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Abstract— We present an algorithm that computes the com-
plete set of Pareto-optimal coordination strategies for two trans-
lating polygonal robots in the plane. A collision-free acyclic
roadmap of piecewise-linear paths is given on which the two
robots move. The robots have a maximum speed and are capable
of instantly switching between any two arbitrary speeds. Each
robot would like to minimize its travel time independently. The
Pareto-optimal solutions are the ones for which there exist no
solutions that are better for both robots. The algorithm computes
exact solutions in time O(mn

2 log n), in which m is the number
of paths in the roadmap, n is the number of coordination space
vertices. An implementation is presented.

I. INTRODUCTION

Collision-free coordination of multiple bodies is a fun-
damental problem that has received significant attention
over the last couple of decades. Popular examples of
multibody systems include reconfigurable robots [5], [9],
[12], [23] and autonomous guided vehicles (AGVs). In this
paper, we address cases in which each body is treated as a
separate robot and a roadmap (network of paths) has been
computed for each robot. Each roadmap avoids collisions
with workspace obstacles, but as robots travel along their
respective roadmaps, collisions may occur. The task is to
schedule the motions of the robots in a way that avoids
collisions between robots while minimizing the time taken
to reach goals.

Previous approaches to multiple-robot motion plan-
ning are often categorized as centralized or decoupled.
A centralized approach typically constructs a path in a
composite configuration space, which is formed by the
Cartesian product of the configuration spaces of the indi-
vidual robots (e.g., [2], [3], [19]). A decoupled approach
typically generates paths for each robot independently,
and then considers the interactions between the robots
(e.g., [1], [7], [17]). In [4], [16], [20] robot paths are
independently determined, and a coordination diagram is
used to plan a collision-free trajectory along the paths.
In [13], [22], an independent roadmap is computed for
each robot, and coordination occurs on the Cartesian
product of the roadmap path domains. The suitability of
one approach over the other is usually determined by
the tradeoff between computational complexity associated
with a given problem, and the amount of completeness that
is lost. In some applications, such as the coordination of

AGVs, the roadmap might represent all allowable mobility
for each robot.

Suppose that all paths in a roadmap are parameterized
with constant speed, and each robot is capable switching
instantaneously between being at rest and moving at some
fixed speed (obviously, this assumes transients are negli-
gible, which is only true in some applications). What is a
reasonable notion of optimality in this case? Minimizing
the average time robots take to reach their goal? Minimiz-
ing the time that the last robot takes? Optimal coordination
using such scalar criteria has been considered long ago
in [11], [15], [21]. The problem with scalarization is
that it eliminates many interesting coordination strategies,
possibly even neglecting optimality for some robots [14].

We are interested instead in finding all Pareto-optimal
[18] coordination strategies by treating coordination as a
multiobjective optimization problem. Each robot has an
independent criterion, which leads to a vector of costs.
Each Pareto-optimal strategy is one for which there exists
no strategy that would be better for all robots. The ap-
proach can be considered as filtering out all of the motion
plans that are not worth considering, and presenting the
user with a small set of the best alternatives. Within
this framework additional criteria, such as priority or the
amount of sacrifice one robot makes, can be applied to
automatically select a particular motion plan. If the same
tasks are repeated and priorities change, then one only
needs to select an alternative minimal plan, as opposed to
re-exploring the entire space of motion strategies.

In this paper, we introduce an exact algorithm for
finding all Pareto-optimal coordination strategies for two
polygonal robots, each translating along a fixed roadmap
of paths. In [14], an approximate algorithm was presented
for any number of robots and path types by developing a
Dijkstra-like algorithm that finds all Pareto-optimal solu-
tions. To the best of our knowledge, up to now there have
been no exact algorithms for computing Pareto-optimal
coordination strategies.

II. PROBLEM FORMULATION

Suppose we have two polygonal robots R1 and R2.
For brevity, let i = 1, 2 throughout the following sections.
We assume Ri only translates in the plane. Therefore the
configuration space of Ri is R

2. We also assume that we



are given a fixed roadmap M on which Ri moves. The
roadmapM specifies a connection graph and a collection
of continuous piecewise-linear paths associated with its
edges in R

2. More precisely, M = (G, γ), in which the
graph G consists of a finite number of 0-dimensional ver-
tices V and 1-dimensional edges E assembled as follows.
Each edge e is homeomorphic to the closed interval [0, 1]
attached to V along its boundary points {0} and {1} 1.
We assume G is simple, i.e. has no loops. Note that G
need not necessarily be connected, which can be used to
represent the case where each robot has its own roadmap.

In the definition of roadmap M, γ : G → R
2 is a

continuous map such that for each edge e ∈ E , γ|e : G →
R

2 is a piecewise-linear path in the plane. The length of
each such piecewise-linear path gives a measure of the
length of the corresponding edge in G. Note that G in
this manner becomes a metric space with metric d which
conforms to the meaning of length in the plane.

We are also given an initial and a goal configuration
Cinit

i , Cgoal
i ∈ G for robot Ri. Now the problem is to give

an algorithm to find all Pareto-optimal coordinations for
the two robots R1 and R2 moving on G from the initial
configuration Cinit

1 and Cinit
2 to the goal configuration

Cgoal
1 and Cgoal

2 respectively. In the following, we define
the meaning of all those terms.

A coordination is a continuous, and piecewise smooth
path in G × G which avoids collision between robots.
Precisely, a continuous path C : [0, 1] → G × G from
(Cinit

1 , Cinit
2 ) to (Cgoal

1 , Cgoal
2 ) is a coordination for R1

and R2 if for all t ∈ [0, 1], robot R1 at γ(C1(t))
does not collide with robot R2 at γ(C2(t)), in which
C(t) = (C1(t), C2(t)). We use the term coordination for
both the above function and its image wherever there are
no ambiguities.

Finally, we are given a cost functional J that separately
measures the time that each robot takes to reach its goal,
under a particular coordination. Thus, it specifies a partial
order on the set of all coordinations C. Each minimal
element in this partial order is called a Pareto-optimal
coordination.

III. ALGORITHM PRESENTATION

A. Basic concepts

Cost functional: As it is stated in Section II, we have
an explicit cost functional J . Particularly, Ji denotes the
amount of time that it takes Ri to reach its goal and stop.
This time depends on the speed of Ri and the length of
its path. We have so far introduced length in Section II.
Without loss of generality, let us assume that our robots
have a maximum speed of 1. Under this assumption, the
distance function d(x, y) gives the minimum amount of
time that it takes Ri to go from x to y on G.

To specify J , first we define a metric d∞ in G×G which
gives the minimum amount of time that it takes to get both
R1 andR2 from (x1, x2) to (y1, y2). It is naturally defined
by d∞ : ((x1, x2), (y1, y2)) 7→ max(d(x1, y1), d(x2, y2)).

1We place upon G the topology given by the endpoint identifications.

R1 R2

e1

e0

e0 × e1

Fig. 1. A pair of path segments and their coordination cell.

It is easy to verify that d∞ is actually a metric. Second,
let L∞ be the functional that gives the length of each
continuous path in G × G according to d∞.

Now for each coordination C, we specify J = (J1, J2)
in the following three cases:

• RobotR1 reaches its goal sooner thanR2. Thus there
is t0 ∈ [0, 1) such that ∀ t0 ≤ t ≤ 1 : C(t) =
(Cgoal

1 , C2(t)) and C2(t0) 6= Cgoal
2 . For the least

such t0 we define J(C) = (L∞(C|[0,t0]),L
∞(C)).

• RobotR2 reaches its goal sooner thanR1. Thus there
is t0 ∈ [0, 1) such that ∀ t0 ≤ t ≤ 1 : C(t) =
(C1(t), C

goal
1 ) and C1(t0) 6= Cgoal

1 . For the least
such t0 we define J(C) = (L∞(C),L∞(C|[0,t0])).

• Otherwise, both robots reach their goals simultane-
ously. We define J(C) = (L∞(C),L∞(C)).
Coordination cell: Since G consists of 0-dimensional

and 1-dimensional cells, G × G is a cube-complex. In
fact, G × G consists of a number of 2-dimensional cells
appropriately pasted to each other along their boundary
edges and vertices. Each such 2D cell, D = er × es, in
which er, es ⊂ G, can be seen as the coordination cell of
the two robots on the paths γ|er

and γ|es
parametrized by

unit speed. In particular, our coordination cell can be seen
as [0, lr]× [0, ls], in which lk = l(ek) is the length of ek.

Within each coordination cell, we use the term obstacle
region to refer to the set of points corresponding to
positions in which the interiors of R1 and R2 intersect.
The free region is set of points not in the obstacle region.
In Figure 1, we see an example of a coordination cell and
its obstacle region. Notice that our coordination cell is
similar to the coordination diagram of [20], but since our
robots are polygonal and our paths are piecewise-linear,
the obstacle region in our coordination cell is a collection
of polygonal connected components. If we confine our
attention to a single coordination cell (as we will in
Section III-B), a coordination is essentially a piecewise-
smooth path from (0, 0) to (lr, ls) inside its free region.

Equivalence and partial order: Different paths can
have equal L∞ lengths and consequently equal J costs. In
general, equality of J cost defines an equivalence relation
∼ on the set of all coordinations C. In fact, since our
optimality criterion is based on the value of J , we can
consider the set C̃ = C/∼ of equivalence classes and use
term coordination class to refer to one of these maximal
sets of equivalent coordinations.

Now we can define the partial order mentioned in
Section II in more detail. Define a relation ≤ on C̃ as
follows: For any two coordination classes [C] and [C ′],
say that [C] ≤ [C ′] if and only if J1(C) ≤ J1(C

′) and



J2(C) ≤ J2(C
′). It is easy to see that the definition is

independent of the choice of representative, so ≤ is well-
defined. Any minimal element in this partial order is a
Pareto-optimal coordination class. The algorithm proposed
here computes a representative from each of these Pareto-
optimal coordination classes.

To describe the algorithm, we first describe how to com-
pute all Pareto-optimal coordinations in the simpler case
of a single coordination cell, then extend the algorithm to
the whole G × G which consists of a collection of such
coordination cells.

B. Two fixed paths

In this section we describe how to compute all Pareto-
optimal coordinations in a single coordination cell, i.e.
for the two robots on two fixed paths. As it is stated in
Section III-A, the obstacle (or collision) region of our co-
ordination cell consists of a collection of polygons. Thus,
we may use the terms vertex and edge of the obstacle
region. To present the algorithm, we give some statements
about the properties of Pareto-optimal coordinations.

Lemma 1: For every Pareto-optimal coordination class
[Cop] in a coordination cell [0, lr] × [0, ls] there is a
representative Ceq ∈ [Cop] such that Ceq is composed of a
finite sequence of linear segments between the vertices of
obstacle region, initial (0, 0) and goal (lr, ls) points, and
in some cases a point on the boundary of the coordination
cell, (t, ls) or (lr, t).
Proof: First, notice that there is an equivalent coordination
to Cop which is piecewise-linear. By an argument similar
to the one in [6], which is essentially based on shortening,
we get the result. As a remark, notice that in cases where
for example robot R1 reaches its goal sooner than R2,
the final segment of each coordination in [Cop] lies over
the boundary of coordination cell and in particular is of
the form (lr, t)− (lr, ls). That is why in some cases Ceq

passes through a point on the boundary which may neither
be an obstacle vertex nor an endpoint. �

As a consequence of Lemma 1, it is sufficient to
consider only coordinations composed of a sequence of
linear segments between the vertices of obstacle region,
initial and goal points, and in some cases a point on the
boundary of coordination cell. We call such Pareto-optimal
coordinations visibility Pareto-optimal. The next lemma
explains this naming and characterizes the set of vertices
on the boundary.

Lemma 2: Suppose [Cop] is a visibility Pareto-optimal
coordination class with Cop ∈ [Cop] of the form described
in Lemma 1. Let (t1, t2) denote the last vertex of Cop

which is not on the boundary (that is, that last vertex such
that t1 6= lr and t2 6= ls). There are three cases:

(i) If J1(Cop) < J2(Cop), then the line segment
(t1, t2) − (lr, t2 + lr − t1) is collision free and
furthermore, is exactly a segment of Cop.

(ii) If J1(Cop) > J2(Cop), then the line segment
(t1, t2) − (t1 + ls − t2, ls) is collision free and
furthermore, is exactly a segment of Cop.

(iii) If J1(Cop) = J2(Cop), then there is at most one
such [Cop] in C̃ and it is represented by the shortest

SINGLECELLPARETOOPTIMALCOORD(er, es,R1,R2)
S ← ∅
P ← OBSTACLEPOLYGONS(e1, e2,R1,R2)
V G← VISIBILITYGRAPH(P ∪ {(0, 0), (lr, ls})
DIJKSTRA(V G, (0, 0),L∞)
S ← S ∪ SHORTEST((lr, ls)

for each vertex v = (x1, x2) of each polygon in P
〈〈Is R1 is nearer the goal than R2?〉〉
if x1 − x2 > lr − ls

q ← (lr, x2 + lr − x1)
if FREE(P, v, q) and FREE(P, q, (lr, ls))

S ← S ∪ {(SHORTEST(v), q, (lr, ls))}

〈〈Is R2 is nearer the goal than R1?〉〉
if x1 − x2 < lr − ls

q ← (x1 + ls − x2, ls)
if FREE(P, v, q) and FREE(P, q, (lr, ls))

S ← S ∪ {(SHORTEST(v), q, (lr, ls))}

S ← PRUNESOLUTIONS(S)
return S

Fig. 2. The basic algorithm for two fixed paths.

path on the visibility graph of obstacle vertices and
endpoints.

Proof: In the first two cases, if the line segment is not
collision free, we can always find another coordination
which reduces both J1 and J2 contradicting the optimality
of Cop. Furthermore, taking the line segment is the best
strategy. In other words, if the line segment is not part of
Cop, we can replace it in and find a better coordination. In
the third case, it is obvious that [Cop], if exists, is unique,
because for any coordination [C ′] 6= [Cop] with J1(C

′) =
J2(C

′), either [C ′] < [Cop] or [C ′] > [Cop]. In fact, Cop is
the L2-shortest path from (0, 0) to (lr, ls) in the interior of
coordination cell. In other words, Cop is the shortest path
according to the Euclidean metric. As a remark, notice that
an L2-shortest path is also L∞-shortest but the converse
need not be true. �

Corollary 3: The number of Pareto-optimal coordina-
tions is finite.

Note that case (i) of in Lemma 2, (lr, t2 + lr − t1) is
simply the intersection of the line x1 = lr and the line with
slope 1 through (t1, t2). Similar remarks can be made for
cases (ii) and (iii). Intuitively, we can think of shooting
a ray at slope 1 from each obstacle vertex (t1, t2) and
stopping when that ray hits a point with either x1 = lr or
x2 = ls, corresponding respectively to R1 or R2 reaching
its goal. Lemmas 1 and 2 tell us that every Pareto-optimal
coordination class has a representative that ends with such
a slope-1 segment.

Now we are ready to present the algorithm in Fig-
ure 2. The function OBSTACLEPOLYGONS computes the
obstacle region polygons. As it is stated in Section III-
A, the obstacle region is a collection of polygons which
can be computed by collision detection algorithm along



each pair of linear path segments. More precisely, we
build the Minkowski sum of R2 on R1 which is a bigger
polygon around R1 representing the position of the center
of R2 while R1 and R2 touch each other. The intersection
points of linear path segments with this polygon gives
the boundary of obstacle region. The visibility graph of
the vertices of obstacle region and endpoints is computed
in VISIBILITYGRAPH according to the well-known radial
sweep algorithm in [6]. The function FREE checks to see
whether a line segment is contained in the free region of
the coordination cell. This can be performed by simple
geometric tests. The optimal path candidates described in
Lemma 2 are then added to S. Lastly, we notice that some
of the added paths may not be actually optimal. These
are removed in PRUNESOLUTIONS by simple pairwise
comparisons.

Theorem 4: The algorithm SINGLECELLPARETOOP-
TIMALCOORD in Figure 2 correctly computes all Pareto-
optimal coordinations of the two robots on two fixed
piecewise-linear paths.
Proof: The result directly follows from Lemma 1 and
Lemma 2. �

If n denotes the number of obstacle vertices, then
VISIBILITYGRAPH takes O(n2 log n) time. Since each
of the other steps can be done in O(n2) time, the time
complexity of SINGLECELLPARETOOPTIMALCOORD is
also O(n2 log n).

C. Acyclic roadmap

In this section we extend the coordination cell algorithm
in Figure 2 to the general case of two robots on an
acyclic roadmap G. The theory developed in [10] easily
shows that if G is acyclic, G × G with L2 metric is non-
positively curved (NPC) and consequently it has unique
Euclidean geodesics. For some applications of NPC spaces
and Gromov’s hyperbolic group theory, see [8], [9]. These
results imply:

Proposition 5: Assume G × G is equipped with L2

metric in which G is an acyclic graph. Note that G need
not necessarily be connected. Between any two points
x, y ∈ G × G there is exactly one geodesic connecting
x and y if they are in the same connected component.

This nice property makes G × G similar to the plane,
because geodesics in G×G play the role of lines in plane.
In fact, geodesics inside a coordination cell coincide with
the usual Euclidean lines. Thus, we have the following
lemmas similar to the ones in Section III-B. From now
on, we assume G is acyclic. Note that since in each
coordination cell the obstacle region is polygonal, the
obstacle region in G × G is also polygonal.

Lemma 6: For every Pareto-optimal coordination class
[Cop] in G from (Cinit

1 , Cinit
2 ) to (Cgoal

1 , Cgoal
2 ) there is a

representative Ceq ∈ [Cop] such that Ceq is composed of a
finite sequence of geodesic segments between the vertices
of obstacle region, initial and goal points, and in some
cases a point on the boundary, (x,Cgoal

2 ) or (Cgoal
1 , x).

Proof: Very similar to the proof of Lemma 1. �

PARETOOPTIMALCOORD(M,R1,R2, C
init, Cgoal)

S ← ∅ 〈〈S is the set of candidate solutions.〉〉
P ← ∅
for each pair of edges ei, ej ∈ G

P ← P ∪ OBSTACLEPOLYGONS(ei, ej ,R1,R2)
V G← GENVISIBILITYGRAPH(P ∪ {Cinit, Cgoal})
DIJKSTRA(V G,Cinit,L∞)
S ← S ∪ SHORTEST(Cgoal)

for each vertex v = (x1, x2) of each polygon in P
〈〈Is R1 is nearer to Cgoal than R2?〉〉
if d(x1, C

goal
1 ) < d(x2, C

goal
2 )

q ← (Cgoal
1 , x2 + δx1)

if FREE(P, v, q) and FREE(P, q, Cgoal)
S ← S ∪ {(SHORTEST(v), q, Cgoal))}

〈〈Is R2 is nearer to Cgoal than R1?〉〉
if d(x1, C

goal
1 ) > d(x2, C

goal
2 )

q ← (x1 + δx2, C
goal
2 )

if FREE(P, v, q) and FREE(P, q, Cgoal)
S ← S ∪ {(SHORTEST(v), q, Cgoal))}

S ← PRUNESOLUTIONS(S)
return S

Fig. 3. The algorithm for finding all Pareto-optimal coordinations of
two robots on an acyclic piecewise-linear roadmap.

Lemma 7: Assume [Cop] is a Pareto-optimal coordina-
tion class. and Cop is of the form described in Lemma 6.
Once again, there are three cases:

(i) If J1(Cop) < J2(Cop), then the geodesic segment
A to (Cgoal

1 , y) with equal progression for R1 and
R2 is collision free and furthermore, is exactly a
segment of Cop.

(ii) If J1(Cop) > J2(Cop), then the geodesic segment
A to (y, Cgoal

2 ) with equal progression for R1 and
R2 is collision free and furthermore, is exactly a
segment of Cop.

(iii) If J1(Cop) = J2(Cop), then there is at most one
such [Cop] in C̃ and it is represented by the shortest
path on the generalized visibility graph of obstacle
vertices and endpoints.

Above, A = (x1, x2) is the last vertex of Cop which is
not on the boundary, i.e. x1 6= Cgoal

1 and x2 6= Cgoal
2 .

Proof: Very similar to the proof of Lemma 2. �

In PARETOOPTIMALCOORD in Figure 3, GENVIS-
IBILITYGRAPH is a generalization of visibility graph
algorithm in [6]. More precisely, we do a radial sweeping
algorithm. This can be done because the radial geodesics
are unique. To sweep about vertex v, we just sort all
the obstacle vertices throughout the cell complex in their
geodesic angle order. We extend the standard algorithm
by maintaining a separate balanced binary tree for each
2-cell in G × G intersected by the sweep ray. Edges in
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(a) (b)
Fig. 4. (a) A coordination problem on a roadmap with 7 edges. (b) A
subset of G × G for this problem.

each tree remain ordered according to their distance from
v. To check whether a geodesic is collision free, we check
collision for all the nearest edges given by our tree data
structure in those cells that are traversed by the geodesic.
The remainder of the algorithm is essentially unchanged
from SINGLECELLPARETOOPTIMALCOORD.

Theorem 8: The algorithm PARETOOPTIMALCOORD
in Figure 3 correctly computes all Pareto-optimal coor-
dinations of the two robots on M from C init to Cgoal.
Proof: The result directly follows from Lemma 6 and
Lemma 7. �

Complexity: Let m denote the number of edges in
M and let n denote total number of obstacle vertices.
Since each geodesic passes through at most 2m cells, in
computing the visibility graph, we perform O(mn2) bal-
anced binary tree operations, each taking O(log n) time.
The visibility graph therefore requires O(mn2 log n) time
to compute. Both Dijkstra’s algorithm and the pruning
of S take O(n2) time. Finally, notice that the number
of Pareto-optimal coordinations is less than or equal to
the total number of obstacle vertices plus two. Thus, the
complexity of algorithm output is O(n). Hence, the total
complexity of our algorithm is O(mn2 log n).

IV. EXPERIMENTAL RESULTS

We have implemented a simplified version of the de-
scribed algorithm using naı̈ve data structures and algo-
rithms in several places. An implementation more faithful
to the description in Section III-C can be expected to
perform better than the present implementation. The run
times below are for C++ compiled under Linux and
executed on 2.5GHz processor.

Figure 4 shows an example coordination problem on
a connected roadmap with 7 edges. Each robot is shown
in its initial state and the goal is for the robots to switch
places with one another. For this problem G ×G contains
31 obstacle polygons totalling 174 obstacle vertices. The
complete set of 4 Pareto-optimal coordinations illustrated
in Figure 5 took appoximately 0.2 seconds to compute.

As a second example, consider the star graph Sn with
vertex set {v0, . . . , vn−1} and edge set {(v0, vi) : 1 ≤
i < n}. Coordination on this family of graphs is unusual
because because every cell of G × G has a non-empty
obstacle region. In Figure 6, R1 and R2 navigate on an
embedding of S16. The obstacle region has 152 = 225 ob-
stacles with 933 vertices in total. The two Pareto-optimal

J

(8.9,14.8)

(9.3,14.3)

(14.4,13.7)

(15.1,8.7)

Fig. 5. The four Pareto-optimal solutions for the problem in Figure 4.
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Fig. 6. (a) A coordination problem on the star graph S16. (b) A subset
of G × G for this problem.

solutions are shown in Figure 7. Our implementation took
25 seconds to solve this problem.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an algorithm to compute
all Pareto-optimal coordinations of two polygonal trans-
lating robots, which have a maximum speed and are
capable of instantly switching between any two speeds
bounded by the maximum speed, on an acyclic roadmap
of piecewise-linear paths in the plane. We showed that the
algorithm works correctly and showed that its complexity
is O(mn2 log n), in which m is the number of edges of
roadmap and n is the total number of obstacle vertices.

However, notice that instead of assuming the robots are
translating polygons on a piecewise-linear roadmap, we
may assume that the configuration space of each robot
while moving on the roadmap is G, the underlying acyclic
graph of the roadmap, and the obstacle regions in G × G
are polygonal. In that case, exactly the same algorithm
can be applied to find all Pareto-optimal coordinations.

More generally, even in cases where the obstacle regions
are not polygonal but we can compute bitangents and
consequently the generalized visibility graph, we may
trivially modify the algorithm presented in this paper to
compute all Pareto-optimal coordinations of such robots.
In this regard, for example in case of car-like mobile
robots on a network of SA paths (see [20]), we may think
of computing bitangents of the obstacle region in G × G
to compute the generalized visibility graph. We can then
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(7.7,11.2)

(10.6,7.6)

Fig. 7. The two Pareto-optimal solutions for the problem in Figure 6.

find all Pareto-optimal coordinations.
As future work, we may think of solving the problem

for n robots on a roadmap. In that case, we have to
find Pareto-optimal collision free coordinations in the n-
dimensional cube complex Gn = G ×G × · · · × G. Notice
that since the collision of any two robots is considered
a failure of the whole configuration, the obstacle regions
in each cell of Gn are cylindrical. This property may be
exploited to solve the problem.
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