
Online Plan Repair in Multi-robot Coordination with Disturbances

Adem Coskun and Jason M. O’Kane

Abstract— This paper addresses the problem of multi-robot
coordination in scenarios where the robots may experience
unexpected delays in their movements. Prior work by Čáp,
Gregoire, and Frazzoli introduced a control law, called RM-
TRACK, which enables robots in such scenarios to execute pre-
planned paths in spite of disturbances in the execution speed
of each robot, while guaranteeing that each robot can reach
its goal without collisions and without deadlocks. We extend
that approach to handle scenarios in which the disturbance
probabilities are unknown at the start and non-uniform across
the environment. The key idea is to ‘repair’ a plan on-the-fly,
by swapping the order in which a pair of robots passes through
a mutual collision region (i.e. a coordination space obstacle),
when making such a change can be estimated to improve the
overall performance of the system. We introduce a technique
based on Gaussian Processes to estimate future disturbances,
and propose two algorithms for testing, at appropriate times,
whether a swap of a given obstacle would be beneficial.
Tests in simulation demonstrate that our algorithm achieves
significantly smaller average travel time than RMTRACK at
only a modest computational expense.

I. INTRODUCTION

As multi-robot systems become more reliable and more
widespread, it is becoming increasingly common for those
systems to share their operating environments with humans.
Coordinating multi-robot systems in such environments can
be a challenging problem for several reasons. One specific
issue is that the motions of the robots may be interrupted
or delayed by humans. In such a scenario, the robot may be
prevented from progressing along its path for some period
of time, an event we refer to as a disturbance.

Prior work by Čáp, Gregoire, and Frazzoli [2] showed how
to handle these kinds of unexpected disturbances effectively,
by introducing an approach that first generates a suite of
trajectories that would be collision free in the absence of
disturbances, and then controls the forward movements of
the robots to ensure that the coordinated motions remain
free of both collisions between robots and of deadlocks,
even if some or all of the robot experience disturbances. The
essential idea of the RMTRACK approach is for a robot to
stop and wait, before entering a portion of its path on which
a collision with another robot might occur, for which the
other robot would have passed through this collision region
first, according to the original (undisturbed) trajectories. See
Figure 1.

The authors are with the Department of Computer Science
and Engineering, University of South Carolina, 550 Assembly
St, Columbia, SC 29201 USA. acoskun@email.sc.edu,
jokane@cse.sc.edu. This material is based upon work supported
by the National Science Foundation under Grants 1513203, 1526862, and
1659514.)

Fig. 1. An office environment in which 20 robots move. The robots are
attempting to move from randomly generated origins to randomly generated
destinations. The probability of having disturbances in the red zones are
assigned as 0.7. The disturbance probability everywhere else is 0.05. (The
map is based on laser rangefinder data from a building at the University of
Bremen [9].)

The RMTRACK approach is very effective, especially in
scenarios where the expected amount of disturbance experi-
enced by each robot is approximately equal. The approach
shows its limitations, however, in scenarios where the distur-
bance probabilities are unknown at the start and non-uniform
across the environment. For example, consider the simple
problem illustrated in Figure 2. Two robots attempt cross
the room, one from left to right and the other from right to
left. The robots are named R1 and R2 respectively. Without
loss of generality, suppose that the initial planned trajectory
instructs R1 to pass through the narrow central region first.
However, unbeknown to the robots and the trajectory planner,
at the time of plan execution the left side of the room is
filled with human workers that interrupt the motion of that
robot. Then, R2 reaches the collision region first. Using
the RMTRACK algorithm, the robot R2 would wait at that
position until R1 fully navigated the left side and passed
through the collision region.

We propose to resolve these kinds of problems by repair-
ing the plan on-the-fly. In the example of Figure 2, when
robot the R2 arrives the intersection and the robot R1 has
not yet cleared the intersection, the robot R2 has a choice:
Does it wait until the robot R1 clears the intersection, or
does it continue forward, hoping to pass through the collision
region before the robot R1 arrives? We propose a two-phase
approach to answering this question: First we estimate the
probability of each robot experiencing disturbances along the
relevant section of its path, based on disturbances observed
by the robots in those regions during the current execution.
Then, using those estimated probabilities, the robot R2 can
determine whether it is likely to safely pass through the
collision region before the arrival of the robot R1. If so, we
‘flip’ that obstacle and resume the RMTRACK controller, at
which point the robot R2 will continue through the collision

R2

R1

Fig. 2. Two robots, R1 and R2, are attempting to move from one side to
another side of the environment. Dotted lines show the path of the robots,
and arrows points from each robot’s start position to current position. The
probability of having disturbance in the red zones is 0.8.

region immediately.
The specific contributions of this paper are:
1) A formulation of the multi-robot coordination problem

in which disturbances to the robots’ progress are likely,
but with probability distributed non-uniformly across
the environment.

2) A pair of algorithms, designed to run in parallel with
RMTRACK, for determining whether the pre-planned
trajectory should be modified to allow a robot to pass
through a collision region immediately, rather than
waiting for another robot to cross first.

3) A series of simulations demonstrating that this ap-
proach offers a significant improvement in the robot’s
travel time compared to RMTRACK in some scenarios.

The remainder of this paper is organized as follows. First,
we review some related work (Section II) and give a precise
statement of the problem (Section III). Then we review the
essential ideas behind RMTRACK (Section IV), describe
our new algorithm that executes alongside RMTRACK (Sec-
tion V), and present experiments demonstrating the improve-
ments realized by our approach (Section VI). Concluding
discussion appears in Section VII.

II. RELATED WORK

The problem of coordinating multiple robots in a shared
workspace is one of the best studied problems in the field.
Approaches for this problem are generally classified as either
decoupled or centralized. In decoupled methods, each robot’s
trajectory is computed individually, and robots resolve the
collisions afterward [1], [15]–[17]. Though this approach is
computationally efficient and practically applicable, because
of the local view used for avoiding collisions, many such
approaches can be susceptible to deadlocks.

In centralized approaches, a collision-free joint trajectory
for all the robots is generated by a central decision maker.

One well known technique in this category is prioritized
planning [3], [7]. Geometry-based approaches [4], [5], [8],
[11], [13], which typically leverage coordination diagrams
to reason about possible collisions, are also common. How-
ever, the computational complexity of centralized methods
often increases exponentially with the number of robots in
the environment. In addition to centralized and decoupled
approaches, there are also hybrid methods, which enjoy some
of the benefits of both [6], [14], [12].

The most closely related work, that of Čáp, Gregoire, and
Frazzoli [2] is specifically targeted to enable the reliable
execution of centrally-generated joint plans, in cases where
the robots cannot necessarily follow those paths without
temporal disruption. In our work, we extend from that
antecedent, considering a similar problem, but allowing the
robots greater freedom to adjust the plan based conditions
observed during the actual execution.

III. PROBLEM STATEMENT

This section formalizes the problem we address in this
paper. The treatment is based upon, but generalizes, the
model used by Čáp, Gregoire, and Frazzoli [2].

A. Environment, robots, and trajectories

We assume that n identical holonomic robots, indexed
1, . . . , n, operate in a shared 2d environment, W ⊆ R2.
The robots are disc-shaped with body radius r. We model
time as a sequence of discrete stages indexed by t ∈ N.
Each robot starts at a start position and travels within W
to a goal position. We assume that feasible collision-free
trajectories for each robot, π1, . . . , πn, from their respective
start positions to their goals are generated by a multi-robot
trajectory planner, such as prioritized planning [3]. Each
trajectory πi : {1, . . . ,Ki} → W is a function mapping
integers to locations in the environment, in which trajectory
πi for robot i has Ki steps. We model the robots’ execution
of these paths in discrete time, writing xi(t) to denote
number of steps of πi executed by robot i up to time t. If
robot i experiences a disturbance or a delay in its execution,
we will have xi(t) < t. Thus, the actual position of robot i
at time t is πi(xi(t)) ∈ W .

B. Coordination spaces

For each pair of distinct robots (i, j), we define the
coordination space Cij ⊆ C as

Cij = {(ki, kj) | ||πi(ki)− πj(kj)|| ≥ 2r}. (1)

The intuition is that a single point in Cij is determined
by the positions of robots i and j along their paths, and
that pairs of positions that would place robot i in collision
with robot j are excluded from the coordination space. See
Figure 3 for an example. Within each coordination space
Cij , we can identify the obstacle region Oij = {1, . . .Ki}×
{1, . . . ,Kj}−Cij . We partition Oij into maximal connected
regions, oij1 , . . . , o

ij
m, so that Oij = oij1 ∪ · · · ∪ oijm. Each oijk

is called a coordination space obstacle.

x1

x2

R1

R2

K1

K2

o121

o122

Fig. 3. Two robots, R1 and R2, in an environment where depicted on
the left have two collision regions. The dotted lines are representing their
paths. The coordination space of these two robots are depicted on the right
with two obstacle, o121 and o122 . The blue dotted line represent the planned
path. The label of `(o121) is 1, which means R1 should pass the obstacle
o121 first. Also, the label of `(o122) is 2, which means R2 should pass the
obstacle o122 first.

Each coordination space obstacle represents a region in
the environment that both robots must pass through, but in
which a collision may possibly occur if both robots occupy
it at the same time. Notice the execution of robots i and j
generates a path through Cij from (1, 1) to (Ki,Kj). For
each obstacle oijk , this path must pass either above oijk or
below oijk . The former case corresponds, in the workspace,
to robot j passing through the collision region before robot i;
in the latter case, robot i passes through the collision region
before robot j.

In addition to the trajectories π1, . . . , πn, we also assume
that the trajectory planner assigns to each coordination space
obstacle oijk a label `(oijk) ∈ {i, j}, indicating which of the
two robots is planned to pass through the collision region
first.

C. Commands and disturbances

At each time step, each robot may decide to attempt to
either move forward along its path, or to voluntarily remain
where it is. If the robot decides to move forward, that
movement may be prevented by a disturbance of some kind
from within the environment. We model these options using
a control variable ai : N→ {0, 1} and a disturbance variable
δi : N → {0, 1} for each robot. Then each robot’s progress
through its path is governed by the transition equation

xi(t+ 1) = xi(t) + ai(t)δi(t). (2)

We assume that the disturbances are governed by some
probability distribution that varies across W , written as p :
W → [0, 1], so that at any point q ∈ W , the probability
of any robot experiencing a disturbance at position q is
p(q). The function p is unknown to both the robots and the
trajectory planner. For simplicity, we assume that the same
p governs the disturbances for all of the robots, and that p
does not vary as time passes.

D. Objective

The goal is to establish an efficient control strategy for
each robot i to select ai(t) at each time t. The control

strategy should ensure that the robots do not collide with
each other, and that all of the robots reach their goals, that
is, there exist some time t such that xi(t) = Ki for all robots
i = 1, . . . , n. Given such a control strategy, we quantify its
success in any particular execution by measuring the average
travel time across all of the robots.

IV. SUMMARY OF RMTRACK
In this section, we summarize the existing RMTRACK

algorithm, which executes in parallel with our algorithm,
emphasizing the details that are important to understand
how the complete system proposed in this paper operates.
Our description of RMTRACK necessarily differs from that
of Čáp, and Gregoire, Frazzoli because their formulation
parameterizes the configuration space in a way that ensures
that its diagonal is collision-free, which implies that the
obstacle labels can be inferred by whether each obstacle is
above or below the diagonal. Since we intend to modify the
obstacle labels during execution, we introduce the following
functionally equivalent presentation of RMTRACK.

The control law for RMTRACK, which for robot i at time
t selects ai(t) is:

ai(t)=

0 ∃j 6= i, s.t. ∃k : `(oijk) = j and

oijk ∩ ({xi(t) + 1}×{xj(t), ...,Kj} 6= ∅
0 if xi(t) = Ki

1 otherwise

(3)

The top portion of Figure 4 illustrates the intuition. If there
exists at least one coordination space obstacle oijk with robot
j and representing a collision region that robot j should pass
through first, that is, for which `(oijk) = j, then robot i may
need to wait for robot j to pass. To determine whether this is
the case, we extend a line segment upward in Cij from the
next position along the path for robot i, and check whether
this line segment intersects with oijk . If so, then robot i should
stop and wait for robot j to make some progress, ensuring
that the robots’ path passes above oijk in Cij . Naturally, when
robot i has completed its path, that is, when xi(t) = Ki, it
should stop. If neither of these two stopping conditions holds,
then robot i chooses ai(t) = 1, attempting to make progress
toward its goal.

V. ALGORITHM DESCRIPTION

This section describes our approach. The essential moti-
vation can be seen in the top of Figure 4. In this example,
robot j has experienced a lengthy disturbance, whereas
robot i has been able to progress through its path steadily.
Notice that the original, offline trajectory planner formed
a global plan in which robot j should cross the collision
region before robot i. This decision was reasonable in the
absence of disturbances, but the reader will of course recall
that the disturbance probabilities across the environment are
unknown when the plan is generated. Consequently, as it
executes the RMTRACK control law (Equation 3), robot i
will reach the start of the collision region within its path,
and then wait until robot j overcomes its disturbances to
pass first.

xj

xi

Kj

Ki

t = t2

t = t1

ℓ(oijm) = j

xj

xiKi

Kj

t = t2

t = t1

ℓ(oijm) = i

Fig. 4. An illustration of the behavior of RMTRACK. Robot i and robot
j share a collision region in the coordination space Cij . In this example,
robot j begins to experience a lengthy disturbance starting at time t1. The
path through this coordination space until time t2 is shown in green; the
dotted green lines show possible future trajectories for the robots. The key
question is: What should robot i do at time t2? [top] If the obstacle oijk
has label l(oijk) = j, then robot j is planned to pass through this collision
region first. Equivalently, the coordination space path should travel over
oijk . Robot i must wait, choosing ai(t2) = 0. This continues, realized in
Cij as upward vertical movement, until robot j has advanced far enough
to clear oijk . [bottom] If the obstacle oijk has label l(oijk) = j, then robot i
is planned to pass through this collision region first; the coordination space
path should travel under oijk . Robot i can continue immediately, choosing
ai(t) = 1, without regard to the progress of robot j.

One readily notices, however, that if robot j’s progress has
been slowed much more than that of robot i, then robot i
might attempt pass this collision region immediately, thereby
‘flipping’ the coordination space obstacle from l(oijk) = j
to l(oijk) = i. The bottom part of Figure 4 illustrates the
result of this change: Robot i continues to use RMTRACK
to govern its movements, but because of the altered obstacle
label, robot i can proceed immediately. By the time robot
j finally reaches this region, it is likely that robot i will be
safely out of the way.

The essence of our approach is to detect when opportuni-
ties for these kinds of on-the-fly changes to the coordination

space obstacle labels may be beneficial to the overall perfor-
mance of the system. We note that the alternative of simply
re-executing the global trajectory planner in such situations
is not generally a feasible option, since that sort of joint
planning scales, as a general rule, quite poorly as the number
of robots increases.

There are three essential elements to the approach: First,
in Section V-A we consider the conditions under which the
system should even consider an obstacle flip. Second, in
Section V-B, we describe how the robots can estimate the
disturbance probabilities based on their own observations of
the disturbances they have experienced. Finally, in Section V-
C we propose two algorithms for determining whether to
actual execute the obstacle flip.

A. When to Check for Obstacle Flips

Before we address the question of how to determine if
flipping an obstacle might be helpful, we first consider when
during their execution the robots might reasonably consider
this kind of change. Recall that the advantage of an obstacle
flip derives from enabling a robot whose progress might
have been delayed because of the first case in Equation 3 to
proceed immediately instead of waiting for the other robot to
pass a certain collision region. Thus, robot i performs a flip
check at most once for each obstacle oijk , specifically the first
time that obstacle triggers the first condition in Equation 3.

B. Estimating the Disturbance Probabilities

Our goal is to change the label of a coordination space
obstacle, allowing a robot to pass through without waiting,
only when doing so is unlikely to delay the other robot. To
make such a decision requires an estimate of the disturbance
probability function p, at positions along each of the two
robots’ paths, from their current positions through to the end
of the collision region. We write p̂ : W → [0, 1] to denote
this estimate of the disturbance probability.

The robots use their own observations of the actual distur-
bances, realized during the current execution, to compute p̂.
Each robot keeps track of its last s time steps, in which
s is a tunable parameter, and tracks both its position πi
and whether it experienced a disturbance δi, in those time
steps. Based on those observations, robot i can compute a
position-probability pair, which estimates the probability of
a disturbance at the centroid of its positions across the last
s time steps:(

1

s

s−1∑
i=0

πi(xi(t− i)),
1

s

s−1∑
i=0

δi(t− i)

)
(4)

The system then uses these estimates of p at various places
within W , to form its global estimate p̂, using a Gaussian
Process regression model. We also use a k-means clustering
approach to reduce the size of the observation set, to ensure
that the Gaussian Process learning is completed efficiently.
Figure 5 illustrates an example of this process.

0 500 1000 1500

position

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
ro

b
a
b

il
it

y

Real Probability

Observations

Predictions

Fig. 5. [left] A robot moves through two regions, shown in red, in which
the probability of disturbance is elevated. The robot does not know of these
regions beforehand, and must estimate the disturbance probability based
on its own experience of disturbances. [right] Results of the process of
estimating the disturbance probability. Blue points mark the observations,
computed via Equation 4. The green curve shows p̂, as computing via
Gaussian Process regression over these observations. For comparison, the
actual disturbance probability p is plotted in red. Note that this illustration
shows only a one-dimensional slice of the estimated disturbance probability
function p̂, along the robot’s actual path. Our approach computes p̂ across
the full 2-dimensional domain.

C. Testing Whether Flipping an Obstacle Is Helpful

Finally, we can establish conditions under which we
expect the average travel time for the robots to benefit
from changing the label of one of the obstacles on-the-
fly. We propose two methods for this: The first method,
TESTFLIPFAST (Section V-C.1) is very efficient, but overly
conservative for some types of coordination space obstacles;
the second, TESTFLIPAGGRESSIVE is more computationally
expensive, but can identify flipping opportunities overlooked
by the first method. Throughout this section, we consider the
case in which robot i has begun to wait for robot j because
of obstacle oijk with label l(oijk) = j; the question is whether
to change this label to i.

1) TestFlipFast: Our first method decides to flip a coordi-
nation space obstacle if the expected time for robot i to clear
oijk —that is, to reach its right boundary in the coordination
space— is less than the expected time for robot j to arrive at
oijk . The idea to making this approach efficient is to consider
only the axis-aligned bounding box of oijk , rather than its
precise shape. This simplifying assumption means that we
can consider the movements of robot i independently of those
of robot j.

Specifically, we compute the expected time for robot i to
clear oijk using dynamic programming over the recurrence

Ei(ki)←
∑

k′
i∈{ki,ki+1}

p(k′i)Ei(k
′
i), (5)

in which E(ki) denotes the expected time for robot i to
clear the obstacle, starting from state ki, amd p(k′i) is the
probability of robot i successfully moving forward in the
next time step at that location, computed using the learned
estimate p̂. We can compute values for E using the standard
value iteration [10] algorithm. We then flip obstacle oijk if
Ei(a) < Ej(b), in which a is the path step at which robot i

clears the obstacles, and b is the path step at which robot j
reaches the obstacle.

2) TestFlipAggressive: We also consider an alternative to
TESTFLIPFAST, which considers the interactions between
robot i and robot j as they travel near the obstacle. These
kinds of interactions are important if, for example, the
obstacle is long, narrow, and diagonal in the coordination
space, as would occur if the paths for robot i and robot j
travel in parallel for some distance. Using TESTFLIPFAST
would be unlikely to flip such an obstacle, since the time
at which robot i fully clears the obstacle will be far in the
future.

To account for those kinds of interactions, we propose
TESTFLIPAGGRESSIVE as an alternative. The core recur-
rence of TESTFLIPAGGESSIVE is

Eij(ki, kj)←
∑

(k′
i,k

′
j∈S

p(k′i, k
′
j)Eij(k

′
i, k
′
j). (6)

In the recurrence, Eij(ki, kj) represents the expected time
for robot i to clear the obstacle, accounting for the fact that
its motion by be delayed, according to Equation 3, waiting
for robot j; S is the set of possible next states,

S = {(ki, kj), (ki+1, kj), (ki, kj+1), (ki+1kj+1)};

and the next state probabilities p(k′i, k
′
j) are computed based

on both estimated disturbance probability p̂, as well as the
action variables ai. That is, if robot i would choose ai(t) = 0
at this situation, then p(k′i+1, k

′
j) = p(k′i+1, k

′
j+1) = 0. As

with TESTFLIPFAST, we use value iteration to compute these
values. However, because of the additional states (since we
consider joint positions of both robot i and robot j, rather
than robot i individually) and because of the time needed
to evaluate Equation 3 at each point, this approach can be
significantly slower than the expected time computation in
FLIPCHECKFAST.

Finally, we can use these sorts of expected time computa-
tions to decide whether to flip obstacle oijk . Because we want
to consider the effects of this obstacle’s label, we compute
four different expected times:
• Eij(ki, kj) — the expected time for robot i to clear oijk ,

using the current label.
•

E

ij(ki, kj) — the expected time for robot i to clear
oijk , using the opposite label, which it would acquire if
it were flipped.

• Eji(kj , ki) — the expected time for robot j to clear oijk ,
using the current label.

•

E

ji(kj , ki) — the expected time for robot j to clear
oijk , using the opposite label, which it would acquire if
it were flipped.

Using these estimates of the consequences of an obstacle
flip, we choose to carry out that flip if the anticipated benefit
(that is, the anticipated reduction in travel time) for robot i
outweighs the anticipated cost to robot j. That is, if

Eij(ki, kj)−

E

ij(ki, kj) < Eji(kj , ki)−

E

ji(kj , ki) (7)

then we change the label of oijk .

5 10 15 20 25 30 35 40 45

number of robots

65

70

75

80

85

90

a
v
e
ra

g
e
 t

ra
v
e
l
ti

m
e
 (

s
e
c
)

RMTRACK

RMTRACK+TFA

RMTRACK+TFF

5 10 15 20 25 30 35 40 45

number of robots

0

50

100

150

c
o

m
p

u
ta

ti
o

n
 t

im
e
 f

o
r

fl
ip

p
in

g
 (

s
e
c
)

RMTRACK+TFA

RMTRACK+TFF

5 10 15 20 25 30 35 40 45

number of robots

0

5

10

15

20

25

30

n
u

m
b

e
r

o
f

fl
ip

s
 e

x
e
c
u

te
d

RMTRACK+TFA

RMTRACK+TFF

5 10 15 20 25

number of robots

50

55

60

65

70

75

80

85

a
v
e
ra

g
e
 t

ra
v
e
l
ti

m
e
 (

s
e
c
)

RMTRACK

RMTRACK+TFA

RMTRACK+TFF

5 10 15 20 25

number of robots

0

5

10

15

20

25

30

35

40

45

c
o

m
p

u
ta

ti
o

n
 t

im
e
 f

o
r

fl
ip

p
in

g
 (

s
e
c
)

RMTRACK+TFA

RMTRACK+TFF

5 10 15 20 25

number of robots

0

5

10

15

n
u

m
b

e
r

o
f

fl
ip

s
 e

x
e
c
u

te
d

RMTRACK+TFA

RMTRACK+TFF

5 10 15 20 25 30 35 40

number of robots

55

60

65

70

75

80

85

a
v
e
ra

g
e
 t

ra
v
e
l
ti

m
e
 (

s
e
c
)

RMTRACK

RMTRACK+TFA

RMTRACK+TFF

5 10 15 20 25 30 35 40

number of robots

0

20

40

60

80

100

120

c
o

m
p

u
ta

ti
o

n
 t

im
e

 f
o

r
fl

ip
p

in
g

 (
s

e
c

)

RMTRACK+TFA

RMTRACK+TFF

5 10 15 20 25 30 35 40

number of robots

0

2

4

6

8

10

12

14

16

18

20

n
u

m
b

e
r

o
f

fl
ip

s
 e

x
e
c
u

te
d

RMTRACK+TFA

RMTRACK+TFF

Fig. 6. Experimental Results

That completes our discussion of the approach. In sum-
mary, as the robots execute RMTRACK, the system attempts
to identify times at which it can opportunistically modify the
label of an obstacle, to repair the initial trajectory, to recover
from large, unexpected disturbances with full replanning.

VI. EXPERIMENTAL RESULTS

We have implemented these algorithms in Java, building
upon the original RMTRACK implementation.1 For Gaus-
sian Process regression, we use the Statistical Machine In-
telligence and Learning Engine (SMILE).2 The experiments
were conducted on an Ubuntu 16.04 computer with a 2.8GHz
processor. We conducted experiments in three distinct en-
vironments, each with certain large regions designated as
high-disturbance zones. The environments shown in the left
column of Figure 6; the high disturbance zones are shown
in red. The disturbance probability in these red zones are
0.8, 0.7, and 0.8 for each row, respectively. Outside the red
zones, the disturbance probability is 0.05.

For each environment, we varied the number n of robots
in increments of 5 and selected random starting and goal
positions for each robot. For each n, we conducted ten trials,
executing three algorithms for each configuration of state and
goal positions: (1) vanilla RMTRACK, (2) RMTRACK with
obstacle flipping via TESTFLIPFAST (RMTRACK+TFF),
and (3) RMTRACK with obstacle flipping via TESTFLIPAG-
GRESSIVE (RMTRACK+TFA). For the latter two, we used
s = 20 when generating observations for Gaussian process

1https://github.com/mcapino/rmtrack
2http://haifengl.github.io/smile/

regression.
Under each algorithm, the robots were able to complete

each trial successfully. For each algorithm, we measured the
average completion time. These results appear in the second
column of Figure 6. We observe that, for these problem
instances, both obstacle flipping approaches can generate
sizable decreases to the average travel time for the robots.
For the obstacle flipping algorithms, we also measured the
amount of computation time consumed by the TESTFLIP
algorithms. From these results, which are in the third column
of Figure 6, we conclude that this computation is nearly
negligible, in comparison to the savings in robot travel time.
Finally, we counted the number of flips executed by each
approach, as shown in the right column of Figure 6. Those
results confirm that the extra computation time invested in
TESTFLIPAGGRESSIVE does indeed identify larger numbers
of opportunities to flip the obstacle labels.

VII. CONCLUSION

This paper presented a technique for online repair of
multiple-robot coordination plans. The idea is to start from
a planned joint trajectory for the robots, but to adjust that
path by ‘flipping’ the order in which pairs of robots should
pass through their shared collision regions. These decisions
are made on-the-fly, without full replanning, in response to
unexpected disturbances in the execution speed of some of
the robots along their paths. In future work, we plan to
consider a decentralized version of this problem, in which
robots have limited information about the progress made by
the other robots must nevertheless decide how to proceed.

https://github.com/mcapino/rmtrack
http://haifengl.github.io/smile/

REFERENCES

[1] Javier Alonso-Mora, Pascal Gohl, Scott Watson, Roland Siegwart, and
Paul Beardsley. Shared control of autonomous vehicles based on
velocity space optimization. In Robotics and Automation (ICRA), 2014
IEEE International Conference on, pages 1639–1645. IEEE, 2014.

[2] Michal Čáp, Jean Gregoire, and Emilio Frazzoli. Provably safe and
deadlock-free execution of multi-robot plans under delaying distur-
bances. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pages 5113–5118. IEEE, 2016.

[3] Michal Čáp, Peter Novák, Alexander Kleiner, and Martin Seleckỳ.
Prioritized planning algorithms for trajectory coordination of multiple
mobile robots. IEEE transactions on automation science and engi-
neering, 12(3):835–849, 2015.

[4] Hamid Chitsaz, Steven M. LaValle, and Jason M. O’Kane. Exact
Pareto-optimal coordination for two translating polygonal robots on
a cyclic roadmap. In Proc. Canadian Conference on Computational
Geometry, 2008.

[5] Hamid Chitsaz, Jason M. O’Kane, and Steven M. LaValle. Exact
Pareto-optimal coordination for two translating polygonal robots on an
acyclic roadmap. In Proc. IEEE International Conference on Robotics
and Automation, pages 3981–3986, 2004.

[6] Christopher M Clark, Stephen M Rock, and J-C Latombe. Motion
planning for multiple mobile robots using dynamic networks. In
Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE Inter-
national Conference on, volume 3, pages 4222–4227. IEEE, 2003.

[7] Michael Erdmann and Tomas Lozano-Perez. On multiple moving
objects. Algorithmica, 2(1-4):477, 1987.

[8] Robert Ghrist, Jason M. O’Kane, and Steven M. LaValle. Computing
pareto optimal coordinations on roadmaps. International Journal of
Robotics Research, 24(11):997–1010, November 2005.

[9] Andrew Howard and Nicholas Roy. The robotics data set repository
(radish), 2003. URL http://radish. sourceforge. net, 30, 2015.

[10] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[11] Stephane Leroy, Jean-Paul Laumond, and Thierry Siméon. Multiple
path coordination for mobile robots: A geometric algorithm. In IJCAI,
volume 99, pages 1118–1123, 1999.

[12] Tsai-Yen Li and Hsu-Chi Chou. Motion planning for a crowd of
robots. In Robotics and Automation, 2003. Proceedings. ICRA’03.
IEEE International Conference on, volume 3, pages 4215–4221. IEEE,
2003.

[13] Tomas Lozano-Perez et al. Deadlock-free and collision-free coordina-
tion of two robot manipulators. In 1989 IEEE International Conference
on Robotics and Automation, pages 484–489. IEEE, 1989.

[14] Mike Peasgood, Christopher Michael Clark, and John McPhee. A
complete and scalable strategy for coordinating multiple robots within
roadmaps. IEEE Transactions on Robotics, 24(2):283–292, 2008.

[15] Jamie Snape, Stephen J Guy, Jur Van Den Berg, and Dinesh Manocha.
Smooth coordination and navigation for multiple differential-drive
robots. In Experimental Robotics, pages 601–613. Springer, 2014.

[16] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha.
Reciprocal n-body collision avoidance. In Robotics research, pages
3–19. Springer, 2011.

[17] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal
velocity obstacles for real-time multi-agent navigation. In Robotics
and Automation, 2008. ICRA 2008. IEEE International Conference
on, pages 1928–1935. IEEE, 2008.

	Introduction
	Related Work
	Problem Statement
	Environment, robots, and trajectories
	Coordination spaces
	Commands and disturbances
	Objective

	Summary of RMTRACK
	Algorithm Description
	When to Check for Obstacle Flips
	Estimating the Disturbance Probabilities
	Testing Whether Flipping an Obstacle Is Helpful
	TestFlipFast
	TestFlipAggressive

	Experimental Results
	Conclusion
	References

