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Abstract. Remotely detecting the physiological state of humans isiétg increasingly important for rehabilitative robotics
(RR) and socially assistive robotics (SAR) because it mafibsts better-suited to work more closely and more coopetat
with humans. This research delivers a new non-contact igeerfor detecting heart rate in real time using a high pregis
single-point infrared sensor. The proposed approach isn@ortant potential improvement over existing methods beeat
collects heart rate information unencumbered by biofeekllsensors, complex computational processing or high apspe
ment. We use a thermal infrared sensor to capture subtlegeban the sub-nasal skin surface temperature to monitdiazar
pulse. This study extends our previous research in whichthirgy rate is automatically extracted using the same renelw
Experiments conducted to test the proposed system accsinagy that in 72.7% of typical cases heart rate was successful
detected within 0-9 beats per minute as measured by root-sepzare error.

1 INTRODUCTION

The growing use of robots in rehabilitative therapy and iciaity assistive applications has brought to focus the rteedake
human-robotinteractions as natural and beneficial to theams using them as possible. A multitude of human-roboiegtins
stand to greatly benefit from a small, inexpensive systenaldapof delivering accurate heart rate data remotely. Famgte,
existing rehabilitative robotic (RR) systems such as stenibwrist, hand and ankle robots which exercise a targetestiam or
muscle group [1] may sense a user’s level of strength to ahirterhow much assistance to provide but would be further dwvgl
by having a non-contact method for obtaining their userarheate and overall stress level during therapy. Home-abets
working in close proximity to the elderly would be additidiydbeneficial to their users if they were able to remoteljed] and
transmit critical vital signs indicative of their physigandition to a family member or service provider. Furthehats used in
socially assistive robotics (SAR) that are capable of nuoinig the heart rate of children with social or developmkditabilities
(especially those who are non-verbal) would be betteeduibr use in therapy since their behavior could be adaptsedian
the perceived stress-state of the child. Should the chittbine stressed during the course of the therapy, he or she obden
able to immediately communicate this fact to the therapistacher. A robot that is continually collecting infornatiabout the
child’s heart rate can detect subtle shifts in his or her @nat state and alert the child’s therapist before the &hildistration
escalates. Detecting heart rate remotely is a necessargtepxtowards fully realizing this potential.

A variety of methods have been used to collect data aboutrs @seotional or stress state including measuring the amoun
of eye contact, body pose, number, quality and content dfaleitterances, and several physiological indicators asajalvanic
skin response, electroencephalography (EEG), breathitheart rate. Galvanic skin response measures changesdiettrical
conductance of skin [2] while EEG is used to measure the gelfiuctuations resulting from ionic current flows within the
neurons of the brain [3]. Capturing heart rate has tradiligremployed contact modalities for obtaining data, alitfo non-
contact methods have more recently been explored.

Contact approaches include the use of electrocardiogfa@G) which require the user to be fitted with sensors and atyari
of recently introduced cardiograph applications for poleselectronic devices which require the user to place fivgger over
a small, onboard camera to detect subtle changes in skin d¢lese devices typically deliver accurate heart rate, datbare
generally not suitable for mobile applications, wherefig conditions are not consistent, for people who are av&rsvearing
sensors, and when the use of contact sensors is otherwisadticpl. In addition, although solutions exist using raomtact
methods such as radar and doppler modalities, these ajy@®eely on high-cost equipment and collecting and anadyvéary
large amounts of data at a high processing cost.

This research presents a new non-contact heart rate messuréechnique suitable for most RR and SAR applications.
Changes in the sub-nasal skin surface temperature arettackd a heart rate in beats per minute (bpm) is automaticality-
lated. This study extends our previous research [4] in whielathing rate is computed using the same hardware we ugi@gor
study. Key improvements to our software have yielded a folg-increase in the number of samples collected per secndd a



the implementation of a Discrete Wavelet Transform (DWT)datomatically calculating the heart rate. The novel dbation
of this paper is a simple, robust, low cost approach for retyatollecting and monitoring heart rate.

The remainder of this paper is structured as follows. We rilesceveral types of robotic implementations using variou
existing heart rate detection approaches in Section 2idbe8texplains the fundamental methodology and rationaldate
hardware selected and details the software design andrimepletion. A description of our approach to the experimestgh
and test results can be found in Section 4. We conclude ther pédth a summary of our research and a brief discussion afdut
work in Section 5.

2 RELATED WORK

Remotely detecting shifts in the psychological state angbiglal condition of humans is a challenge recently undertaky
researchers in numerous fields including image and sigoakssing [5], human-computer interaction [6], computsiovi [7],
biomedical engineering [8] and robotics [9]. Until very estly, studies in human-robot interaction have typicalbtained
physiological information from humans using contact mdiks such as wearable biofeedback sensors or sensorsdittdte
robot. These initial studies provide valuable insight fodarstanding how physiological indicators can yield catinformation
pertaining to the affective state of humans interactindpwatbots.

2.1 Vital Signs Detection with I nteractive Robots

Important research using robots and contact sensors hawaghat physiological responses alone can be used to sfatigs
recognize affective states in humans [10-12]. In the fitstlsthree physiological indicators — heart rate, skin cadnce
and facial muscle contraction — are collected to performadiife state estimation during human-robot interactivvisile face
muscle contraction was not found to be strongly correlatittdl affective state in the set of tests performed, heartaeteleration
was found to be one of three important physiological featfwe successfully predicting affective state.

Other research applies the fundamental concept of humessddetection to the study of autism therapy [13]. Partidipaf
the study were fitted with biofeedback sensors which medswrart rate variability, skin conductivity, eyebrow mowem jaw
clenching, and body temperature. The key to this approathdes designing an affective control architecture andterg rules
by which the robot decides how to respond when the thresholity level is reached.

A study in human-robot interaction collects physiologis@inals using wearable biofeedback sensors to recogrezafth
fective state of the human and adapt the behavior of the rdmmtrdingly [14]. Experiments were designed using a rdiasied
basketball game where a robot monitors the participankeanand alters the difficulty level of the game based on #regived
stress level of the player. Results show that overall plageiormance is improved when the difficulty level is adjddtased on
physiological cues and not merely on performance alone.

The modes of collecting physiological data described is¢h&tudies have been effective but each method still rexjthiet
the subject be fitted with the proper biofeedback sensorsoiime controlled settings and with certain subjects, thig nod be
an issue. However, their efficacy in dynamic environmentsretpeople cannot be fitted with biofeedback sensors or tainer
medical or therapeutic settings where persons are avemgednng sensors is still somewhat limited. While the cditet of
physiological data for diagnosing disorders and stressumadns is not new, remotely recovering this information fee in
robotics is an emerging field. This paper presents a compltameapproach in which heart rate, an important physickaigi
indicator, is collected using a non-contact modality.

2.2 Remote Detection of Vital Signs

Non-contact modalities have been explored including lds@pler vibrometry (LDV) [15], radio frequency scanner§]and
microwave doppler radar [17]. One study remotely colledtgsiological information using LDV to deduce the stresdests
an individual based on vibrations of the skin directly cangrthe carotid artery [15]. As currently implemented, tafgproach
yields an intersession equal-error rate of 6.3%. The mawbacks to these approaches include problems with acdraakéng
due to variances in patient physiology and the prohibitast of the technology.

The biomedical engineering field has also published a grealtaf research dedicated to the acquisition of a wide wariet
of physiological information. In one study, a low-cost cae& used to detect subtle skin color changes over time iardod
deduce heart rate [8]. Video recordings were analyzed usitgpendent component analysis on three color channelBYRG
extract three important physiological indicators: heatéy respiratory rate and heart rate variability. The ne$eshowed that
using a camera alone can yield fairly accurate results. WMewéhere are significant limitations using color as the sokasure



of physiological indicators including common variationsskin tone, ambient or direct lighting and proper face daaaue to
even small changes in illumination, shadows and occlusions

Studies in the electrical engineering field have also appredthe challenge of remote vital signs monitoring by tangea
Doppler radar at a person’s chest to measure small changesdemodulated voltage waveform which represents dispieat
due to respiration and heart activity [18]. Several sigmdlancement techniques are applied including center clijppnd a
Hanning window before the heart rate is computed. Althobigrhodality provides reasonably accurate results, dopatir is
highly sensitive to motion originating from both the targetd from extraneous motion within the general range of therarae
[19]. Our research uses a simpler, more robust approachdli@s on temperature, which is tolerant of color and movame
artifacts, to detect heart rate and does not require thefiesgpensive equipment or processing a large amount of conjaia.
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Fig. 1. Remote breathing monitoring system. Front view (left) arafife view (right).

3 METHODOLOGY

This research presents a new technique for remotely degestid monitoring heart rate in real time. Although restiegrrates
may vary from one individual to the next, healthy adults hawgpical resting heart rate between 60-120 bpm [20]. Eaeahdie
the heart consists of a series of deflections reflecting the &volution of electrical activity in the heart that is respible for
initiating muscle contraction. A single heartbeat is tgtligdecomposed into five constituent parts labeled: P, @,Rnd T. The
largest-amplitude portion of the ECG is the QRS complexsediby currents generated when the ventricles depolaiizetpr
their contraction. We are most interested in measuring R8 Qomponent of the cardiac cycle where one heart beat isumezhs
from the beginning of one QRS cycle to the beginning of the.nex

The heart rate measurement system described in this regeascFigure 1) employs a single-point infrared sensowdiiced
in our previous research [4] for collecting and calculatiog-contact breathing rates. The process for temperastiaecdllection
consists of the following: (1) aim the sensor at a pre-defsmdstnasal target region using the location of the nose aaast
from the most recent video frame and, (2) extract the tentpexanformation provided by the sensor analog signal. THmmasal
region is selected as the target for two reasons. Firstuersor labial artery, which follows a course along the edige upper
lip, is believed to cause subtle temperature changes gameing to cardiac pulse. Second, we seek to extract heararal
breathing rate concurrently in future applications ushgproposed sensor mechanism.

In order to accomplish proper sensor targeting and temyeraitraction, a specific combination of hardware and softw
was included in the overall system design. Our system ugesaime custom-built actuated platform enumerated in owiqare
work [4] so we omit a detailed description here.



3.1 SOFTWARE

The software developed for our system manages three magtidus: (1) infrared sensor positioning, (2) temperatukec-

tion, (3) data pre-processing and heart rate calculatidihofgh sensor positioning is accomplished using the sactenique
described in our prior study [4], new software was develdjpe@dn improved rate of temperature collection, a more rbbps
proach for data processing and the extraction of a heartS$atesor positioning relies on repeated nose detectionawandhatic
adjustment of the sensor’s platform position in order tontan the subject’s nose in the target region of the IR sef$w IR
sensor is repeatedly sampled and collected data is sub#fgoecessed in order to extract a temperature in degr@e®Rheit.
Once the raw temperature data is pre-processed using adssviiter, a DWT is used to compute the heart rate in beats per
minute. The data processing method implemented for datgbgart rate is sufficiently fast to be used in real time.

Infrared temperature collection The infrared temperature collection system has been inggkeu that a sample rate of 20-25
samples per second is achieved, compared to the 6 sampkesgeaid collected by the original system. This represeatspiper
limit of the sample rate we can achieve given the hardward@rag and is accomplished by processing the nose deteatibn a
sensor positioning independently from the temperaturdeciidn and data processing. Because heart beat eventsat@much
higher frequency than breathing events, increasing thebeuof samples collected per second was necessary in ordaptore
the relatively short-lived temperature increases thatetate to heart rate.

The infrared sensor is continuously sampled until a windé82time-stamped samples or approximately 1.6 seconds of
temperature data has been collected. Various window siees tested in order to evaluate the system’s performandagur
periodic heart rate fluctuations. Although larger windozesi provide higher stability in computed heart rates, theypeaone to
excessive smoothing and reduce the system’s ability tactlsb®rt-lived heart rate increases or decreases. Fuvthéde small
window sizes are susceptible to being dominated by relgtsraall errors that can be introduced when temperaturesadliected
during re-targeting, they provide more resilient and respae heart rate detection overall.

Data pre-processing Data is pre-processed in three steps. First, temperatuaesite collected when the infrared sensor is
performing initial targeting and periodic re-targeting aften too low to be considered related to the human bodyeianally
low readings are assumed to be from a non-human source aaegiceed from the data set at the time of temperature callect
Secondly, low-amplitude noise picked up by the sensor sigmainimized using a low-pass filter on each collected setaif.
Finally, to make the IR data suitable for processing with aD¥e 0-mean is computed for all the samples in each window.
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Fig. 2. Sample set of DWT coefficients.

Heart ratecalculation Heart rates are computed using a DWT [21] on each window ¢dcigld infrared data. A DWT is used to
process the IR data for two fundamental reasons: (1) heasg age not stationary since they have varying frequencyooents



at different time intervals and, (2) we are interested intémeporal information associated with each reading. Uritikst Fourier
Transforms (FFTs), DWTs are capable of extracting speciigifencies occuring at particular time intervals.

The DWT first sends samples through a low pass filter whichdgiapproximation coefficients and a high pass filter which
results in one or more detail coefficients. The outcome ¢ fittering technique is that the component signal frequenare
cut in half and according to Nyquist's rule, half the samplas be discarded. Although this process halves the timéuteso
and each output has half of the input frequency band (singehaif of each filter output characterizes the entire siyjrihle
frequency resolution is effectively doubled with each daposition.

The decomposition process is recursively repeated in aodiecrease the frequency resolution until no further deposit
tions are possible. Once the decomposition is completegt, af €oefficients is output that were produced at varioukescnd
at different time intervals of the signal. The coefficierds then be analyzed to extract frequency information fotigear time
intervals or for the signal in its entirety.

Due to the nature of this technique, the number of sampleseps®d in a given data set by the DWT must be in powers of
two. Our system uses the Daubechies 6 (db6) [22] waveletrfonpe the transform and collects temperature readings atea r
of 20 samples per second so the highest frequency that caxtdaeted is 10 samples per second or 10 Hertz (Hz). The range
of frequencies in which we are most interested for this neteare 0.8-1.90 Hz because they correspond to heart rateedoe
48 bpm and 114 bpm. The DWT levels of decomposition whicha@orthe detail coefficients within that frequency range are
found at levels 3 and 4 and represent frequencies betwe&r2152Hz (level 3) and 0.625-1.25 Hz (level 4). Since the tnpu
signal is recursively decomposed into component freqesnesing a DWT, it is possible to isolate breathing from hests,
with effectively no crossover. Figure 2 illustrates a reygrgtative coefficient file produced for one set of pre-preeddR data.

Finally, the heart rate is extracted by (1) computing andanimg the average amplitude of the detail coefficientswvati$e3
and 4, (2) selecting the level with the largest average dotai (3) counting the number of zero crossings for the aoeffts at
the selected level and, (4) multiplying that number by 3th®& fiumber of 1.6-second windows in a minute). Zero crossing
defined as any change in signal direction which exceeds amalrihreshold of 0.1.

4 EXPERIMENTS

Experiments were conducted to measure the effectivendise single-point infrared sensor for detecting heart rega®tely. A
representative graph of extracted heart rates as detegti bR sensor and by the ECG illustrate typical results avperiod
of approximately 35 seconds in Figure 3.
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Fig. 3. ECG and IR heart rates for a representative 35-second dat® $eart rate (dashed line) and ECG heart rate windowd$iolg).



4.1 Experiment setup

The proposed system’s accuracy were quantitatively meddyr collecting temperature data with the infrared sersonputing
the heart rate and comparing the results with heart rateatdtaned from an ECG. For the ECG data collection, partitipa
were each fitted with 3 electrodes attached to a bioradiowbantinuously transmitted heart rate data to a nearby céenpu
ECG information is collected at approximately 600 sampkrssgcond and a heart rate is computed for each 960 samples, or
seconds of ECG data, so that IR and ECG heart rates can bg masiessed and compared.

Experiments included 24 study participants, 17 females7anthles, between the ages of 18 and 35. Individuals who par-
ticipated in this study were not taking medication whichIddaterfere with their heart rate at the time of the experim&ach
participant was asked to sit in a chair that was situatedeqpiately 1 meter from a rolling table equipped with the &rérd sen-
sor system and a laptop computer. During the course of eadhid@e test session study subjects watched a video playirige
laptop computer. The primary purpose of the video was to tamithe participant’s attention in a forward-facing, tedaly still
position. Small movements resulting from participantétstg their position during the test session were autonadlfiecnanaged
using incremental pan and tilt adjustments of the sensdiopia.

4.2 Experiment Results

Twenty four test sets, each consisting of approximately irutes of data and about 375 individual heart rates werecieit
and analyzed. Of those 24 sets, two were identified as anosdice to obvious and persistent nose detection problereswaus
while the test was being conducted. Common problems in featetection are typically due to false positive identifmatof
other artifacts in the environment that possess similaratttaristics to the target feature. For example, duringestsset the nose
detection system falsely identified the subject’s eye asibee and the entire test set collected data consisting qfeatures
measured around the eye region. Twenty two test sets asifiddsas “typical” and contain data collected when the natection
and tracking was not clearly working improperly.
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Fig. 4. All 24 test set results by RMSE. Sets 14 and 19 are considéypital because of obvious nose detection issues duritigges

Overall system accuracy was measured by computing the@ifte between the reported ECG heart rate and the IR detected
heart rate for each 1.6-second window (Figure 4). Becaus&€G data collected during experiments consists of a hatart r
without a time-stamp, part of the system performance aigigsludes an auto-correction for the temporal alignmdrdaia
between ECG heart rates and IR-derived heart rates by camgphe root-mean-square errors (RMSE) of various offsets f
each window of coefficients computed. Typical and anomalesissets were analyzed separately and accuracy was absesse
beats per minute (bpm). Six categories were used to classifyesults: (1) 0-4 bpm, (2) 5-9 bpm, (3) 10-14 bpm, (4) 15,

(5) 20-24 and (6) 25 and higher bpm.

Of the approximately 375 heart rates compared for eachdl/pest set, about 73% (or 16 out of 22) averaged heart rates

within 0-9 beats per minute as compared to average heastpetduced by the ECG over the entire 10-minute test set¢Tgbl



Table 1. Typical test sets results by RMSE. Two excluded sets hadspens nose detection problems.

Range of RMSE in bpm Per centage of Typical Test Cases
0-4 27.3%
5-9 45.4%
10-14 18.2%
15-19 9.1%

Test Set | Lowest ECG Heart Rate | Highest ECG Heart Rate | Accuracy in RMSE
71 87 2.71
61 74 3.81
4 93 115 6.28
16 71 88 3.03

Table 2. Representative test sets successfully detecting lowdrhigiher-range heart rates.

Although stress testing was not conducted in these iniipeaments, heart rates within a given session varied oragee
by about 20 bpm. The minimum and maximum heart rates detedtedow RMSE scores ranged between 61 and 115 bpm. A
summary of results demonstrating several successful@esta both lower range heart rates and higher heart raiesligded
in Table 2.

An additional consideration in the assessment of systerfoqmeance is the system'’s ability to effectively track inases
and decreases in heart rate even when the baseline is dhyftaal offset as shown in Figure 5. Test sets that mirror hedet r
fluctuations as reported by the ECG but are offset by a ceataipunt will produce higher RMSE scores on average even thoug
increases and decreases in heart rate are accuratelyedietéét believe there are two potential causes for this offdedt,
computing the number of zero crossings exclusively for thetered IR data may not be sufficient to calculate the heé&at ra
accurately. Second, intermittent errors in targeting tifired sensor precisely may result in cumulative errocomputed heart
rate. Future work will include an evaluation of these casaetermine if a baseline shift can be corrected and if theystd be
used to provide valuable information pertaining to changdeart rate that are indicative of stress state.
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5 CONCLUSIONS

This paper presents a new non-contact technique for megsigrinperature changes in the sub-nasal skin surface tataper
to calculate heart rate. This study extends and improvepawious work where breathing rates were automaticallyaeied
using a curve-fitting function and ground truth was measwigil a self-reporting method. Several enhancements wetkerita
the original system software and testing design, makingssible to use the same hardware to remotely extract a lagart r

Initial results from the tests conducted in this study amg yeomising. This study demonstrates a low-cost, potestib-
tion for obtaining physiological information using a noontact approach. Due to its small size and the minimal coatjmurt
required for the calculation of heart rates, incorporatingh a device in robots working alongside humans in many S#HRRR
applications has great potential.

Future work will focus on improving the accuracy and robestof the sensor targeting component in order to minimize
heart rate detection errors resulting from occasional osigtent drifting. Enhancements to the nose detectioresystill in-
clude detecting other facial landmarks to assist the dlas#i identifying the nose and specifically, the sub-nassgion, more
accurately. Additionally, further testing will be condadtto examine the system’s ability to detect heart ratestfdy when
the user is engaged in light activity and sensor positioningt respond quickly to minimal but frequent user movements
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