring the acquired knowledge
to physical robots. CURE also works with data from physical
robots, we use simulator data to evaluate the transferability of
the causal model.

o In offline mode, CURE is compatible with any device

utilizing Husky and Turtlebot in Gazebo environment.

o In online mode, the performance measurements are di-
rectly taken from the physical robot. In the experiments,
we have used Turtlebot 3 platform.

« In debugging mode, users can query the root cause of a
certain functional and non-functional faults. For example,
what is the root cause of the task failure and higher energy
consumption?

« CURE can also be applied to a different robotic platform.
However, an interface is required to read the telemetry
data from the new robotic platform. We have provided a
tool for that in §B-C.

B. Setup

1) Software Dependencies: Ubuntu 20.04 LTS and ROS
Noetic are prerequisites for using CURE. Additionally, CURE
is implemented by integrating and building on top of several
existing tools:

o causal-learn for structure learning.

« ananke for estimating the causal effects.

« Ax to perform MOBO.

2) Hardware Dependencies: CURE is implemented both
in simulation and in physical robots. There are no particular
hardware dependencies to run CURE in simulation mode. To
evaluate the transferability, we used Turtlebot 3 physical robot
with ROS Noetic and Ubuntu 20.04 LTS.

3) Installation: The installation of dependencies and third-
party libraries essential for testing our approach can be ac-
complished using the following commands.
git clone git@github.com:softsys4ai/cure.git
cd ~/cure
sh requirements.sh
catkin build
source devel/setup.bash

AR RP

C. Getting measurements and observational data

To collect the observational data and measure the perfor-
mance, we developed a tool, Reval, which currently sup-
ports Husky and Turtlebot-3. Note that, observational data
collection is optional since all the datasets required to run
experiments are already included in the ./cure/data direc-
tory. However, Reval is itegrated with CURE and actively
utilized for measurement during optimization. The follow-
ing steps are solely for observational data collection. The
observational data is stored in a CSV file located in the
./cure/src/reval/results directory. The following com-
mands can be used for observational data collection.

$ cd ~/cure/src/Reval
$ python reval_husky_sim.py -v off —-e 10

D. Outlier data

We generated 10 outlier samples for both Husky and Turtle-
bot 3, each exhibiting different degrees of percentile variations
in the performance. In particular, the outlier data contains
configuration options where the robot’s performance is worse
than 80" - 90" percentile. We have included the outlier data
in the .cure/data/bug/ directory.

E. Training causal model

The causal model was trained on 1000 observational data
obtained using Reval. The following commands can be used
for training and saving the causal model. The saved model can
later be utilized for both inference purposes and transferring
knowledge. We have already included the saved models both
for Husky and Turtlebot 3 in the .cure/model directory.
$ cd ~/cure

$ python run_cure_MOO.py —-robot Husky_ sim \\
——train_data data/husky_1000.csv

F. Identifying root causes

CURE can perform debugging tasks such as identifying the
root cause of a functional and non-functional fault. The follow-
ing commands can be used to determine the root causes from
the outlier data using the saved causal model. In this example,
we have used Task success rate as a functional property,
and Energy, Positional_error as non-functional proper-
ties. We display the root causes in the terminal.

https://github.com/softsys4ai/cure
https://github.com/cmu-phil/causal-learn
https://ananke.readthedocs.io/en/latest/
https://ax.dev/
https://github.com/softsys4ai/Reval

$ cd ~/cure

$ python run_cure_MOO.py —-robot Husky_sim \\
-1 ——model model/care_Husky_sim.model \\
——outlier_data data/husky_outlier.csv \\
—-root_cause —-f Task_success_rate \\

—-nf Energy Positional_error

G. Major Claims
In this paper, we make the following major claims:

« CURE ensures optimal performance while efficiently uti-
lizing the allocated budget by identifying the root causes
of configuration bugs.

o The causal models are transferable across different
environments (Sim-to-real) and different robotic sys-
tems (Husky sim. to Turtlebot 3 physical).

H. Experiments

To support our claims, we perform the following experi-
ments.

1) Setup:

« Install the dependencies for Turtlebot 3 physical robot.

e Run roscore on remote PC.

o Run Bringup on Turtlebot 3 SBC.

2) El: Optimizing robot performance with emphasis on
faster convergence: To support this claim, we have (i) trained
the causal model, (ii) generated a reduced search space by
identifying the core configuration options, and (iii) performed
MOBO on the reduced search space. We reproduce the results
reported in Fig. 8 and Fig. 10. This experiment would require
=~ 15 hours to complete. We also compare the results with
baseline methods.

Execution. To run the experiment, the following commands
need to be executed:

Listing 1: CURE

$ cd ~/cure

$ python run_cure_MOO.py —-robot Husky_ sim \\
-1 ——model model/care_Husky_sim.model \\
——outlier_data data/husky_outlier.csv \\
—-root_cause ——f Task_success_rate ——nf \\
Energy Positional_error Obstacle_distance \\
—-top_k 5 -opt ——f1 Energy ——f2 \\
Positional_error —f1_pref 40.0 ——f2_pref \\
0.18 ——sc 0.25 ——tcr 0.8 ——hv_ref_f1 400.0 \\
—hv_ref_f2 15 ——budget 200

Listing 2: MOBO
$ cd ~/cure
$ python run_baselineMOO.py —-robot \\
Husky_sim —--f1 Energy ——f2 Positional_error \\
—f1_pref 40.0 ——f2_pref 0.18 ——sc 0.25 \\
——tcr 0.8 ——hv_ref_f1 400.0 ——hv_ref_f2 \\
15 ——budget 200

Listing 3: RidgeCV-MOBO
$ cd ~/cure
$ python run_baselineSF_MOO.py —-robot \\
Husky_sim —--data data/husky_outlier.csv —f \\
-1 ——model model/RidgeCV_Husky_sim_model \\

xvii

Task_success_rate ——nf Energy \\
Positional_error Obstacle_distance —-top_k 5 \\
-opt ——f1 Energy —--f2 Positional_error \\
——f1_pref 40.0 ——f2_pref 0.18 —-sc 0.25

—tcr 0.8 —hv_ref_f1 400.0 ——hv_ref_f2 15 \\
——budget 200

Results. The results reported in this paper are stored in a
CSV file located in the ./cure/cure_log directory. Note
that, during hypervolume computation, the execution might
show warnings if the ovserved 7/ points are higher than the
defined points. Therefore, we have computed the hypervoulme
after the experiments are over from using CSV file. Note that
this experiment is conducted once without repetition; thus,
there are no error bars.

3) E2: Demonstrating transferability: To support this
claim, we trained the (i) causal model using observational data
collected from Turtlebot 3 in simulation and reuse the causal
model in Turtlebot 3 physical robot, and (ii) causal model
using observational data collected from Husky in simulation
and reuse the causal model in Turtlebot 3 physical robot for
performance optimization. This experiment is anticipated to
require ~ 20 to 24 hours, contingent on the time needed for the
complete charging of the Turtlebot 3 physical robot’s battery.
Execution. The following commands need to be executed to
run the experiment.

Listing 4: CURE

$ cd ~/cure

$ python run_cure_MOO.py —-robot
Turtlebot3_phy -1 ——model \\
model/care_Turtlebot_sim.model \\

—-root_cause —-outlier_data \\
data/turtlebot_phy_outlier.csv \\

——f Task_success_rate ——nf Energy \\
Positional_error Obstacle_distance —-top_k 5 \\
-opt ——f1 Energy —--f2 Positional_error \\
—f1_pref 2.0 ——f2_pref 0.1 ——sc 0.25 ——tcr \\
0.8 ——hv_ref_f1 19.98 ——hv_ref_f2 3.0 \\
—init_trails 15 —-budget 50

Replace --model parameter to model/care_Husky_sim.model for
Husky sim. to Turtlebot 3 phy. experiment.

Listing 5: MOBO

$ cd ~/cure

$ python run_baselineMOO.py —-robot \\
Turtlebot3_phy ——f1 Energy ——f2 —1_opt \\
——json model/optimodels/mobo/ \\
Turtlebot3_sim_ax_client_snapshot_201 \\
Positional_error —f1_pref 2.0 ——f2_pref \\
0.1 ——sc 0.25 ——tcr 0.8 ——hv_ref_f1 \\
19.98 ——hv_ref_f2 3.0 —--budget 50

Replace --json parameter to Husky_sim_ax_client_snapshot_200
for Husky sim. to Turtlebot 3 phy. experiment.

Listing 6: RidgeCV-MOBO

$ cd ~/cure

$ python run_baselineSF_MOO.py —-robot \\
Turtlebot3_phy --data \\
data/turtlebot_phy_outlier.csv —| ——model \\
model/ RidgeCV_Turtlebot3_sim_model \\

——f Task_success_rate ——nf Energy \\
Positional_error Obstacle_distance —-top_k 5 \\

https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/

xviii

-opt ——f1

Energy —-f2 Positional_error \\

—f1_pref 2.0 ——f2_pref 0.1 ——sc 0.25 ——tcr \\

0.8 ——hv_ref_f1

19.98 ——hv_ref_f2 3.0 \\

—init_trails 15 —-budget 50

Replace --model parameter to model/RidgeCV_Husky_sim_model
for Husky sim. to Turtlebot 3 phy. experiment.

Results.

We store the result in a CSV file located in the

./cure/cure_log directory.

4) Real time result visualization: To visualize the results
in real time, execute python live_plot.py —--hv_ref_f1 19.98
--hv_ref_f2 3 in a separate terminal when an experiment is
running.

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

E. Khalastchi and M. Kalech, “On fault detection and diagnosis in
robotic systems,” ACM Computing Surveys (CSUR), vol. 51, no. 1, pp.
1-24, 2018.

H. Kim, M. O. Ozmen et al., “Patchverif: Discovering faulty patches
in robotic vehicles,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 3011-3028.

C. Jung, A. Ahad et al., “Swarmbug: debugging configuration bugs
in swarm robotics,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 868-880.

M. A. Hossen, S. Kharade et al., “Care: Finding root causes of
configuration issues in highly-configurable robots,” IEEE Robotics and
Automation Letters, vol. 8, no. 7, pp. 4115-4122, 2023.

K.-T. Xie, J.-J. Bai et al., “Rozz: Property-based fuzzing for robotic
programs in ros,” in 2022 International Conference on Robotics and
Automation (ICRA). 1EEE, 2022, pp. 6786—6792.

T. Kim, C. H. Kim et al., “Rvfuzzer: Finding input validation bugs in
robotic vehicles through control-guided testing.” in USENIX Security
Symposium, 2019, pp. 425-442.

D. Wang, S. Li et al., “An exploratory study of autopilot software bugs
in unmanned aerial vehicles,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021, pp. 20-31.

J. Garcia, Y. Feng et al., “A comprehensive study of autonomous vehicle
bugs,” in Proceedings of the ACM/IEEE 42nd international conference
on software engineering, 2020, pp. 385-396.

S. Kim, M. Liu et al., “Drivefuzz: Discovering autonomous driving bugs
through driving quality-guided fuzzing,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
2022, pp. 1753-1767.

P. Valle, A. Arrieta et al., “Automated misconfiguration repair of
configurable cyber-physical systems with search: an industrial case study
on elevator dispatching algorithms,” arXiv preprint arXiv:2301.01487,
2023.

Challenges in optimizing configurations for robotic systems in real-
world scenarios. [Online]. Available: https://github.com/softsys4ai/cure/
wiki/Real- World- Optimization-Issues

Automatic parameter tuning feature request in ROS-2 navigation.
[Online]. Available: https://github.com/ros-planning/navigation2/issues/
1276

Local planner performance problem. in ROS-2 navigation. [Online].
Available: https://github.com/ros-planning/navigation2/issues/2439
Facebook. Adaptive experimentation platform. [Online]. Available:
https://ax.dev/docs/why-ax.html

A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55-67,
1970.

scikit learn. Ridgecv. [Online]. Available: https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.RidgeCV.html

A. Binch, G. P. Das et al., “Context dependant iterative parameter
optimisation for robust robot navigation,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
3937-3943.

A. Zhou, B.-Y. Qu et al., “Multiobjective evolutionary algorithms: A
survey of the state of the art,” Swarm and evolutionary computation,
vol. 1, no. 1, pp. 3249, 2011.

D. Fox, W. Burgard et al., “The dynamic window approach to collision
avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp.
23-33, 1997.

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

(35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

R. Ariizumi, M. Tesch et al., “Multiobjective optimization based on
expensive robotic experiments under heteroscedastic noise,” IEEE Trans-
actions on Robotics, vol. 33, no. 2, pp. 468—483, 2016.

F. Berkenkamp, A. Krause et al., “Bayesian optimization with safety
constraints: safe and automatic parameter tuning in robotics,” Machine
Learning, vol. 112, no. 10, pp. 3713-3747, 2023.

B. D. Argall, S. Chernova et al., “A survey of robot learning from
demonstration,” Robotics and autonomous systems, vol. 57, no. 5, pp.
469-483, 2009.

N. Pérez-Higueras, F. Caballero e al., “Learning human-aware path
planning with fully convolutional networks,” in 2018 IEEFE international
conference on robotics and automation (ICRA). 1EEE, 2018, pp. 5897—
5902.

M. Pfeiffer, M. Schaeuble er al., “From perception to decision: A
data-driven approach to end-to-end motion planning for autonomous
ground robots,” in 2017 ieee international conference on robotics and
automation (icra). 1EEE, 2017, pp. 1527-1533.

G. Kahn, P. Abbeel et al., “Badgr: An autonomous self-supervised
learning-based navigation system,” IEEE Robotics and Automation Let-
ters, vol. 6, no. 2, pp. 1312-1319, 2021.

T. Chen and M. Li, “Do performance aspirations matter for guiding
software configuration tuning? an empirical investigation under dual
performance objectives,” ACM Transactions on Software Engineering
and Methodology, 2022.

N. Siegmund, A. Grebhahn et al., “Performance-influence models for
highly configurable systems,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, 2015, pp. 284-294.
H. Ha and H. Zhang, “Performance-influence model for highly con-
figurable software with fourier learning and lasso regression,” in 2079
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2019, pp. 470-480.

A. Rai, R. Antonova et al., “Using simulation to improve sample-
efficiency of bayesian optimization for bipedal robots,” The Journal of
Machine Learning Research, vol. 20, no. 1, pp. 1844-1867, 2019.

R. Kaushik, K. Arndt er al., “SafeAPT: Safe simulation-to-real robot
learning using diverse policies learned in simulation,” IEEE Robotics
and Automation Letters, vol. 7, no. 3, pp. 6838-6845, 2022.

P. Valov, J. Guo et al., “Transferring Pareto frontiers across hetero-
geneous hardware environments,” in Proceedings of the ACM/SPEC
International Conference on Performance Engineering, 2020, pp. 12—
23.

M. S. Igbal, Z. Zhong et al., “Cameo: A causal transfer learning ap-
proach for performance optimization of configurable computer systems,”
arXiv preprint arXiv:2306.07888, 2023.

C. Zhou, X. Ma et al., “Examining and combating spurious features un-
der distribution shift,” in International Conference on Machine Learning.
PMLR, 2021, pp. 12857-12867.

J. Pearl, Causality. Cambridge university press, 2009.

P. Spirtes, C. N. Glymour et al., Causation, prediction, and search. MIT
press, 2000.

A. Fariha, S. Nath et al., “Causality-guided adaptive interventional
debugging,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, 2020, pp. 431-446.

B. Johnson, Y. Brun et al., “Causal testing: understanding defects’ root
causes,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, 2020, pp. 87-99.

C. Dubslaff, K. Weis et al., “Causality in configurable software sys-
tems,” in Proceedings of the 44th International Conference on Software
Engineering, ser. ICSE ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 325-337.

Y. Kiiciik, T. A. D. Henderson et al., “Improving fault localization by
integrating value and predicate based causal inference techniques,” in
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE), 2021, pp. 649-660.

M. Diehl and K. Ramirez-Amaro, “Why did i fail? a causal-based
method to find explanations for robot failures,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 8925-8932, 2022.

R. B. Abdessalem, A. Panichella et al., “Automated repair of feature
interaction failures in automated driving systems,” in Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2020, pp. 88-100.

T. P. Lillicrap, J. J. Hunt et al., “Continuous control with deep rein-
forcement learning,” arXiv preprint arXiv:1509.02971, 2015.

A. Gupta, A. Murali et al., “Robot learning in homes: Improving gen-
eralization and reducing dataset bias,” Advances in neural information
processing systems, vol. 31, 2018.

ROS navigation stack. [Online]. Available: http://wiki.ros.org/nav_core

https://github.com/softsys4ai/cure/wiki/Real-World-Optimization-Issues
https://github.com/softsys4ai/cure/wiki/Real-World-Optimization-Issues
https://github.com/ros-planning/navigation2/issues/1276
https://github.com/ros-planning/navigation2/issues/1276
https://github.com/ros-planning/navigation2/issues/2439
https://ax.dev/docs/why-ax.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html
http://wiki.ros.org/nav_core

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

C. Glymour, K. Zhang et al., “Review of causal discovery methods based
on graphical models,” Frontiers in genetics, vol. 10, p. 524, 2019.

L. M. Connelly, “Fisher’s exact test,” MedSurg Nursing, vol. 25, no. 1,
pp. 58-60, 2016.

D. Colombo, M. H. Maathuis et al., “Learning high-dimensional directed
acyclic graphs with latent and selection variables,” The Annals of
Statistics, pp. 294-321, 2012.

M. Kocaoglu, S. Shakkottai et al., “Applications of common entropy
for causal inference,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato et al., Eds., vol. 33. Curran
Associates, Inc., 2020, pp. 17514-17525.

B. Shahriari, K. Swersky et al., “Taking the human out of the loop: A
review of bayesian optimization,” Proceedings of the IEEE, vol. 104,
no. 1, pp. 148-175, 2015.

J. Knowles, “Parego: A hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems,” IEEE
transactions on evolutionary computation, vol. 10, no. 1, pp. 50-66,
2006.

D. Hernandez-Lobato, J. Hernandez-Lobato et al., “Predictive entropy
search for multi-objective bayesian optimization,” in International con-
ference on machine learning. PMLR, 2016, pp. 1492-1501.

W. Ponweiser, T. Wagner et al., “Multiobjective optimization on a
limited budget of evaluations using model-assisted-metric selection,”
in International conference on parallel problem solving from nature.
Springer, 2008, pp. 784-794.

S. Daulton, M. Balandat er al., “Differentiable expected hypervolume
improvement for parallel multi-objective bayesian optimization,” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 9851—
9864, 2020.

C. K. Williams and C. E. Rasmussen, “Gaussian processes for machine
learning,” MIT Press, 2006.

F. Hutter, “Automated configuration of algorithms for solving hard com-
putational problems,” Ph.D. dissertation, University of British Columbia,
2009.

B. Shahriari et al., “Taking the human out of the loop: a review of
bayesian optimization,” Tech. Rep., 2015.

ROS Movelt. [Online]. Available: https://moveit.ros.org/

Y. Cao, B. J. Smucker et al., “On using the hypervolume indicator to
compare pareto fronts: Applications to multi-criteria optimal experimen-
tal design,” Journal of Statistical Planning and Inference, vol. 160, pp.
60-74, 2015.

E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-
parative case study and the strength pareto approach,” IEEE transactions
on Evolutionary Computation, vol. 3, no. 4, pp. 257-271, 1999.

T. A. Zimmerman, Metrics and key performance indicators for robotic
cybersecurity performance analysis, 2017.

J. Falco, K. Van Wyk et al., “Performance metrics and test methods for
robotic hands,” DRAFT NIST Special Publication, vol. 1227, pp. 2-2,
2018.

M. Chickering, D. Heckerman et al., “Large-sample learning of bayesian
networks is np-hard,” Journal of Machine Learning Research, vol. 5, pp.
1287-1330, 2004.

C. Dubslaff, K. Weis et al., “Causality in configurable software sys-
tems,” in Proceedings of the 44th International Conference on Software
Engineering, 2022, pp. 325-337.

M. A. Hossen, S. Kharade er al., “Care: Finding root causes of
configuration issues in highly-configurable robots,” IEEE Robotics and
Automation Letters, vol. 8, no. 7, pp. 415-4122, Jul. 2023.

V. Aglietti, X. Lu et al., “Causal bayesian optimization,” in Proceedings
of the Twenty Third International Conference on Artificial Intelligence
and Statistics, ser. Proceedings of Machine Learning Research, S. Chi-
appa and R. Calandra, Eds., vol. 108. PMLR, 26-28 Aug 2020, pp.
3155-3164.

D. Colombo and M. H. Maathuis, “Order-independent constraint-based
causal structure learning,” The Journal of Machine Learning Research,
vol. 15, no. 1, pp. 3741-3782, 2014.

J. Pearl, M. Glymour et al., Causal inference in statistics: A primer.
John Wiley & Sons, 2016.

T. Richardson and P. Spirtes, “Ancestral graph markov models,” The
Annals of Statistics, vol. 30, no. 4, pp. 962-1030, 2002.

R. J. Evans and T. S. Richardson, “Markovian acyclic directed mixed
graphs for discrete data,” The Annals of Statistics, vol. 42, no. 4, pp.
1452 — 1482, 2014.

Md Abir Hossen received the B.S. degree in
Electrical and Electronics Engineering from Amer-
ican International University-Bangladesh, Dhaka,
Bangladesh, in 2017 and the M.S. degree in Electri-
cal Engineering from South Dakota School of Mines
and Technology, Rapid City, SD, USA in 2021. He
is currently working toward a Ph.D. degree in Com-
puter Science with the Artificial Intelligence and
Systems Laboratory (AISys), University of South
Carolina, SC, USA.

His research interests include artificial intelligence

and robot learning. Further information about his research can be found at
https://sites.google.com/view/abirhossen/.

namic environments

Sonam Kharade received the M.Tech., B.Tech., and
Ph.D. degree in Electrical Engineering from Veer-
mata Jijabai Technological Institute (VJTI), Mum-
bai, India. She was previously a Postdoc at the
AlSys, University of South Carolina, SC and is now
a Postdoc at Argonne National Laboratory, USA.
Her research focuses on the development of mathe-
matical frameworks in control theory, incorporating
machine learning techniques, and applying them to
practical problems across various domains, such as
robotics, and power systems.

Jason M. O’Kane is Professor of Computer Science
and Engineering at Texas A&M University, TX,
USA. He received the B.S. degree from Taylor
University, Upland, IN, USA and the M.S. and
Ph.D. degrees from the University of Illinois at
Urbana-Champaign, Urbana, IL, USA, all in com-
puter science. His research interests include algorith-
mic robotics, planning under uncertainty, artificial
intelligence, computational geometry, and motion
planning.

Bradley Schmerl a principal systems scientist at
the Institute for Software Research at Carnegie
Mellon University, Pittsburgh. His research inter-
ests include software architecture, self-adaptive sys-
tems, and software engineering tools. Schmerl re-
ceived a Ph.D. in computer science from Flinders
University, Adelaide, Australia. Contact him at
schmerl@cs.cmu.edu.

David Garlan is a professor and associate dean
of the School of Computer Science at Carnegie
Mellon University, Pittsburgh, Pennsylvania, 15213,
USA. His research interests include autonomous and
self-adaptive systems, software architecture, formal
methods, explainability, and cyberphysical systems.
Garlan received a Ph.D. in computer science from
Carnegie Mellon University. He is a Fellow of the
IEEE. More information about him can be found
at https://www.cs.cmu.edu/~garlan/. Contact him at
garlan@cs.cmu.edu.

Pooyan Jamshidi is an assistant professor in the
Department of Computer Science and Engineering
at the University of South Carolina, where he directs
the AISys lab. He holds a Ph.D. in Computer Science
from Dublin City University and has completed post-
doctoral research at Carnegie Mellon University and
Imperial College London. Pooyan has also worked
in the industry; most recently, he was a visiting
researcher at Google in 2021. Dr. Jamshidi, who
received the USC 2022 Breakthrough Stars Award,
specializes in developing resilient systems for dy-

. His work integrates various areas such as distributed

systems, statistical and causal learning, and robotics, focusing on areas like
autonomous systems, Al accelerators, and software/hardware co-design.

https://moveit.ros.org/
https://sites.google.com/view/abirhossen/
https://www.cs.cmu.edu/~garlan/

	Introduction
	Related Work
	Problem Formulation and Challenges
	Motivating scenario
	Problem formulation
	Challenges

	CURE: Causal Understanding and Remediation for Enhancing Robot Performance
	Phase I: Reducing the search space via causal inference
	Phase II: Performance optimization through black-box optimization with limited budget

	Experiments and Results
	Experimental setup
	Evaluation
	RQ1: Effectiveness
	RQ2: Transferability

	Performance and sensitivity analysis of CURE
	Discussion
	Usability of CURE
	Limitations
	Future directions

	Conclusion
	Appendix A: Additional Details
	Background and definitions
	Configuration space X
	Partial Ancestral Graph (PAG)
	Causal model G
	Causal paths PX Y
	Why do robotic systems fail?
	Non-functional fault

	Additional details about experimental setup
	Configuration Options in ROS nav core and Moveit

	Additional details for evaluation
	RQ1 additional details
	ACE values of configuration options
	Observational data additional details

	Appendix B: Artifact Appendix
	Description
	Setup
	Software Dependencies
	Hardware Dependencies
	Installation

	Getting measurements and observational data
	Outlier data
	Training causal model
	Identifying root causes
	Major Claims
	Experiments
	Setup
	E1: Optimizing robot performance with emphasis on faster convergence
	E2: Demonstrating transferability
	Real time result visualization

	References
	Biographies
	Md Abir Hossen
	Sonam Kharade
	Jason M. O'Kane
	Bradley Schmerl
	David Garlan
	Pooyan Jamshidi

