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Abstract— Motivated by the need for tools to aid in the
design of effective robots, we examine how to determine the role
that particular sensing and actuator resources play in enabling
a robot to achieve useful ends. Rather than merely asking
“will this sensor suffice?” we classify general modifications
to the set of sensors and actuators based on the feasibility
of accomplishing given tasks using these sets. The goal is to
probe the boundary between modifications that are destructive

on a given planning problem, and modifications that are not.
Since this boundary itself can be impractically large, classic
search methods are of no avail to summarize discriminatory
features on this boundary. Instead, we propose a decision tree
learning method to efficiently construct a compact implicit
representation of the boundary. The idea is to allow the designer
to use prior knowledge to constrain the search, then use the
tool to probe the boundary subject to those constraints, gaining
insight into the information necessary for a robot to ensure task
achievement. Ultimately we envision a interactive process where
additional constraints are repeatedly included as new light is
shed. We aim to pave the way for interactive tools that help
the roboticist navigate the complexities of the design space.
We describe an implementation of this approach along with
experimental results that show that the method can construct
decision trees with explanatory value. Our experiments suggest
that some domain knowledge (specifically picking features that
emphasize monotonicity) substantially improves running-time
with only negligible reduction in accuracy.

I. INTRODUCTION

The last two decades of research have seen substantial

progress on algorithms for robots—we now have mature

reusable software, such as planners and packages for pro-

cessing and fusing sensor readings, which run on-board of

robots. Large strides have been made in applications and

libraries for validating, verifying, and simulating robots and

their controllers. Classification and regression methods have

also become commodities that the nonspecialist can use.

Software tools to help with design decisions, however, have

lagged behind. When it comes to making informed choices

about which sensors and actuators are required for a robot

to carry out some mission, perhaps to a specific level of

performance, the roboticist has little automated support.

In order to tame design problems, our philosophy is that

one requires tools that are iterative and interactive. Tools

without these characteristics will do too little to help navigate

the morass of design possibilities. We are interested in

using automation to help explore and elucidate structure

within the problem domain, the task, and the robot’s context.
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Naturally, we wish to judge tools by the insights their outputs

provide the designer, but the underlying challenges include:

(i) evaluating a design is a costly (computational) operation;

(ii) it remains far from clear how and what to communicate

to the human user in order to stimulate design insight.

The approach taken in this paper is to begin with a

specification of task-achieving functionality, and then to

explore questions phrased in terms of destructiveness of

modifications made to sensors or actuators with respect to

the requisite functionality. A modification operation —for

example, the substitution of sensors or actuators for weaker

ones— is said to be non-destructive if it still permits the

robot to realize the desired functionality. In this paper, the

specification of task constraints is implicit in the artefact

provided as input—a discrete transition system called a

procrustean graph. This contrasts with most formal synthesis

approaches wherein some language, typically of a declarative

form, is used to provide a specification.

Another distinguishing feature of our approach is that

questions about destructiveness are posed over the set of

conceivable sensors and actuators, rather than the particular

ones we might have at hand. Doing so gets to the very

kernel of what information must be obtained or preserved

in the circumstances under consideration. But it has the

disadvantage that the space is enormous. For this reason,

we are interested in how a user can introduce structure in

order to express some forms of domain knowledge.

The method proposed in this paper drills down into the

informative boundary between successful and unsuccessful

designs. This is done by collecting discriminatory features so

that an assay of these features helps the human understand

the fundamental elements of the problem domain. We adopt a

decision tree learning approach to identify sparse but critical

features to summarize crucial resources (or informational

aspects of those resources) which play an important role in

the robot’s task. Decision trees are among the learning tools

that provide the most straightforward interpretation. In this

setting, the internal nodes of the decision tree are labeled

with specific elements of information that may or may not

be available in a particular design, and the leaves are labeled

with bits indicating whether designs that reach those leaves

are successful or not. The intuition is that, in a decision tree

induced by an appropriate training set, internal nodes nearer

to the root of the tree are likely to correspond to elements

of information that are particularly important for identifying

successful designs.

There are two main contributions in this paper: First, we

present a method to induce a decision tree that gives us

the information needed to decide what set of actions and



observations are crucial in a given planning problem. Second,

we evaluate our method by presenting the results of our

experiments, where the was method employed on different

problem sizes. We show that domain knowledge can be

effectively injected into the system via the feature extraction

step. For our simple examples, this structure improves ef-

ficiency substantially —giving some evidence for reasonable

scalability of the approach— with no loss to output accuracy.

II. RELATED WORK

Though this work has a practical bent, it asks questions

about the sufficiency, interchangeability, and the necessity

of sensors, actuators, or both (which we call resources,

more broadly) for some given task. These questions relate

to some of the most fundamental concerns of any theory for

robots, and are considerations that have a long history of

development within robotics (e.g., [1], [2], [3], [4], [5], [6],

[7], [8], [9]).

Beyond those classical works, the recent research most

closely related to this paper examines relationships between

sensors in detail, in a variety of ways, and in order to

propose abstractions to aid in thinking about design prob-

lems. In [10], the authors compare pairs of robotic systems

expressing power by using idea of one system simulating

(in an informational sense) another. That paper, and a sub-

sequent one [11], makes extensive use of the concept of

dominance, even building a lattice where the partial order

of the lattice is the dominance relation that is close to the

notion of a refinement relation we use in this paper. A

different approach, introduced by [12], compares families

of parameterizable sensors by seeking maximal performance

from sensors for a given task, and then performing an

analysis of the relationship between power and performance.

Using Mean-Square-Error as a metric of performance, the

authors are able to examine the effects of structured noise,

showing that different prior information affects the relation

between families of sensors—culminating in a comparison

of standard and event-based cameras. Also related, though

without the design-centric perspective we adopt, is [13],

wherein the authors show how to identify abstractions which

are necessary and sufficient for a given planning problem.

Within the context of automated synthesis, Raman and Kress-

Gazit [14] introduce an algorithm that produces an explana-

tion for why some specification cannot be fulfilled. Finally,

Censi [15] examines the dual problem, showing results that

suggest one could construct a catalog of components (sensors

and actuators), and then search over compositions from this

catalog—somewhat surprisingly, this may even be tractable

for certain classes of components.

In this paper, the task of a robot is expressed as a planning

problem. Sensors and actuators then provide the means by

which the goal is to be achieved. One representation that

is sufficiently rich to express planning problems, plans,

degradation and modifications to resources, is the notion

of the p-graph described in [16], [17]. In the next section

a compressed definition of these structures is presented to

ensure that the present paper is (mostly) self-contained.

The definition will be seen to be a generalization to some

earlier models, including LaValle’s [18] combinatorial filters

for modeling discrete state estimation problems. That work

differs from ours in the way actions and observations are

modelled: his states represent actions exclusively, not obser-

vations, and in each state only one action may be executed.

In Schoppers [19], universal plans describe actions to

be taken by the robot for any of the circumstances that

may arise and, each possible observation is followed by an

appropriate action. A universal plan is a p-graph with only

one observation state. In non-deterministic graphs [20], non-

determinism in actions is modelled by edges that encapsulate

a set of possible outcomes, instead of one for each action

edge, as in p-graphs. Some early studies (see [8], [21],

[7]) examined how to achieve goals without sensors. There,

the plans produced consist exclusively of a sequence of

consecutive actions, and observations play no role—these

again have a p-graph representation.

The preceding discussion emphasizes generality and, as

our algorithms operate on p-graph inputs, the variegated

cases above are all possible with the approach. But the

primary utility of p-graphs to us here is as a conveniently

manipulable data-structure to enable automated processing

of plans, planning problems, and filters—as is essentially

demonstrated in [22].

III. PRELIMINARIES AND BASIC DEFINITIONS

In order to introduce the problem that we tackle in this

paper, in this section we first present our model for robot-

environment interactions (p-graphs) and the model for how

these interactions can be altered (label maps). The definitions

provided here are condensed versions of more detailed,

comprehensive, formal definitions that appear in [17].

A. Procrustean graphs and planning problems

We model the world using p-graphs, which represent the

robot’s interactions with its environment as a sequence of

actions and observations, the former executed by the robot,

the latter being responses the robot receives through its

sensors from the environment after performing each action.

Definition 1 (p-graph). A procrustean graph (p-graph) is an

edge-labelled bipartite directed graph in which

1) the finite vertex set V , of which each member is called

a state, can be partitioned into two disjoint subsets, called

the action vertices Vu and the observation vertices Vy, with

V =Vu∪Vy,

2) each edge e originating at an action (observation) vertex

is labeled with a set of actions U(e) (observations Y (e))
and leads to an observation (action) vertex,

3) a non-empty set of states V0 are designated as ini-

tial states, which may be either exclusively action states

(V0 ⊆Vu) or exclusively observation states (V0 ⊆Vy).

Labels are sets of either exclusively actions, or, exclu-

sively observations. We write U , called the action space, to

represent the union of all labels attached to the outgoing

edges from all action vertices. Similarly, we write Y , called
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(a) The problem of moving from S to G in the grid of Figure 1b is
encoded as a p-graph. Circle nodes are observation nodes and square
nodes are action nodes. Observation 0 means the robot is not in the
goal region and observation 1 indicates that the robot is in the goal
region.
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(b) The grid environ-
ment in which the
robot moves.

Fig. 1: A grid environment with initial node S, goal region

cells G and a set of obstacle cells. The robot can move in

two directions, up and right, and has a goal sensor.

the observation space, to represent the union of all labels

attached to the outgoing edges from all observation vertices.

P-graphs describe sequences of actions and observations.

A particular sequence of actions and observations that,

beginning at initial state, can be traced on a p-graph is called

an execution. Here tracing involves traversing an edge with

either an action or an observation that is an element within

the set labelling the edge.

A planning problem is a p-graph G equipped with a subset

of states, Vgoal, distinguished so as to be part of the goal

region. A plan is a p-graph P along with a set of states, Vterm,

we call its termination region. Thus, p-graphs are effective

at modelling both and, surprisingly, with identical formal

structures.

A plan (P,Vterm) is said to solve a planning problem

(G,Vgoal) if there exists an integer k that bounds the length

of all sequences that are executions on both graphs. Addi-

tionally, we require that the plan handle every observation

it can receive from the world, and the world every action

from the plan. Finally, every execution must either arrive at

a state Vgoal when within Vterm, or be the prefix of some

such sequence. (See [17] for the precise formalization of the

required notions of safety, liveness, and correctness.)

Figures 1a and 1b show a simple example of a planning

problem, and Figure 2 a plan which solves that problem.
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Fig. 2: A plan that solves the planning problem of Figure 1b.

B. Label maps and destructiveness

We formalize modifications to a robot’s sensors or actua-

tors as changes to the p-graph. We consider a class of such

changes in the form of a transformation from one p-graph to

another, expressing a change in capabilities by transforming

sets of actions and observations to new ones.

Definition 2 (action, observation, and label maps). An

action map is a function U →U ′ mapping from an action

space U to another action space U ′. Likewise, an observation

map is a function Y→Y ′ mapping from an observation space

Y to another observation space Y ′. A label map combines a

sensor map hy and an action map hu:

h(a) =

{

hy(a) if a ∈ Y

hu(a) if a ∈U
. (1)

Definition 3 (applying a map on a p-graph). Given a label

map h and a p-graph G, we say h is applied on G, if for

each label l in the p-graph, we replace each a∈ l with h(a).
The resulting p-graph is denoted as h(G).

We are interested in determining whether applying map h

is destructive on a planning problem. In other words, does

applying the map preclude the existence of a plan to solve

the planning problem?

Definition 4 (destructive). A label map h is destructive on a

set of solutions S to planning problem (G,Vgoal) if, for every

plan (P,Vterm) ∈ S, (h(P),Vterm) cannot solve (h(G),Vgoal). If

S is the set of all plans that solve (G,Vgoal), then we say h

is strongly destructive.

We are interested in identifying the strongly destructive

maps for a given planning problem. The next proposition

shows that we can do so by applying the map on the planning

problem itself, and checking whether the new planning

problem has any solutions.

Proposition 1 (checking strong destructiveness). Given a

planning problem (G,Vgoal) for which at least one solution

exists, along with a label map h, if no plan exists that solves

(h(G),Vgoal) then h is strongly destructive on (G,Vgoal).

Proof. If no plan exists that solves (h(G),Vgoal), then it can’t

be a (h(P),Vterm) for any (P,Vterm).

To decide if there exists a solution for a planning problem

(G,Vgoal), one can run a backchaining algorithm on G. The



Algorithm 1: SOLVABLE( (G,Vgoal) )

1 G← G.ToStateDetermined()
2 Solution←∅

3 for v in Vgoal do

4 Solution.add(v)
5 Changed← False

6 while NOT Changed do

7 Changed← False

8 for v in V (G) do

9 if v is an ‘action’ node then

10 if exists a v′ ∈V (G) that v is connected to

and v′ ∈ Solution then

11 Solution.add(v)
12 Changed← True

13 if v is an ‘observation’ node then

14 if All nodes v′1...v
′
k that v is connected to

are in Solution then

15 Solution.add(v)
16 Changed← True

17 if all v ∈V0 are in Solution then return True

18 return False

algorithm constructs a solution incrementally by identifying

nodes in the planning problem from which we can guarantee

to reach the goal, starting with Vgoal.

The pseudocode for the backchaining algorithm is pre-

sented in Algorithm 1. In the first line, the p-graph of the

planning problem will be converted to a state-determined

equivalent p-graph, where each node’s outgoing edges have

disjoint labels. For any given p-graph an equivalent state-

determined p-graph exists, and an algorithm to generate it

is known [17], [16]. In Algorithm 1, each action node will

be added to that solution if any of its outgoing edges is

connected to a node that has previously been added to the

solution (Line 9). For observation nodes, each observation

node will be added to a solution if all of its outgoing

edges are connected to a node that is already in the solution

(Line 13). This different treatment is based on the fact that

in observation nodes, what observation the sensor gets is un-

known, therefore, any plan that solves the planning problem

should be able to solve it for all possible observations it gets

in any of its observation nodes.

The algorithm continues until the while loop updates no

vertices, then no other vertex remains to be added to the

solution. The final if statement checks whether all initial

vertices have a plan, and if so returns True. Otherwise False

is returned.

Now we have the two required pieces that we need in the

next section: label maps to model possible changes to the

set of actions and observations, and, an algorithm to decide

whether those changes are strongly destructive.

IV. NON-DESTRUCTIVENESS BOUNDARY

Our goal, given a planning problem, is to generate a

description of the boundary between those maps that are

strongly destructive on the given planning problem, and those

maps which are not. To formally define the problem the

following definitions are required.

Definition 5 (equivalence). We say r and s, which either

both are actions or both are observations, are equivalent

under map h, if h−1(h(r)) = h−1(h(s)).

We have used h−1(S) to denote the preimage set of S.

Therefore the equality above is on sets.

This equivalence relation is important because, for p-

graphs with action space U and observation space Y , we

can fully characterize ability of a map to be destructive,

based on the equivalence relation it induces on U ∪Y . That

is, by considering all partitions of U ∪Y , we can effectively

consider all label maps on that p-graph. Each element of

each such partition is an equivalence class of some r ∈U ∪Y

under the maps that induce that partition. The intuition is that

members of equivalence classes are indistinguishable, since

they are mapped to a common element. Using the definition

of equivalence, we define the refinement relation in the usual

way.

Definition 6 (refinement relation). Given two maps, h :

U1 ∪Y1→U ′1 ∪Y ′1 and g : U2 ∪Y2→U ′2 ∪Y ′2, we say h is a

refinement of g, denoted h≺ g, if for each label y′1 ∈U ′1∪Y ′1,

there exists a y′2 ∈U ′2∪Y ′2, such that h−1(y′1)⊂ g−1(y′2). We

say maps h and g are comparable if either h≺ g or g≺ h.

If h ≺ g, then map h possesses greater distinctiveness

between images of the elements in its domain. In other

words, by having more “injective-ness,” h preserves more

information than g when applied to a common set of ele-

ments. Therefore g is more likely to endanger the robot’s

ability to reach its goals. The refinement relation defines a

partial order over the set of all maps that could be applied

on a p-graph.

Based on these two definitions, now we can define the

boundary of non-destructiveness.

Definition 7 (non-destructiveness boundary). Given a

planning problem (G,Vgoal), we say that a map m is on the

non-destructiveness boundary if m is not strongly destructive

and for any other map m′ comparable to m:

1) if m≺ m′ then m′ is strongly destructive.

2) if m′ ≺ m then m′ is not strongly destructive.

The objective in this paper, given a planning problem, is

to find those crucial actions or observations or combinations

thereof that distinguish the boundary maps from all other

maps. The idea is to find the non-destructiveness boundary of

a planning problem, without performing the destructiveness

test on all possible maps. This is because the space of all

possible maps is extremely large even for comparatively

small planning problems, and therefore using classic search

methods will be of no avail. In fact, it is known that the

problem of finding such boundary is NP-hard [16].



V. LEARNING THE NON-DESTRUCTIVENESS BOUNDARY

Next, we describe a method for learning a compact, legible

description of the non-destructiveness boundary for a given

planning problem. Our approach uses decision tree induction

along with applications of Theorem 1, which enables us to

decide whether a map is strongly destructive on a planning

problem. We generate training data automatically via random

samples from the space of all label maps for the given

planning problem.

A. Feature Extraction

Label maps themselves, being functions U ∪Y →U ′∪Y ′,

cannot be used as features directly. Precisely how to do

this involves some freedom of choice and, as will be shown

by our experimental results, affects the performance (output

quality and running-time) of the whole process. Our ultimate

vision is to probe the destructiveness boundary interactively:

feature extraction is one place where domain knowledge can

inform and structure the learning process. Consequently, we

describe three feature extraction methods:

1) The full pairwise feature set: We extract one feature

for each pair of distinct actions and each pair of distinct ob-

servations. Specifically, for a given map h over n actions and

m observations, we encode h using the m(m−1)+n(n−1)
feature vector [xuiu j

,xykyℓ ] where i, j ∈ {1, . . . ,n}, i 6= j, and

k, ℓ ∈ {1, . . . ,m},k 6= ℓ, and

xab =

{

0 if h(a) = h(b)

1 if h(a) 6= h(b)
.

Each 1 in the feature vector indicates that the corresponding

pair of labels is distinguishable, and each 0 indicates they

are indistinguishable.

For example, given maps h1 and h2, with h1(a) =
a′,h1(b) = a′,h1(c) = c′,h1(d) = d′ and h2(a) = c′,h2(b) =
b′,h2(c) = c′,h2(d) = b′. The feature vectors for h1 and h2

will be [0 1 1 1 1 1] and [1 0 1 1 0 1], respectively.

2) Monotone feature set: In considering all pairwise fea-

tures, one is disregarding any notion of action or observation

locality. To do better, suppose that one has a meaningful

ordering on the set of labels. Then, for some particular prob-

lems, we might expect that compact sets of labels could be

usefully treated equivalently and the (comparatively sparser)

boundaries between those sets might be where important

distinctions ought to be made. In such cases, something like

step-function between the sets can encode this information.

The label map itself need not be monotone, but we can

bias selection of features by considering pairs, as in the

previous case, but now paying attention only to neighboring

actions and observations. The result is that one has the

substantially smaller (n−1)+(m−1) vector: [xuiui+1
,xykyk+1

]
where i ∈ {1, . . . ,n− 1}, and k ∈ {1, . . . ,m− 1}, with the

analogous definition of the basic elements.

3) Randomized feature set: Whatever the observed dif-

ferences in performance of two feature sets, any comparison

that ignores vastly different sizes inevitably fails to address

the question of whether sparsity is playing an important role.

To resolve this dilemma, we introduce a baseline feature

set: [xuiu j
,xykyℓ ] where the indices were selected uniformly

at random to produce a subset of the all pairwise features

but with only (n+1)+(m−1) elements, the first term being

actions, the second observations.

B. Sampling

To form a set of training samples, we generate maps

uniformly at random from the space of all partitions of U∪Y .

Pseudocode for an algorithm to accomplish this appears as

Algorithm 2. Given the domain of the maps as input, the

algorithm’s first for loop initializes a set equivalence classes

with empty sets. The second loop randomly assigns each

element of the domain to one of the classes. The third nested

loop assembles the final map, in which all members of each

equivalence class are mapped to a common element (without

loss of generality, the first member of that class).

C. Feature Selection

The full pairwise feature vector in the previous section

grows quickly and becomes impracticable for sufficiently

large problems. To avoid the effects of enormous vectors on

the tree induction process, we select features by choosing

only the most informative features, removing the features

with low variance across the training set. As the features

are boolean, variance is computed via an expression for

Bernoulli random variables, where p is the feature’s prob-

ability of being 1 among all the samples, so that Var[x] =
p(1− p). We choose a non-negative real number parameter

τ , and eliminate any feature x for which Var[x]< τ .

D. Decision Tree Induction

We use the Classification and Regression Trees algo-

rithm (CART) [23] to induce a decision tree for the non-

destructiveness boundary. The idea is for a given planning

problem, we sample the space of all maps for that problem,

generate features for each map, apply destructiveness test

on all of these maps, and assign classes to each instances

based on the outcome of the test. These automatically labeled

instances become the input to CART. The output of CART

is a decision tree, in which each node is tagged with a pair

of actions or a pair of observations. The more crucial pairs

are expected to show up in the higher levels of this tree.

VI. EXPERIMENTAL RESULTS

We performed a set of experiments to measure the effec-

tiveness of the proposed methods. The experiments used an

Intel Core i7 machine with 4 gigabytes of RAM. We used

the implementation of CART provided by the scikit-learn

package [24]. In all of these experiments, the depth of the

induced tree is limited to 7 levels.

Our first experiment used the planning problem of Figure 3

left to measure the classification accuracy. The p-graph of

this planing problem is illustrated in Figure 4. For this

experiment, we used a variety of sizes of training sets. Two

examples of decision trees learned for this problem, each

from a different training set size, are shown in Figure 5 and



Algorithm 2: GENERATESAMPLEMAP(U,Y )

1 h← identity map over U ∪Y

2 E← array of size |U |+ |Y |
3 for i = 0 to |U |+ |Y | do

4 E[i]← empty set

5 for x ∈U ∪Y do

6 r← random integer between 0 and |U |+ |Y |−1

7 E[r].add(x)
8 for each c ∈ E do

9 for each non-empty e ∈ c do

10 h(e) = c[0]
11 return h

G GS

S

G

G

Fig. 3: Two simple scenarios where a robot is equipped with

a sensor that measures the robot’s position with the grid.

Movement uncertainty means that actions may move the

robot one or two cells in the desired direction. Movement

that might otherwise take the robot outside the grid boundary,

instead stays in the same place. The starting positions are

shown by S and goal regions by G. [left] A 6× 1 grid

environment, wherein the robot can move left and right.

Owing to the action uncertainty, determining whether the

robot is in the goal region or in cells immediately adjacent is

a crucial piece of information for this robot. [right] A 5×5

grid environment, wherein the robot can move left, right,

downwards and upwards. For this problem, a plan exists that

does not rely on any sensor.

Figure 6. These decision trees confirm the natural intuition of

which actions or observations are more crucial. For example,

in Figure 6, the root of the tree determines whether the

given map enables the robot to distinguish between actions

right and left or not. If not, any such map is destructive.

This means that if the robot confuses going right with left,

it will never be sure whether it has arrived in the goal

region. Similarly for some observations, the tree checks

whether the robot can distinguish being in different cells.

For example, if positions 2 and 3 cannot be distinguished,

where the boundary between the goal region and the rest of

the environment lies, if positions 4 and 5 are also conflated,

then such a map would be destructive. This is true because

if only 2 and 3 are conflated, a correct plan still exists in

which the robot can move to the right four steps to get rid

of its uncertainty before proceeding to the goal. The tree in

Figure 6, while trained with much less sample maps, gives

us almost the same information. This shows that our method,

even given a short time, can produce highly informative trees.

Fig. 4: The p-graph for the planning problem in Figure 3

left. Edge labels are omitted.

h(l) = h(r)

h(2) = h(3)

Non-destructive

Destructive

Non-destructive

h(1) = h(2)

Destructive

FalseTrue

Fig. 5: An example decision tree made for the problem shown

in Figure 3 left, when the size of the training set is 20.

In this experiment, we varied the training set size in

increments of 2, and performed 100 trials for each train-

ing set size. For each trial, we measured the accuracy

of the induced tree using a test set of 50 independently-

generated random instances. We performed separate trials

for the pairwise feature set, the monotone feature set, and

a randomized feature set. Figure 7 shows the results. We

observe that monotone and pairwise feature sets perform

roughly equivalently, significantly outperforming the random

feature set.

A similar experiment was done for the planning problem

of Figure 3 right. An example of a decision tree learned for

this problem is illustrated in Figure 8. As it can be seen, in

the tree of Figure 8, if actions left and right or upwards and

downwards are conflated, this results in destructiveness. In

this problem, the robot can reach the goal without relying on

any sensor (for example, by moving two steps upwards and

two steps to the right). In Figure 9 the accuracy results versus

different sizes of the training set for this problem, using the

same experimental setup as for Figure 7, are shown. In this

case, no clear trend to distinguish the three feature sets is

evident.

The results so far, though only for a small selection of

problem instances, are suggestive that the monotone feature

set in particular performs approximately as well as the full

pairwise feature set. In another experiment, we constructed a

family of planning problems analogous to the 5×5 example

in Figure 3 right, but with grid sizes ranging up to 13×13.

We used both the full pairwise feature set and the monotone

feature set to induce decision trees for these problems using

a training set of size 50. The results, which are illustrated in

Figure 10, show a clear advantage in scalability for the mono-

tone feature set as the size of the input p-graph increases.

This observation, combined with our earlier observation that

reducing to the monotone feature set does not seem to have

a significant impact on the accuracy of the induced trees,

indicates that the monotone features are indeed successful in

enabling our approach to handle larger scale problems.



h(l) = h(r)

Non-destructive

Destructive h(2) = h(3)

h(4) = h(5)

Destructive Non-destructive

FalseTrue

Fig. 6: An example decision tree made for the problem shown

in Figure 3 left, when the size of the training set is 100.

10 20 30 40 50 60 70 80 90 100

Training set size

65

69

73

77

81

85

89

93

97

A
c
c
u

ra
c
y
(%

)

Full pairwise feature set

Monotone feature set

Random feature set

Fig. 7: Accuracy versus size of the training set for the

planning problem of the grid environment in Figure 3 left,

using different feature selection methods. The bars represent

one standard deviation of uncertainty.

VII. CONCLUSION

The process of designing a robot that reliably can accom-

plish a task in an environment consists of many steps. In this

paper, the questions we were trying to answer were: What

degradation to sensors or actuators can be tolerated by the

robot? What sets of resources (sensors and actuators) are

minimal for accomplishing a specific job? How do you to

find such a set? To this end, we used label maps to model

modification in the set of sensors and/or actuators, and the

associated notions of destructiveness and of a boundary were

provided. To deal with the enormous number of possible

label maps, we sampled over the space of all maps, and used

a decision tree classifier to determine destructiveness of any

given planning problem. The algorithm, upon completion,

returns a tree where the nodes near to the root contain

information about pairs of observations or actions that are

most important in that when those elements are indistinguish-

able, the goal becomes unachievable. We reported the results

from experiments were conducted on a number of planning

problems. The data are promising, demonstrating that the

method, is scalable beyond trivial problems, and is able to

produce trees that are capable of classifying maps on a given

problem with a high accuracy, even with few samples.

Potential future work includes developing a more in-

telligent way to produce sample maps to yield fast tree

convergence. Using the definition of the refinement relation

h(u) = h(r)

Non-destructiveDestructive Non-destructiveDestructive

h(l) = h(r)

h(d) = h(u)

h(d) = h(r)

h(l) = h(u)

Destructive

Destructive

h(l) = h(u)h(l) = h(d)Non-destructiveDestructive

FalseTrue

Fig. 8: An example decision tree made for the problem shown

in Figure 3 right, from a training set of size 100. There are no

nodes in the tree that check the possible confusion between

a pair of observations. In other words, in this problem the

robot requires no sensors to reach its goal.
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Fig. 9: Accuracy versus size of the training set for the

planning problem of the grid environment in Figure 3 right,

using different feature selection methods.

and the partial order over the space of all maps, starting

from the identity map, one may sample maps that exactly lie

on the boundary and, thus, will be more informative during

the induction process. In addition, better feature selection

methods could be used to improve accuracy and improve

induction times. Another branch of future work could be to

generalize the model we use to represent labels. Set-labelled

p-graphs can be enhanced by more general, more expressive

labels (for example, a tree-label where leaves are simple

labels and internal nodes are logical operations) to close

the gap between the abstract idea of plans expressed as p-

graphs and their implementation on today’s robots. Devising

a method to get the set of all maps that lie on the boundary

of non-destructiveness, and generalizing all these methods to

continues maps is also future work.
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Fig. 10: The induction time (in seconds) versus the number of

states, using all features (red) and monotone features (green).

We performed this experiment on n× n grid environments

where one of the center cells was the initial position and the

bottom left and upper right cells were the goal region. For

these n× n planning problems, there are 2n2 states in the

corresponding p-graph.
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