
An algorithm for geometric navigation planning
under uncertainty using terrain boundary detection

Bennett A. Carley Adeolayemi M. Bamgbelu XiMing Zhang Jason M. O’Kane

Abstract— We explore a navigation planning problem under
uncertainty for a simple robot with extremely limited sensing.
Our robot can turn subject to significant proportional error and
move forward. As it moves in an environment with a known
terrain map, the robot can detect changes in the terrain at its
current position. Given an initial pose and a goal segment, the
robot should find some sequence of actions to travel reliably
from start to goal, if such a sequence exists. The resulting plan
should guarantee the robot reaches the goal segment despite
any movement errors experienced within some known error
bound. In this paper, we propose an algorithm to find such an
action sequence, implement and evaluate this algorithm, and
present evidence for the feasibility of such an algorithm in an
underwater navigation setting.

I. INTRODUCTION

The problem of underwater navigation planning, where
an autonomous underwater vehicle (AUV) aims to reach
a goal state from an initial state despite significant uncer-
tainty, remains an important challenge [16], [42]. Enhanced
underwater navigation would facilitate diverse applications,
including diver guidance [20] and coral reef inspection [19],
among others. Conventional methods typically focus on
minimizing localization error to reach the goal [8], [24].

However, underwater navigation presents numerous chal-
lenges. Many existing underwater path planning algorithms
require intermittent surfacing for GPS fixes, resulting in
time and energy inefficiencies [7]. Additionally, underwater
sensors often exhibit substantial inaccuracies [13]. Camera
image quality is frequently degraded by particulate matter
in underwater environments, limiting visibility and overall
performance [41]. A more comprehensive review of related
work is provided in Section II.

This paper addresses a specific form of navigating un-
der uncertainty, where the robot can detect terrain changes
within the environment. For instance, indoor robots can
observe transitions between carpet and hardwood, while
marine robots can observe transitions between sand and
reef. We model robots that experience significant rotational
error and cannot accurately measure translational movement.
The terrain transitions robots can observe are modeled as
segments. A robot action is defined as a rotation subject
to error, followed by forward movement until a segment is
detected. Using this robot model, we aim to navigate from an
initial pose to a goal segment. The formal problem definition
is detailed in Section III.

B. A. Carley, A. M. Bamgbelu, X. Zhang, and J. M. O’Kane are
with the Department of Computer Science and Engineering at Texas
A&M University, College Station, Texas, USA. {bcarl, sk3ps,
ximingzhang.sam, jokane}@tamu.edu

Fig. 1: [left] The Aqua2 underwater hexapod robot platform can
navigate in shallow coastal waters, but its movement is generally
subject to significant error, and localization without additional
sensors remains a challenge. [right] A plan, generated by the
proposed algorithm and realizable by Aqua2, that uses coral reefs
as segment-landmarks to navigate from an initial pose to a goal
segment.

Our algorithm reasons about information states (I-states),
which represent sets of possible states resulting from ac-
tion execution. Each I-state is defined by a line segment
representing possible positions and an interval representing
possible headings. First, we introduce a geometric test to
determine which transition actions, if any, reliably transition
between an I-state and a segment. Next, we detail a method
for generating a discrete set of valid actions at a specified
resolution step from an I-state, ensuring this action set
becomes increasingly dense as resolution increases. Using
this method with a resolution step of zero, we perform
a depth-first search starting at the robot’s initial pose and
search for a sequence of actions to the goal segment. Finally,
if no path to the goal segment is found, we increase the
sampling resolution step by one and repeat this process if the
current resolution step is less than the maximum resolution
step. We elaborate this process in Section IV. Section V
presents an implementation and evaluation of our approach.

Figure 1 illustrates an example output, designed for execu-
tion by the Aqua2 AUV, leveraging the transitions between
reef and sand as distinct segments. Section VI demonstrates
the Aqua2’s vision system can indeed reliably detect these
segments.

The results discussed in Section VII provide a roadmap for
robust underwater navigation despite significant movement
inaccuracies and limited sensor information.

II. RELATED WORK

A. Planning Under Uncertainty

This paper addresses a planning problem where the robot
experiences uncertainty about its current pose. The objective
of forming plans that succeed in spite of uncertainty is one of



the most fruitful topics in the robotics literature, approached
in a wide variety of ways [1], [2], [9], [10], [21], [22],
[29], [39], [40]. Some of the most closely-related work stems
from problems considered by Erdmann and Mason, investi-
gated scenarios where a robot, initially unaware of its pose,
achieves a know pose after some sequence of actions [4].
More recent follow-up work demonstrated that, in certain
environments, a robot’s pose converges to a deterministic
state given a sufficiently long action sequence [18].

Another closely related early thread of research considered
navigating environments with landmarks, where the robot
has perfect sensing within these landmarks and no sensing
outside them [11].

For robots equipped with an environmental map, unreli-
able compass, and bump sensor, successful planning from
start to goal [15] and guaranteed coverage of the space [14]
have been demonstrated. Localization problems involving
robots with only a clock and bump sensor have also been
explored [23], and probabilistic methods can successfully
localize such a robot [5].

B. Underwater Navigation

Underwater navigation has been an active research area for
many years, resulting in a substantial body of literature [3],
[27], [32], [33], [37], [38]. Path deviations caused by currents
present a significant challenge in underwater environments,
complicating navigation. Various methods have been pro-
posed to estimate these deviations using sparse GPS data [12]
and terrain structure observations [34]. The presence of ob-
stacles further complicates underwater navigation. Research
has explored 3D path optimization in these environments,
both with and without known maps [36]. This work builds
upon Trajopt, an optimization framework for generating
robot trajectories [28]. Vidal et al. developed an online
motion planning framework that accounts for the complex
hydrodynamics of underwater environments and efficiently
generate plans [31]. The SVIn2 framework implements a
Simultaneous Localization and Mapping (SLAM) for under-
water exploration, fusing sonar, visual, and inertial sensor
data [24].

There has also been interest in using camera data to
navigate in underwater environments. For instance, AquaVis
employs one or more cameras to navigate unknown envi-
ronments and avoid obstacles by tracking landmarks and
dynamically adjusting the robot’s movement to maintain
their visibility [35]. Additionally, an onboard GPU can be
leveraged by underwater robots to perform vision-based nav-
igation while detecting and classifying objects encountered
by the robot [17].

The quality of underwater images is often poor and
presents a significant challenge. Fortunately, recent work has
explored machine learning techniques to improve these im-
ages [6], along with established model-based methods [25].
A comprehensive review of various underwater image en-
hancement methods can be found in Zhou, Yang, and
Zhang [41].

III. PROBLEM STATEMENT

In this section, we outline the problem approached in this
work.

A. Robot Model

We consider a point robot navigating a planar environment
W = R2. The robot’s configuration space is C = R2 × S1,
where R2 represents the robot’s current position p, and S1
represents its heading θ. A state x ∈ C is defined by the
tuple (p, θ).

The environment contains a set of q non-intersecting line
segments S. Each segment s ∈ S, defined by endpoints
(a, b) ∈ W2, is the set of points in the closed line segment
between a and b. The robot detects when it crosses a seg-
ment, but not its identity, and can transverse these segments
unimpeded.

We model time as discrete stages k ∈ N. The robot’s
state at stage k is denoted as xk ∈ C. The action space is
U = [−π, π), representing the robot’s commanded rotation.
Uncertainty is modeled by an adversarial nature, which se-
lects actions from Ξ = [−α, α] where α ∈ [0, 1) bounds the
rotational error. At each time stage k, the robot selects action
uk and nature selects action ξk ∈ Ξ. That is, if the robot’s
commanded rotation is uk, the actual amount of rotation may
be any amount in the interval [uk(1− α), uk(1 + α)].

To define the state transition function, we introduce nec-
essary geometric machinery. Let R(p, θ) denote a ray orig-
inating at p with heading θ. The function HS(p, θ) returns
the set of all intersection points between segments in S and
the ray R(p, θ), defined thusly:

HS(p, θ) =
⋃
s∈S

{R(p, θ) ∩ s} (1)

To determine the closest intersection point to the ray’s
origin p, we define hS(p, θ) as the nearest point to p on any
segment s ∈ S along the ray R(p, θ). This can be expressed
as:

hS(p, θ) = argmin
q∈HS(p,θ)

∥p− q∥ (2)

where ∥·∥ denotes the Euclidean norm.
Given the robot’s state xk, the subsequent state xk+1 is

determined by a rotation of uk(1 + ξk) radians followed by
forward motion until a segment s ∈ S is detected. If no
segment is detected, xk+1 is undefined. We define the state
transition function f as:

xk+1 = f(xk, uk, ξk)

= (hS(xk, θxk
+ uk(1 + ξk)), θxk

+ uk(1 + ξk)) (3)

where pxk
and θxk

represent the position and heading
components of xk, respectively. The term ξk represents a
multiplicative rotational error, which is uncontrolled and
unknown to the robot.

We further define fm as the state transition function for a
sequence of m actions:

xk+m = fm(xk, uk, . . . , uk+m−1, ξk, . . . , ξk+m−1)

= f(f(· · · f(xk, uk, ξk) · · · ), uk+m−1, ξk+m−1) (4)



Fig. 2: Illustration of a transition from a source I-state ι (green) to
a target segment s (gold). The dotted red lines represent the angle
interval after performing action u on ι.

B. Planning Objective

Given this robot model, we desire plans reliably navigating
the robot throughW . Specifically, given an initial state xI ∈
C, a goal segment sG ∈ S, a set of segments S, and nature
scalar α, we wish to find a sequence of actions (u1, . . . , uK)
such that, for any nature action sequence (ξ1, . . . , ξK), the
following condition holds:

fK+1(xI , u1, . . . , uK , ξ1, . . . , ξK) ∈ sG × S1 (5)

We will henceforth refer to sG × S1 as the goal set XG.

C. Information States

The success criterion defined in Equation 5 involves
universal quantification over nature actions. Such universal
quantifiers may prove challenging for algorithms, particularly
for continuous domain variables. To address this challenge,
we recast the problem in terms of information states (I-
states), which track sets of possible states over all nature ac-
tion selections. For a given action sequence (u1, . . . , uk−1),
we define the information state ιk ∈ C as the set of states
the robot might have reached at stage k. This concept is
illustrated in Figure 2. Starting from ι1 = {xI}, these I-states
are computed using the information transition function:

ιk+1 = F (ιk, uk)

=
⋃

xk∈ιk

⋃
ξ∈Ξ

{f(xk, uk, ξ)} (6)

Furthermore, we define Fm as the I-state transition function
for a sequence of m actions from a given I-state:

ιk+m = Fm(ιk, uk, . . . , uk+m−1)

= F (F (· · ·F (ιk, uk) · · · ), uk+m−1) (7)

The I-states reachable with these transitions can be rep-
resented as tuple ι = (s, [θ, θ′]). Segment s denotes the set
of possible robot positions, and [θ, θ′] represents an angular
interval with θ ∈ [0, 2π) and θ′ ∈ [θ, 2π + θ]. The robot’s
state is guaranteed to lie within the set s× [θ, θ′].

Then, using the notion of I-states, we recast the planning
problem as finding some sequence of actions (u1, . . . , uK)
for which:

FK(xI , u1, . . . , uK−1) ⊆ XG (8)

Fig. 3: An illustration of a valid action sequence from xI to XG.
The dotted segments represent the robot’s possible headings after
turning.

Algorithm 1: TRANSITIONACTIONS(ι, s)

// Use Equation 6 to find the set of
all actions arriving exclusively
at ιg from ιa

1 return {u ∈ U | F (ι, u) ⊆ s× S1}

In other words, we wish to find some sequence of K actions
such that the final I-state ιK is entirely contained within the
goal set XG.

IV. ALGORITHM DESCRIPTION

This section details an algorithm designed to solve the
problem presented in Section III. The algorithm comprises
three primary components: (1) determining valid I-state to
segment transition actions (Section IV-A), (2) generating a
discrete subset of valid actions at an I-state for a specified
resolution (Section IV-B), and (3) constructing and searching
an I-state tree to produce a plan (Section IV-C).

A. I-State Transition

A fundamental component of the algorithm is the identi-
fication of transition actions between I-state ι = sι × [θ, θ′]
and segment s, if such actions exist. Algorithm 1 details this
process, employing Equation 6 to determine the set of valid
transition actions.

We initially determine the set of error-free rotations that
orient the robot towards the target segment. Specifically,
given the angle interval [θa, θ′a], Algorithm 1 calculates the
set of rotations that orient the robot towards segment s using
trigonometric principles. The set Uh is then computed as the
actions guaranteed to achieve a rotation in the above set.

Following this, we check for occlusions between segments
sι and s by all segments s′ ∈ S \{sι, s}. For each occluding
segment, the set of actions that could reach s′ from ι is
determined and accumulated into set Uo. Finally, we compute
and return the set of valid transition actions Uv = Uh\Uo. A
valid transition action u ∈ Uv ⊆ U from ι to s, as determined
by Algorithm 1, is illustrated in Figure 2.

B. Sample Valid Actions

In this section, we discuss the second algorithmic compo-
nent: the generation of sample actions from a given I-state
in a increasingly dense manner. This process enables the
construction of an increasingly dense tree, as described in
Section IV-C.



Algorithm 2: SAMPLEVALID(ι, S, r)

// Generate set of valid actions Ur

from I-state ι to each segment s
in S for resolution step r

1 if r = 0 then
2 Zr ← {0, 1}
3 else
4 Zr ← { 1

2r ,
3
2r ,

5
2r . . . ,

2r−5
2r , 2

r−3
2r , 2

r−1
2r }

5 end
6 Ur ← ∅
// Generate the set of all valid

actions for given r
7 for s ∈ S do
8 Ut ← TRANSITIONACTIONS(ι, s)
9 UF ← Set of maximal connected subsets of Ut

10 for Uf ∈ UF do
11 Ur ← Ur ∪ {(maxUf −minUf )z | z ∈ Zr}
12 end
13 end
14 return Ur

Initially, we define a generator set Zr for a given res-
olution step r ∈ N, where Z0 = {0, 1} and Zr =
{ 1
2r ,

3
2r , . . . ,

2r−3
2r , 2

r−1
2r } for r > 0. Notably, as r increases,

the union
⋃r

r′=0 Zr′ becomes increasingly dense within
the interval [0, 1], ensuring the resolution completeness of
Algorithm 3. Subsequently, for each segment s ∈ S, we
determine the set of actions Ut that facilitate transitions
from the given I-state ιi to s. Next, Ut is partitioned into
the minimal set of disjoint, connected subsets UF . This
partitioning allows for the increasingly dense sampling of
each subset Uf ∈ UF .

C. Tree Construction and Search

The final algorithmic component constructs and searches
an I-state tree using a sequence of breadth-first searches.
Each search samples the space of valid actions with progres-
sively finer resolution, a technique we refer to as ‘iterative
sharpening’. We define the set of valid actions for a given
I-state ι as Uι =

⋃
s∈S{u ∈ U | F (ι, u) ⊆ s × S1}. The

primary data structures employed are a queue Q, which
maintains the exploration frontier, and a rooted tree T ,
which stores the exploration history. Both are initialized with
the initial I-state {xI}. Initially, the algorithm performs a
breadth-first search using the actions generated by Algo-
rithm 2 with resolution r = 0. Each breadth-first search is
guaranteed to terminate in finite time because the segment
set S is finite, forcing the robot to eventually turn and
select a non-zero rotation uk. For each non-zero action,
the angular interval of the resulting I-state expands. Once
the angular interval of an I-state reaches a size of π, no
further valid actions can be executed. Upon termination of a
breadth-first search iteration, an iterative sharpening step is
performed. The resolution r is incremented by one, provided
r + 1 < rmax; otherwise, the algorithm returns failure.

Algorithm 3: CONSTRUCTANDSEARCH(xI , XG, S,
rmax)

1 ψ ← empty stack
2 if xI ⊆ Xg then
3 return ψ
4 end
5 T ← tree rooted at {xI}
6 Q← empty queue
7 for r ∈ {0, 1, . . . , rmax} do
8 Q.ENQUEUE({xI})
9 while Q is not empty do

10 ι← Q.DEQUEUE()
// Determine the actions from ι

to explore
11 if ι visited then
12 U ← SAMPLEVALID(ι, S, r)
13 else
14 Mark ι as visited
15 U ←

⋃r
n=0 SAMPLEVALID(ι, S, n)

16 end
17 for u ∈ U do

// Use Equation 6 to find
I-state transition

18 ι′ ← F (ι, u)
19 T.ADDCHILD(ι, ι′, u)
20 if ι′ ⊆ XG then
21 while T.HASPARENT(ι′) do
22 (ι′, u)← T.TOPARENT(ι′)
23 ψ.PUSH(u)
24 end
25 return ψ
26 end
27 end
28 Q.ENQUEUEMANY(T.CHILDREN(ι))
29 end
30 end
31 return

To optimize the search, if a node has been visited pre-
viously, Algorithm 2 is invoked only for the current reso-
lution r, as lower resolutions have already been sampled.
Conversely, if a node is encountered for the first time,
Algorithm 2 is applied for all resolutions r′ ≤ r to ensure
the union

⋃r
r′=0 Zr′ is considered. It is important to note

that the resulting I-states are enqueued after iterating through
the sampled actions. This ensures that I-states discovered
at previous resolution steps are included in the breadth-first
search.

V. IMPLEMENTATION AND EVALUATION

We implemented this algorithm in Python [30]. The trials
reported below used an Intel Core i7-13700KF at 3.40 GHz,
32 GB of DDR5 RAM, and Windows 11. Figure 1 shows
an example plan completed by this implementation.

To quantitatively evaluate our algorithm, we generated



Fig. 4: Successful plans for trials where q = 4 (left) and q = 8
(right) and a trial where no plan was found for p = 6 (middle).
For each of the three trials, α = 0.1 and rmax = 3. Each green line
represents a plan execution. For each plan execution, nature selects
a random ξ ∈ Ξ for every robot action u ∈ K.

0.02 0.04 0.06 0.08 0.1
Rotation Error (α)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

q = 4

q = 6

q = 8

Fig. 5: The effect of α on the success rate across all maximum
resolutions step values rmax ∈ {0, 1, 2}. As α increases, the
planner’s success rate decreases for all q ∈ {4, 6, 8}.

random problem instances, each within a 50m×50m environ-
ment, each consisting of q random segments with lengths of
at most 30m. For each q ∈ {4, 6, 8}, we generated 30 random
environments and executed the planner with rmax ∈ {0, 1, 2}
and α ∈ {0.01, 0.02, . . . , 0.1} for each problem instance,
resulting in a total of (3 × 30 × 3 × 10) = 2700 trials. For
each trial, we recorded whether a plan was found and the
trial runtime. Figure 4 illustrates two successful plans found
by our algorithm for q = 4 and 8, and a problem instance
for q = 6 where no path was found. The trial for q = 6 in
Figure 4 yields no plan because the goal segment’s small size
and orientation, being nearly perpendicular to all neighboring
segments, severely restricted the available transition actions.

The impact of varying α on the planner’s success rate is
depicted in Figure 5. As anticipated, the results demonstrate
an inverse relationship between success rate and α. We
attribute this to the fact that increasing α expands the range of
possible headings following a rotation, potentially hindering
the robot’s ability to navigate to XG.

Figure 6 presents the results of varying the maximum
resolution step rmax on the success rate for problem instances
where q ∈ {4, 6, 8} in the same trials used for Figure 5.
Mayhaps surprisingly, the results demonstrate that increasing
r only marginally increases success rate. Even for small
values of r, the planner often finds a plan for a given problem
instance and increasing r causes existing action intervals to
be more densely sampled, only resulting in new problem

0 1 2

Max Resolution Step (rmax)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

q = 4

q = 6

q = 8

Fig. 6: The effect of maximum resolution step rmax on success rate
across all rotational error values α ∈ {0.01, 0.02, . . . , 0.1}. As rmax
increases, the planner’s success rate increases for all q ∈ {4, 6, 8}.

0 1 2

Max Resolution Step (rmax)

0

1

2

3

4

A
ve

ra
ge

C
om

pu
te

(s
) q = 4

q = 6

q = 8

Fig. 7: The effect of the maximum resolution step rmax on
average compute time across all rotational error values α ∈
{0.01, 0.02, . . . , 0.1}. As rmax increases, so does average compute
time.

instance solutions when higher resolution action sampling
allows for new segments in S to be explored.

One might anticipate a monotonic relationship between
success rate and segment count q. However, Figures 5 and 6
belie this expectation, as q = 6 generally outperforms q ∈
{4, 8}. This discrepancy illustrates the double-edged sword
of adding segments: while new segments offer additional
transition opportunities, they may also occlude existing ones.
Consequently, these results suggest the existence of an opti-
mal segment density for a given environment that maximizes
success rate.

Figure 7 presents the computational time for the trials
previously discussed. Increasing rmax may be beneficial;
however, Figure 7 illustrates the algorithm’s exponential
dependence on rmax. Therefore, the gains in success rate
achieved by increasing rmax must be weighed against the
corresponding increase in computational time.

VI. FEASIBILITY OF PHYSICAL IMPLEMENTATION

This section offers some evidence for the practical feasibil-
ity of the planning algorithm described in Section IV in the



Fig. 8: [left] An image from Aqua2’s downward-facing camera over
Bellairs Reef, in which sand is visible at the top and a reef is visible
on the bottom. [right] Our learned model correctly distinguishing
reefs from sand given the captured image. The red outline indicates
chunks classified as SAND; the blue outline shows chunks classified
as REEF.

underwater navigation setting mentioned in Figure 1. We im-
plemented a terrain classifier that uses RGB images captured
by the downward-facing camera of an Aqua2 autonomous
underwater vehicle to distinguish reefs and other rocky
terrain from sandy terrain. We envision the Aqua2 using this
classifier to execute plans generated by our planner, with the
known boundaries between terrain types used as the segment
set S.

The terrain classifier first divides the input image into
64 × 64 chunks. These chunks form the input to a Mo-
bileNetV2 [26] model with pre-trained weights from Ima-
geNet. Training data were extracted from video captured by
Aqua2’s downward-facing camera during a deployment over
Bellairs Reef off the coast of Barbados. From this hand-
labeled data set, 544 reef chunks and 608 sand chunks were
used for training. The resulting model accepts a 64 × 64
image chunk as input and produces a probability estimate
that the chunk depicts a reef. Figure 8 shows an example
application of this approach across a full camera image. For
testing, we applied the learned model to a test set of 193
chunks, of which the model correctly classified 167, yielding
an accuracy of approximately 0.87.

To classify the overall terrain of an input image, we
compute the sum of reef probability for each chunk and
compare this sum to half the number of chunks in the
image. If the sum exceeds half of the total chunk count, the
terrain classifier outputs REEF; otherwise, it outputs SAND.
We evaluated this full-image terrain classifier on 54 images,
including those shown in Figure 9. The classifier correctly
classified all 54 images.

Preliminary tests using this classifier onboard the Aqua2
robot (Figure 1) showed two opportunities for continued im-
provement of the terrain change detector. First, the approach
described here operates on that hardware at approximately
1Hz, which may be too slow for settings that require pre-
cise transitions at terrain boundaries. Second, the classifier
showed only limited ability to generalize across variations in
lighting and water conditions. Future research will investigate
ways to resolve these two issues, likely by refining both the
training data and the model architecture.

Fig. 9: Images of Bellairs Reef, captured by Aqua2’s downward-
facing camera. The top row depicts sand and the bottom row depicts
reef. Our terrain classifier correctly classified all images.

VII. CONCLUSION

In this paper, we proposed a resolution complete planning
algorithm for a navigation problem where the robot performs
a type of action: rotate, subject to significant error, and
move forward until sensing a segment. We evaluated an
implementation of our algorithm and found it performed as
expected, successfully overcoming the rotational error and
finding plans that navigate the robot from the initial pose to
the goal segment. We provided example trials to illustrate
the correctness of this implementation.

Here we discuss some limitations of the current planner.
Our algorithm’s computational time exponentially depends
on r which significantly limits r’s realistic upper bound.
Furthermore, we do not consider actions that could arrive at
multiple segments. However, there exist environments where
actions potentially arriving at multiple segments must be
considered to find a successful plan.

Future work will investigate more efficient I-state tree
construction methods, potentially incorporating heuristics to
prioritize desirable I-states and employing a weighted queue
to reflect these heuristics. Furthermore, we wish to explore
extensions of this method where the robot can perform
actions resulting in transitions to multiple segments, or utilize
an enhanced segment detector that provides noisy readings of
the robot’s heading relative to the detected segment, thereby
bounding its heading interval. Finally, we are interested in
exploring a planning problem removing the constraint requir-
ing a perfect sensor where, given a set of weighted candidate
poses, their history, a map, and a goal, the algorithm selects
an action that progresses towards that goal.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant Nos. 2313928 and
2313929. Additional support was provided by Texas A&M
University.



REFERENCES

[1] A.-a. Agha-mohammadi, S. Agarwal, S.-K. Kim, S. Chakravorty,
and N. M. Amato, “Slap: Simultaneous localization and planning
under uncertainty via dynamic replanning in belief space,” IEEE
Transactions on Robotics, vol. 34, no. 5, pp. 1195–1214, 2018.

[2] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “Firm:
Sampling-based feedback motion-planning under motion uncertainty
and imperfect measurements,” The International Journal of Robotics
Research, vol. 33, no. 2, pp. 268–304, 2014.

[3] G. Dudek, P. Giguere, C. Prahacs, S. Saunderson, J. Sattar, L.-A.
Torres-Mendez, M. Jenkin, A. German, A. Hogue, A. Ripsman,
J. Zacher, E. Milios, H. Liu, P. Zhang, M. Buehler, and C. Georgiades,
“AQUA: An amphibious autonomous robot,” Computer, pp. 46–53,
Jan. 2007. [Online]. Available: http://dx.doi.org/10.1109/MC.2007.6

[4] M. Erdmann and M. Mason, “An exploration of sensorless
manipulation,” IEEE Journal on Robotics and Automation,
vol. 4, no. 4, pp. 369–379, Aug. 1988. [Online]. Available:
https://ieeexplore.ieee.org/document/800

[5] L. H. Erickson, J. Knuth, J. M. O’Kane, and S. M. LaValle,
“Probabilistic localization with a blind robot,” in 2008 IEEE
International Conference on Robotics and Automation, May
2008, pp. 1821–1827, iSSN: 1050-4729. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/4543472

[6] M. J. Islam, Y. Xia, and J. Sattar, “Fast Underwater Image
Enhancement for Improved Visual Perception,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 3227–3234, Apr. 2020,
conference Name: IEEE Robotics and Automation Letters. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9001231

[7] F. Jalal and F. Nasir, “Underwater Navigation, Localization and Path
Planning for Autonomous Vehicles: A Review,” in 2021 International
Bhurban Conference on Applied Sciences and Technologies (IBCAST),
Jan. 2021, pp. 817–828, iSSN: 2151-1411. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9393315

[8] B. Joshi, S. Rahman, M. Kalaitzakis, B. Cain, J. Johnson,
M. Xanthidis, N. Karapetyan, A. Hernandez, A. Q. Li,
N. Vitzilaios, and I. Rekleitis, “Experimental Comparison of
Open Source Visual-Inertial-Based State Estimation Algorithms
in the Underwater Domain,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Nov.
2019, pp. 7227–7233, iSSN: 2153-0866. [Online]. Available:
https://ieeexplore.ieee.org/document/8968049/?arnumber=8968049

[9] H. Kurniawati, “Partially observable markov decision processes and
robotics,” Annual Review of Control, Robotics, and Autonomous Sys-
tems, vol. 5, no. 1, pp. 253–277, 2022.

[10] M. Lauri, D. Hsu, and J. Pajarinen, “Partially observable markov
decision processes in robotics: A survey,” IEEE Transactions on
Robotics, vol. 39, no. 1, pp. 21–40, 2022.

[11] A. Lazanas and J.-C. Latombe, “Landmark-Based Robot Navigation,”
Algorithmica, vol. 13, no. 5, pp. 472–501, May 1995. [Online].
Available: https://doi.org/10.1007/BF01190850

[12] K. M. B. Lee, C. Yoo, B. Hollings, S. Anstee, S. Huang,
and R. Fitch, “Online Estimation of Ocean Current from
Sparse GPS Data for Underwater Vehicles,” in 2019
International Conference on Robotics and Automation (ICRA),
May 2019, pp. 3443–3449, iSSN: 2577-087X. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8794308

[13] J. J. Leonard and A. Bahr, “Autonomous Underwater Vehicle
Navigation,” in Springer Handbook of Ocean Engineering,
M. R. Dhanak and N. I. Xiros, Eds. Cham: Springer
International Publishing, 2016, pp. 341–358. [Online]. Available:
https://doi.org/10.1007/978-3-319-16649-0 14

[14] J. S. Lewis, D. A. Feshbach, and J. M. O’Kane, “Guaranteed
Coverage with a Blind Unreliable Robot,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Oct. 2018, pp. 7383–7390, iSSN: 2153-0866. [Online]. Available:
https://ieeexplore.ieee.org/document/8594048

[15] J. S. Lewis and J. M. O’Kane, “Planning for provably reliable
navigation using an unreliable, nearly sensorless robot,” The
International Journal of Robotics Research, vol. 32, no. 11, pp.
1342–1357, Sep. 2013, publisher: SAGE Publications Ltd STM.
[Online]. Available: https://doi.org/10.1177/0278364913488428

[16] T. Ma, S. Ding, Y. Li, and J. Fan, “A review of
terrain aided navigation for underwater vehicles,” Ocean
Engineering, vol. 281, p. 114779, Aug. 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0029801823011630

[17] T. Manderson and G. Dudek, “GPU-Assisted Learning on an
Autonomous Marine Robot for Vision-Based Navigation and
Image Understanding,” in OCEANS 2018 MTS/IEEE Charleston,
Oct. 2018, pp. 1–6, iSSN: 0197-7385. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8604645

[18] P. Mannam, A. Volkov Jr., R. Paolini, G. Chirikjian,
and M. T. Mason, “Sensorless Pose Determination using
Randomized Action Sequences,” Entropy, vol. 21, no. 2, p.
154, Feb. 2019, arXiv:1812.01195 [cs]. [Online]. Available:
http://arxiv.org/abs/1812.01195

[19] M. Modasshir and I. Rekleitis, “Enhancing Coral Reef Monitoring
Utilizing a Deep Semi-Supervised Learning Approach,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
May 2020, pp. 1874–1880, iSSN: 2577-087X. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9196528

[20] D. Nad, F. Mandić, and N. Mišković, “Using Autonomous Underwater
Vehicles for Diver Tracking and Navigation Aiding,” Journal of
Marine Science and Engineering, vol. 8, no. 6, p. 413, Jun. 2020,
number: 6 Publisher: Multidisciplinary Digital Publishing Institute.
[Online]. Available: https://www.mdpi.com/2077-1312/8/6/413

[21] H. Nishimura and M. Schwager, “Sacbp: Belief space planning for
continuous-time dynamical systems via stochastic sequential action
control,” The International Journal of Robotics Research, vol. 40, no.
10-11, pp. 1167–1195, 2021.

[22] M. Noseworthy, B. Tang, B. Wen, A. Handa, N. Roy, D. Fox,
F. Ramos, Y. Narang, and I. Akinola, “Forge: Force-guided exploration
for robust contact-rich manipulation under uncertainty,” arXiv preprint
arXiv:2408.04587, 2024.

[23] J. M. O’Kane and S. M. LaValle, “Localization with limited sensing,”
IEEE Transactions on Robotics, vol. 23, no. 4, pp. 704–716, 2007.

[24] S. Rahman, A. Q. Li, and I. Rekleitis, “SVIn2: An Underwater SLAM
System using Sonar, Visual, Inertial, and Depth Sensor,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Nov. 2019, pp. 1861–1868, iSSN: 2153-0866. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8967703

[25] M. Roznere and A. Q. Li, “Real-time Model-based Image
Color Correction for Underwater Robots,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Nov. 2019, pp. 7191–7196, iSSN: 2153-0866. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8967557

[26] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Jun. 2018, pp. 4510–4520, iSSN: 2575-7075. [Online]. Available:
https://ieeexplore.ieee.org/document/8578572

[27] J. Sattar, P. Giguere, G. Dudek, and C. Prahacs, “A visual servoing
system for an aquatic swimming robot,” in 2005 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2005.

[28] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding Locally Optimal, Collision-Free Trajectories with Sequential
Convex Optimization,” in Robotics: Science and Systems IX.
Robotics: Science and Systems Foundation, Jun. 2013. [Online].
Available: http://www.roboticsproceedings.org/rss09/p31.pdf

[29] A. Sieverling, C. Eppner, F. Wolff, and O. Brock, “Interleaving motion
in contact and in free space for planning under uncertainty,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 4011–4073.

[30] G. van Rossum, “Python tutorial,” Centrum voor Wiskunde en Infor-
matica, Amsterdam, Tech. Rep. CS-R9526, May 1995.

[31] E. Vidal, M. Moll, N. Palomeras, J. D. Hernández, M. Carreras, and
L. E. Kavraki, “Online multilayered motion planning with dynamic
constraints for autonomous underwater vehicles,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2019,
pp. 8936–8942.

[32] L. Whitcomb, D. Yoerger, and H. Singh, “Advances in doppler-based
navigation of underwater robotic vehicles,” in Proceedings 1999 IEEE
International Conference on Robotics and Automation, 1999.

[33] L. L. Whitcomb, “Underwater robotics: out of the research laboratory
and into the field,” in Proc. IEEE International Conference on Robotics
and Automation. Symposia Proceedings, vol. 1, 2000.

[34] S. Williams, G. Dissanayake, and H. Durrant-Whyte, “Towards
terrain-aided navigation for underwater robotics,” Advanced Robotics,
vol. 15, no. 5, pp. 533–549, Jan. 2001, publisher: Taylor
& Francis eprint: https://doi.org/10.1163/156855301317033559.
[Online]. Available: https://doi.org/10.1163/156855301317033559



[35] M. Xanthidis, M. Kalaitzakis, N. Karapetyan, J. Johnson, N. Vitzilaios,
J. M. O’Kane, and I. Rekleitis, “AquaVis: A Perception-Aware Au-
tonomous Navigation Framework for Underwater Vehicles,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sep. 2021, pp. 5410–5417, iSSN: 2153-0866. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9636124

[36] M. Xanthidis, N. Karapetyan, H. Damron, S. Rahman, J. Johnson,
A. O’Connell, J. M. O’Kane, and I. Rekleitis, “Navigation in
the Presence of Obstacles for an Agile Autonomous Underwater
Vehicle,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), May 2020, pp. 892–899, iSSN: 2577-087X.
[Online]. Available: https://ieeexplore.ieee.org/document/9197558

[37] X. Xu and S. Negahdaripour, “Vision-based motion sensing for un-
derwater navigation and mosaicing of ocean floor images,” in Oceans
’97. MTS/IEEE Conference Proceedings, vol. 2, 1997, pp. 1412–1417
vol.2.

[38] D. R. Yoerger, “Precise control of underwater robots,” in International

Advanced Robotics Programme Workshop on Mobile Robots for Sub-
sea Environments, 1990.

[39] D. Zheng, J. Ridderhof, P. Tsiotras, and A.-a. Agha-mohammadi,
“Belief space planning: A covariance steering approach,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 11 051–11 057.

[40] K. Zheng and S. Tellex, “pomdp py: A framework to build and solve
pomdp problems,” arXiv preprint arXiv:2004.10099, 2020.

[41] J. Zhou, T. Yang, and W. Zhang, “Underwater vision enhancement
technologies: a comprehensive review, challenges, and recent trends,”
Applied Intelligence, vol. 53, no. 3, pp. 3594–3621, Feb. 2023.
[Online]. Available: https://doi.org/10.1007/s10489-022-03767-y

[42] J. Zhu, S. Zhao, and R. Zhao, “Path Planning for Autonomous
Underwater Vehicle Based on Artificial Potential Field and Modified
RRT,” in 2021 International Conference on Computer, Control
and Robotics (ICCCR), Jan. 2021, pp. 21–25. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9349402


