
Accelerating the Construction of Boundaries of Feasibility in

Three Classes of Robot Design Problems

Shervin Ghasemlou and Jason M. O’Kane

Abstract— This paper aims to improve the practical scala-
bility of automated tools to assist in designing robots. Such
problems rapidly become intractable because the underlying
design space is immense. We consider a specific type of design
tool addressed in prior work, which constructs a representation
of the destructiveness boundary in the space of robot designs.
This prior work showed that a legible representation, specif-
ically a decision tree, of this boundary can illuminate which
elements of a sensing or actuation system are most important
for enabling the robot to complete its task. In that context, the
robot’s interaction with the world is represented as procrustean
graph, and the space of robot designs is represented by the
space of label maps that rewrite the labels on that graph.
In this paper, we expand upon those results by showing how
domain knowledge can enable such tools to find solutions to
more complex problems within a reasonable time frame.

Specifically, we propose three different scenarios, expressed
as constraints on the p-graph and on the label maps, under
which the learning algorithm to identify the destructiveness
boundary can converge quickly to high accuracy results for
problems at larger scales than the prior, general-purpose
algorithm. The conditions for each of these scenarios are easily
verifiable and the set of problems that fall under each is
rich enough to encompass several interesting problems. Exper-
imental results demonstrate the effectiveness of the proposed
methods.

I. INTRODUCTION

Roboticists nowadays are able to build robots that have

high degrees of autonomy. However, in the majority of

robotic applications, the automation that the robotic system

provides is heavily dependent on a design that itself is not

done in an automated fashion. Thus, we are interested in

algorithms that can assist human roboticists with the process

of designing autonomous robots.

Algorithmic robot design and co-design, being in its

infancy, requires the roboticist to deal with several important

issues. How the design problem is modelled, and how the

relationship between different designs is defined are among

these issues. The former needs to capture all the problem’s

elements accurately, and the latter has to offer a good means

for design algorithms to navigate in the space of all designs

effectively. In the space of all possible designs, we are

primarily interested in those designs that enable the robot to

complete its task. We model this situation by starting with

an idealized robot model, and reasoning about various kinds

of reductions in that robot’s abilities. In this context, it is

valuable to know about those designs that do not destroy

The authors are with Department of Computer Science & Engineering,
University of South Carolina, Columbia, South Carolina, United States
{sherving, jokane}@cse.sc.edu

Fig. 1: An example in which a UGV localizes itself using the
signals it gets from three different transmitters, in order to move
from its initial position (highlighted in a circle) to the goal region
(highlighted in a rectangle). Two of the transmitters produce signals
that are powerful enough to reliably cover the entire region. The
third transmitter is reliable only within some radius. To determine
which observations are most important for this problem (that
is, those that most strongly determine whether the transmitter is
adequate for the task), we only need check the observations in
which the signals received from the third transmitter are outside
the reliable range. Applying this domain knowledge can reduce
the number of costly destructiveness tests needed to identify the
destructiveness boundary.

(i.e. are not destructive of) the robot’s ability to complete

the assigned task.

To that end, we are interested in understanding the bound-

ary in the space of robot designs between non-destructive

realizations of a model (i.e. those for which the robot is

able to complete its task) and destructive ones (for which

the robot cannot complete the task). However, because the

space of robot designs is enormous, explicitly computing

such a boundary can easily become intractable for problems

of any appreciable size. In fact, even the problem of finding

a single ‘simplest’ design on the boundary is known to be

NP-hard [17].

In our prior work [10], we proposed a sampling-based

method to tackle this problem. We utilized the concept of

label map [17] to capture the idea of modification in the set

of sensors and actuators a robot is equipped with. Instead of

trying to directly compute the destructiveness boundary, that

existing method seeks to identify observations and actions

that determine destructiveness. See Figure 1. This is done by

sampling the space of all maps, testing the destructiveness of

the sampled maps, and then inducing a decision tree model

using those results.

In the current work, based on this idea, we make the

scale of some of the interesting planning problems a co-

design algorithm can solve substantially larger. To do this,

we propose three different classes of problems, and their

corresponding approaches. Depending on the structure of the

problem and the type of possible changes that can take place

on the suite of actuators and sensors of a robot, the subset

of the space the algorithm needs to sample from could get

substantially smaller. This is the first reason why domain

specific information makes the learning process faster. The

second reason comes from the fact that the samples extracted

from this subspace are richer in terms of information they

provide, which results in a faster convergence of the decision

tree.

There are two main contributions in this work. First, after

providing an overview of the related work and preliminaries

in Section II and Section III, in Section IV we propose

three different scenarios where the knowledge of the domain

could be successfully incorporated into the learning process.

We show how this knowledge should be used in extracting

the features in the sampling phase. Second, we show the

effectiveness of our approach by presenting the results of

our experiments for all of these scenarios in Section V.

II. RELATED WORK

The questions about sufficiency of the simple collections

of sensors and actuators to complete various tasks, and of

the limits of a robotic system’s power have been addressed

in numerous studies [1], [2], [6]–[10], [12], [15], [20], [21],

using a variety of models. The model we use here, namely

procrustean graphs (p-graphs), describes the interactions

between the robot and the environment it operates in as a

sequence of actions executed by the robot and observations

received by the robot from the environment. The definition of

p-graph encompasses those of many other models, including

combinatorial filters [13], the minimalist manipulation plans

of Erdmann, Mason, Goldberg, and Taylor [8], [12], [14] and

universal plans [19].

In a study by O’Kane and LaValle [15], the relative powers

of various robotic systems are compared. The authors present

and utilize the concept of dominance in navigating between

the space of designs. This concept is closely related to the

concept of refinement relation, presented in our previous

work [10]. In another set of closely related studies [4],

[5], Censi suggests that one could construct a catalog of

components (sensors and actuators), and then search over

compositions from this catalog—somewhat surprisingly, this

is tractable for certain classes of components.

In the current work, we use procrustean graphs [11], [18]

to encode planning problems and plans that solve them. The

notion of plan here refers to a p-graph that guides the robot

within the planning problem to achieve its goal. We use the

concept of label maps [17] to model possible modifications

to a robot’s set of sensors and actuators, and compare these

modification by means of a refinement relation [10].

III. PRELIMINARIES AND BASIC DEFINITIONS

The primary objective in this work is to compute, given a

model of the task the robot should complete, a legible rep-

resentation of the boundary between feasible and infeasible

robot designs for that task.

To describe that problem more formally, in this section

we present the concept of procrustean graphs and how we

use them to model planning problems and plans. We also

present the concepts of label maps that we use to model

alterations to a procrustean graph, and a refinement relation

that we use to navigate between different designs. These are

condensed versions of detailed definitions that appear in our

prior studies [11], [18].

A. Procrustean Graphs, Planning Problems and Plans

We model the world using a procrustean graph (p-graph)

G. A p-graph is an edge-labelled bipartite directed graph

which represents the robot’s interactions with its environ-

ment. This interaction occurs as a sequence of actions and

observations, the former executed by the robot, the latter

being responses the robot receives through its sensors from

the environment after performing each action. The states of

the p-graph are partitioned into action states and observation

states. For each action state, outgoing edges are labelled

with a set of actions. Likewise, for each observation state,

outgoing edges are labelled with a set of observations. We

denote the set of all vertices in a p-graph by V , and the

space of all possible observations and actions by Y and U ,

respectively. Each p-graph has an initial set of states, denoted

V0.

A planning problem is a p-graph G equipped with a subset

of states Vgoal, called the goal region. A plan is a p-graph P

along with a set of states Vterm called the termination region.

We say a plan (P,Vterm) solves a planning problem (G,Vgoal),
if the plan, executed on the planning problem, can handle

every observation it can receive from the world, and the

planning problem can handle every action it receives from

the plan, and if when the plan terminates, the current state of

the planning problem should be within its Vgoal. An example

of a planning problem along with its p-graph representation

and a plan that solves it are illustrated in Figure 2.

B. Label Maps and Destructiveness

We model the modifications to a robot’s suite of sensors or

actuators as changes to the p-graph representing the problem.

A change in this suite could be expressed by transforming

sets of actions and observations in the p-graph to new ones.

We do so using the concept of label maps.

G

S
{up}

{0}

{0} {right} {0}
{up}

{0}
{up}

{right}

{0}

{0}

{0}

{0}

{up}

{right}

{right}

{0}

{right}

{0}
{up}

{up}

{right}

{Terminate}

{1}

{1}

{0}{0}
{Vterm}

{Terminate}{up}
{1}

{0}

{right}

Fig. 2: [Top left] A grid environment with initial node S, goal region
G and a set of obstacle cells. The robot can move in two directions,
up and right and has a goal sensor where observation 0 means the
robot is not in the goal region and observation 1 indicates that the
robot is in the goal region. [Top right] The problem of moving
from S to G in the grid is encoded as a p-graph. Circle nodes are
observation nodes and square nodes are action nodes. [Bottom] A
plan that solves it.

An action map is a function U → U ′ mapping from an

action space U to another action space U ′. Likewise, an

observation map is a function Y → Y ′ mapping from an

observation space Y to another observation space Y ′. A label

map combines a observation map hy and an action map hu.

Given a label map h and a p-graph G, we say h is

applied on G, if for each label l in the p-graph, we replace

each a ∈ l with h(a). The resulting p-graph is denoted

as h(G). Applying a map h on a planning problem’s p-

graph is the way we model modifications. We are interested

in determining whether a modification is destructive on a

planning problem. That is, we want to see if applying the

map precludes the existence of a plan to solve the planning

problem. The following definition makes this precise.

Definition 1 (strongly destructive). In planning prob-

lem (G,Vgoal), if for every plan (P,Vterm) that solves it,

(h(P),Vterm) cannot solve (h(G),Vgoal), then we say h is

strongly destructive.

To decide if there exists a solution for a planning problem

(G,Vgoal), one can first convert the p-graph to its equivalent

state determined expansion [11], and then run a backchaining

algorithm on G. The algorithm establishes a solution incre-

mentally by identifying the states in the planning problem

from which we can guarantee to reach the goal, starting from

Vgoal.

C. Non-destructiveness boundary

Our goal is, given a planning problem, to generate a

description of the boundary between those maps that are

strongly destructive on the given planning problem, and

those maps which are not. To give a definition of what this

boundary is, we need the following definition.

Definition 2 (refinement relation). Given two maps, h :

U1 ∪Y1 → U ′
1 ∪Y ′

1 and g : U2 ∪Y2 → U ′
2 ∪Y ′

2, we say h is a

refinement of g, denoted h≺ g, if for each label y′1 ∈U ′
1∪Y ′

1,

there exists a y′2 ∈U ′
2 ∪Y ′

2, such that h−1(y′1)⊂ g−1(y′2). We

say maps h and g are comparable if either h ≺ g or g ≺ h.

If h ≺ g, then map h possesses greater distinctiveness

between images of the elements in its domain. That is, by

having more “injective-ness,” h preserves more information

than g when applied to a common set of elements. There-

fore g is more likely to endanger the robot’s ability to

reach its goals. Now we can define the boundary of non-

destructiveness.

Definition 3 (non-destructiveness boundary). Given a

planning problem (G,Vgoal), we say that a map m is on the

non-destructiveness boundary if m is not strongly destructive

on (G,Vgoal) and for any other map m′ comparable to m:

1) if m ≺ m′ then m′ is strongly destructive.

2) if m′ ≺ m then m′ is not strongly destructive.

Our objective is to construct a legible description of this

boundary. The tool we use for generating a description of

this boundary is a decision tree that classifies, based on

some features, whether an input map is destructive or not.

Decision trees are able to give insight into what actions and

observations are the ones that determine on which side of this

boundary a particular design lies. The tree induction process

is described in Section V.

IV. TREE INDUCTION USING DOMAIN KNOWLEDGE

Our method for inducing a decision tree, as a legible

description of the non-destructiveness boundary, consists of

several steps. Feature extraction is one of the key elements

of this process. Label maps, the entities we use to model

modifications to sets of sensors and actuators, come with far

too much information to be used as learning data. Instead, for

each label map, we extract some features of it. Each feature

vector will be tagged by the result of a destructiveness test,

before inducing the decision tree.

In this section, we describe three scenarios and discuss

how these scenarios are verified, and how we extract features

for each map under each scenario. Formally, we define

classes of design problems D = (P,M), in which P is a set

of planning problems and M is a set of maps that can be

applied on the planning problems in P. Within such a class,

each instance is a design problem, consisting of a planning

problem (G,Vgoal) ∈ P, and the set of maps M, which is

shared between all instances in the class. The idea of our

approach is to generate, for one such design problem, a

decision tree representation of the destructiveness boundary.

In each of the following scenarios, we introduce a class of

design problems and describe the defining elements of each.

A. Partially Affected Problems

A class of design problems Dpap = (P,M) contains par-

tially affected problems if, for any (G,Vgoal) ∈ P with action

space U and observation space Y , there exists a nonempty

proper subset of events E ⊂ Y ∪U , such that for every map

m∈M and every element e∈Y ∪U−E, we have m(e)= e. In

this case, the maps in M can only affect events in Y ∪U −E,

which we call the affected space.

The intuition behind this class of problems may be seen

in Figure 1. We are particularly interested in those partially

affected problems where |Y ∪U −E| is much smaller than

|Y ∪U |, so the number of destructiveness tests will be small.

In this category, the feature vector for each given map h

is computed by vector F = [Xpq], for all p,q ∈ Y ∪U −E,

p 6= q, in which Xab is defined as:

Xab =

{

0 if h(a) = h(b)

1 if h(a) 6= h(b)
.

The idea is to check if any of the observations or actions in

the affected area are conflated with any other one. There is

no need to check conflation between all pairs in Y ∪U .

For example, if for a map h and p-graph G, the affected

space is Y = {y1,y2,y3,y4} (that is, there are no affected

actions), then the feature vector will be be calculated by com-

puting each element in [Xy1y2,Xy1y3,Xy1y4,Xy2y3,Xy2y4,Xy3y4].
Each 1 in the feature vector indicates that the corresponding

pair of actions (or observations) is distinguishable, and each

0 indicates they are indistinguishable.

B. Disjoint Events Problems

A class of design problems Ddep = (P,M) is called a class

of disjoint observation problems if the following applies: for

all (G,Vgoal) ∈ P and m ∈ M the following set of conditions

is true:

1) each observation appears only one time in G, as part

of the label of some outgoing edge, and

2) each map m ∈ M is injective on all observations.

Similarly, meeting the same conditions for action vertices,

the class will be called a class of disjoint action problems.

Refer to these two classes collectively as disjoint events

problems.

For each given map h, in this case there is no need to

extract features from the injective component of the map.

This is true because applying an injective map does not

bring any ambiguity to the corresponding set of vertices,

and therefore, no destruction can happen. For the other

component, we extract the feature vector for each map based

on the structure of the p-graph G. If the given problem is

a disjoint observation problem, for each map m we extract

feature vector F = [Xpq] where Xpq appears in F if there

exists an action vertex v, for which p and q are possible

actions that can be executed at v. The feature vector will be

extracted similarly for disjoint action problems. The function

Xab is the same as previous section.

As an example, see Figure 3, which shows a part of the

p-graph of a disjoint observation problem (G,Vgoal). The

individual features for this part of the graph are Xu1u2, Xu1u3,

Xu2u3, and Xu4u5 for any given map m ∈ M.

C. Uncertain Events Problems

We define the uncertainty degree of an action in a p-graph

G as the largest number of different outcomes that can occur

for that action, across all of the action states. The definition

is similar for the uncertainty degree of observations. The

{u1}
{u2} {u3}

{u4}

{u5}

{y1} {y2} {y3}

Fig. 3: A part of the p-graph for a disjoint events problem. Incoming
edges to the action states and the next states of the observation edges
are omitted.

{u1} {u1}

{y1} {y2} {y3}

{u1}{u1}
{u1}

Fig. 4: A part of the p-graph for an uncertain events problem.
Incoming edges to the action states and the next states of the
observation edges are omitted.

largest uncertainty degree for all actions and observations of

a p-graph is called its uncertainty level, denoted by KG.

A class of design problems DK-uep = (P,M) is considered

a class of uncertain event problems, if for any (G,Vgoal) ∈ P

with action space U and observation space Y , the uncertainty

level KG of G is at most K.

The idea is that the result of executing some action (or

reading some observation) in a planning problem could be

uncertain, but with limited possible outcomes. See Figure 11.

A p-graph can capture this idea by having “undetermined”

states where more than one outgoing edge is labelled with the

same action or observation. Assuming that such a planning

problem is solvable, we want to see if applying a map on it is

destructive. To do so, after applying the map, we only need to

check the states that these uncertain action or observations

lead to, and see if their outgoing edges are labelled with

conflated actions or observations.

For a given map m, we extract the feature vector Fa =
[Xpq] where Xpq appears in F , if and only if there exists

an action vertex v ∈ G and an action u such that v leads to

vertices w∈G and w′ ∈G by action u, and w has an outgoing

edge labelled with observation p and w has an outgoing edge

labelled with observation q. Feature vector Fo is similarly

calculated for observation vertices. Merging Fa and Fo creates

the feature vector F that we use. Xab is the same as the

previous scenarios.

As an example, consider Figure 4. The individual features

for a map that is applied on G, for this part of the p-graph

are Xy1y2, and Xy3y1.

D. Decision Tree Induction

The different classes of design problems introduced in this

section will be used in our experiments to induce a deci-

sion tree for the non-destructiveness boundary. To this end,

50 100 150 200 250 300 350 400 450 500

Size (number of states)

0

50

100

150

200

250

300

350

T
im

e
 (

s
)

Naïve method features

PAP features

Fig. 5: The induction time, in seconds, versus the number states,
using the general-purpose Naı̈ve feature extraction method (red) and
the method for partially affected problems (green). This experiment
is done for the problems analogous to the one in Figure 1.

we use the Classification and Regression Trees algorithm

(CART) [3]. The idea is that, for any given planning problem,

we generate sample maps from the space of all maps for

that problem. Then we extract features for each map, apply

destructiveness test on all of these maps, and categorize each

instance based on the outcome of the test. These instances

will be used as the input to CART. As the output, CART

gives a decision tree. In this decision tree, each internal node

is labelled by a pair of actions or a pair of observations and

each leaf is marked ‘destructive’ or ‘non-destructive’. The

expectation is that, in the tree, the more crucial pairs will

show up in the higher levels.

V. EXPERIMENTAL RESULTS

For each class of design problems introduced in the pre-

vious section, we have performed a series of experiments, to

evaluate their effectiveness in handling larger scale problems,

compared to the general-purpose, naı̈ve method from our

prior work [10]. The experiments were performed on an

Intel Core i7 machine with 32 gigabytes of RAM. To induce

trees, we use scikit-learn package [16], which includes an

implementation of CART. In all experiments, the depth of

each induced tree is limited to 7 levels.

In the general-purpose method, one feature is extracted

for each pair of distinct actions and each pair of distinct

observations, regardless of the structure of the p-graph it is

applied on. In other words, for a given map h over n actions

and m observations, the feature vector is F = [xuiu j
,xykyℓ]

where i, j ∈ {1, . . . ,n}, i 6= j, and k, ℓ ∈ {1, . . . ,m},k 6= ℓ. Xab

is the same as the one in our scenarios. For example, given

a map h, with h(a) = a′,h(b) = a′,h(c) = c′,h(d) = d′, the

feature vectors for h will be [0 1 1 1 1 1].

A. Partially Affected Problems: Choosing an Antenna

The first experiment is performed on a p-graph represent-

ing the planning problem shown in Figure 1. Assuming the

reference frame is at the bottom left corner of this sub-

region, the transmitters are positioned at (x1,y1) = (1,15),
(x2,y2) = (21,1), and (x3,y3) = (26,16) where the distances

are measured in meters. To understand how the choice of

True False

Destructive h(13.34, 17.03, 26.08) = h(11.40, 17.26, 25.06)

Destructive Non-destructive

h(12.37, 17.12, 25.55) = h(11.40, 17.26, 25.06)

Fig. 6: An induced tree for the problem shown in Figure 1. The
observation tuples show the distance from transmitter 1, transmitter
2, and transmitter 3 respectively.

an antenna in the design process can influence the system,

we assume that any change that can happen to this planning

problem can only affect a portion of the observations, in par-

ticular, the observations in which the signals received from

the third transmitter (far right) are beyond 25 meters. Sensor

readings may get confused with each other outside this range.

We can encode such changes in this problem as label maps

such that the action component of each map is the identity

map, and except for the observations from the affected

subspace of observations, the observation map also acts like

the identity map. These settings qualify this problem as an

instance of Dpap. Therefore, we can extract the feature vector

for any such map using the method described in the previous

section for Dpap. We have limited the robot’s set of actions to

four moves: up, down, left, and right, where the actions are

uncertain, i.e, each action may move the robot for 1 meter

in the desired direction either one or two times. We have

induced decision trees for a series of problems analogous to

this problem with planning problem sizes ranging from 64

to 478 states, using both the naı̈ve general-purpose feature

extraction method and the method for partially affected

problems. We measured how long it takes for the tree to

reach 80% accuracy, by incrementally varying the size of

the training set, using both feature extraction methods. The

results, which are illustrated in Figure 5, show that using

the domain knowledge improves the scalability. By way of

example, an induced tree for this problem when the repre-

senting p-graph consists of 478 states is shown in Figure 6.

The tree reflects what observations outside the reliable range

of the third transmitter are more crucial to reach the goal

in this case. The nodes on this tree show what observations

within the affected space matter. The two observation on

the root of the tree belong to a point in the goal region,

(d1,d2,d3) = (11.40,17.26,25.06), and a point 1 meter be-

low the goal region, (d1,d2,d3) = (12.37,17.12,25.55). In

the second level of the tree, the same observation in the

goal region, (d1,d2,d3) = (11.40,17.26,25.06), and another

one within 2 meters below the goal region, (d1,d2,d3) =
(13.34,17.03,26.08), appear on a node. These two nodes

indicate that, among all possible pairs of observation in the

affected region, only conflating the observations that lie in

the goal region and the ones within a 2 meters distance from

it matter. All other possible conflations are non-destructive.

This insight implies, for example, that the robot designer

should choose an antenna capable of reliably detecting the

Fig. 7: A rover inside a crater on Mars. To get recharged efficiently,
the robot needs to get out of the crater from either the bottom left
corner or the top right one, highlighted in two triangles.

0 500 1000 1500 2000 2500

Size (number of states)

0

200

400

600

800

1000

1200

1400

1600

T
im

e
 (

s
)

Naïve method features

DEP features

Fig. 8: The induction time, in seconds, versus the number of states,
using the general-purpose feature extraction method (red) and the
method for disjoint events problems (green). This experiment is
done for a set of problems analogous to the one in Figure 7.

third transmitter at this distance. Or, instead, it might be a

good decision to use another cheap, low range source of

signal along with the current choice of antenna, where this

new signal source is placed close to the region where the

observations from the third transmitter are unreliable.

B. Disjoint Events Problems: Determining the Crucial Ac-

tions of A Planetary Rover

The second experiment is performed on a p-graph rep-

resenting the planning problem shown in Figure 7. In this

example, a planetary rover must travel to one of the two goal

regions to recharge. From a robot design perspective, this

example solely focuses on the effects of possible conflation

in the action space on the design process. Therefore, we

consider changes where only actions may get conflated. The

observations here determine the position of the robot, and the

observation maps are assumed to be injective. Therefore, this

problem can be considered as an instance of Ddep. Similar

to the previous example, we have limited the robot’s set of

actions to four moves: up, down, left, and right. However,

here we assume the actions are certain: each action moves the

robot for some d meters only once in the desired direction.

The corresponding decision trees are induced for a set of

Non-destructiveDestructive

h(l) = h(r)

h(d) = h(u)

h(l) = h(u)

Destructive

Destructive

Non-destructiveh(d) = h(r)

FalseTrue

Fig. 9: An induced tree for the problem shown in Figure 7. Action
here are up: u, down: d, left: l, and right: r.

Fig. 10: A robot equipped with a range sensor. The robot’s goal is
to move towards the wall and stop in the goal region (highlighted
in a purple rectangle) before hitting the wall. The goal region
lies between 20 and 40 centimeters from the wall. The robot’s
reference point lies at the front side of the robot. Some parts of the
environment are always slippery, e.g., covered with ice (highlighted
in blue) and make the robot’s forward action uncertain, i.e., the
robot does not know how long has it moved. This part lies within
100 and 140 centimeters from the goal region.

analogous problems, with the number of states in the p-

graph varying from 50 to 2048 states, using the general-

purpose method feature extraction and also the method for

disjoint events problems. Similar to the previous experiment,

we measured how long it takes for the tree to reach a certain

degree of accuracy, here 95%, by incrementally varying the

size of the training set, using both methods. The results,

illustrated in Figure 8, show that taking the domain knowl-

edge into account can substantially decrease the induction

time. An example induced tree when the number states in

the p-graph is 800 is shown in Figure 9. Similar to the

previous example, by confusing some actions, for example

left and right, the robot will become unable of reaching the

goal region. The interesting observation though, from a robot

designer’s point of view, lies in the symmetry of the planning

problem reflected in the induced tree as well: conflation in

actions left and up is not destructive unless the robot confuses

down and right as well, and vice-versa. The robot can always

go to one of the goal regions, for example by moving right

and then up enough times. If right and up are conflated, then

this can be done by moving left and then down enough times.

C. Uncertain Events Problems: Choosing a Range Finder

The last experiment is performed on a p-graph encoding

the planning problem illustrated in Figure 10, in which a

mobile robot attempts to park near a wall. To entirely focus

600 800 1000 1200 1400 1600 1800

Size (number of states)

0

500

1000

1500

2000

2500

3000

T
im

e
 (

s
)

Naïve method features

UEP features

Fig. 11: The induction time, in seconds, versus the number of states,
using the general-purpose feature extraction method (red) and the
method for uncertain events problems (green). This experiment is
done for a set of problems analogous to the one in Figure 10.

Destructive h(40) = h(20)

Destructive Non-destructive

h(60) = h(20)

True False

Fig. 12: An induced tree for the problem shown in Figure 10.
Observations here are range finder readings in centimeters.

on the choice of range sensor the roboticist needs to make,

we limit the set of actions to only one: move forward. The

forward action is uncertain at the states that represent the

part of the environment that is highlighted in blue. In this

subregion, each forward movement may move the robot

one, two, three, or four times, each time 20 cm in the

forward direction, making the uncertainty level of the p-

graph equal to 4. Therefore, the problem can be considered

a D4-uep. Similar to our previous experiments, a decision

tree is induced for this problem with different number of

states varying from 600 to 1500 states. We used the general-

purpose method’s feature extraction performance along with

the method for uncertain events problems. Similarly, we

measured how long it takes for the tree to reach a certain

degree of accuracy (95%), by incrementally changing the size

of the training set, using both methods. The results, showing

the advantage of using the proposed method, are presented in

Figure 11, and an induced tree for when the number of states

in the corresponding p-graph is 1150 is shown in Figure 12.

There is no action node on the tree due to our assumption

that the only action movement is moving forward.

The insight that this tree provides helps the designer to

decide if the range sensor that the robot is equipped with is

sufficient for the planning problem. It can be seen that the

range sensor should not confuse being in the goal region, 20

centimeters from the wall, with being 40 or 60 centimeters

from it. A suitable range sensor for this planning problem

needs to be reliable within these ranges.

VI. CONCLUSION

In this paper, our goal was to improve the practical scal-

ability of a certain class of automated design tool, by incor-

porating domain knowledge, to help roboticists in designing

robots. Specifically, we introduced three classes of design

problems, and described the conditions for utilizing each.

We performed a series of experiments for several problems.

The results clearly demonstrate the advantage using domain

knowledge in algorithmic robot design problems.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-

tional Science Foundation under Grants No. IIS-1527436,

No. IIS-1453652 and No. IIS-1526862

REFERENCES

[1] E. Acar and H. Choset, “Robust sensor-based coverage of unstructured
environments,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, 2001.
[2] P. K. Agarwal, A. D. Collins, and J. L. Harer, “Minimal trap design,”

in Proc. IEEE Int. Conf. on Robotics and Automation, 2001.
[3] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification

and regression trees. CRC press, 1984.
[4] A. Censi, “A Class of Co-Design Problems with Cyclic Constraints

and Their Solution,” Robotics and Automation Letters, Feb. 2016.
[5] ——, “A mathematical theory of co-design,” arXiv preprint

arXiv:1512.08055, 2015.
[6] B. R. Donald and J. Jennings, “Sensor interpretation and task-directed

planning using perceptual equivalence classes,” in Proc. IEEE Int.

Conf. on Robotics and Automation, 1991, pp. 190–197.
[7] B. R. Donald, “On Information Invariants in Robotics,” Artificial

Intelligence, vol. 72, no. 1–2, pp. 217–304, Jan. 1995.
[8] M. Erdmann and M. T. Mason, “An Exploration of Sensorless Ma-

nipulation,” IEEE Transactions on Robotics and Automation, vol. 4,
no. 4, pp. 369–379, Aug. 1988.

[9] M. A. Erdmann, “Understanding action and sensing by designing
action-based sensors,” International Journal of Robotics Research,
vol. 14, no. 5, pp. 483–509, 1995.

[10] S. Ghasemlou, J. M. O’Kane, and D. A. Shell, “Delineating boundaries
of feasibility between robot designs,” in Intelligent Robots and Systems

(IROS), 2018 IEEE/RSJ International Conference on. IEEE, 2018.
[11] S. Ghasemlou, F. Z. Saberifar, J. M. O’Kane, and D. A. Shell, “Beyond

the planning potpourri: reasoning about label transformations on pro-
crustean graphs,” in Proc. International Workshop on the Algorithmic

Foundations of Robotics, 2016.
[12] K. Y. Goldberg, “Orienting Polygonal Parts without Sensors,” Algo-

rithmica, vol. 10, no. 3, pp. 201–225, 1993.
[13] S. M. LaValle, “Sensing and Filtering: A Fresh Perspective Based

on Preimages and Information Spaces,” Foundations and Trends in

Robotics, vol. 1, no. 4, pp. 253–372, Apr. 2012.
[14] M. T. Mason and K. Y. Goldberg and R. H. Taylor, “Planning

Sequences of Squeeze-Grasps to Orient and Grasp Polygonal Objects,”
in Symp. on Theory and Practice of Robots and Manipulators, 1988.

[15] J. M. O’Kane and S. M. LaValle, “On comparing the power of robots,”
International Journal of Robotics Research, vol. 27, no. 1, pp. 5–23,
January 2008.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal

of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
[17] F. Z. Saberifar, S. Ghasemlou, J. M. O’Kane, and D. A. Shell,

“Set-labelled filters and sensor transformations,” in Proceeedings of

Robotics: Science and Systems, Ann Arbor, MI, Jun. 2016.
[18] F. Z. Saberifar, S. Ghasemlou, D. A. Shell, and J. M. O’Kane,

“Toward a language-theoretic foundation for planning and filtering,”
The International Journal of Robotics Research, 2018.

[19] M. J. Schoppers, “Universal Plans for Reactive Robots in Unpre-
dictable Domains,” in Proc. Int. Joint Conference on AI, 1987.

[20] B. Tovar, L. Guilamo, and S. M. LaValle, “Gap navigation trees:
Minimal representation for visibility-based tasks,” in Algorithmic

Foundations of Robotics VI. Springer, 2004, pp. 425–440.
[21] J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski, “A complete

algorithm for designing passive fences to orient parts,” Assembly

Automation, vol. 17, no. 2, pp. 129–136, 1997.

