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Abstract. Remotely detecting the physiological state of humans is becoming increasingly important for rehabilitative robotics
(RR) and socially assistive robotics (SAR) because it makesrobots better-suited to work more closely and more cooperatively
with humans. This research delivers a new non-contact technique for detecting heart rate in real time using a high precision,
single-point infrared sensor. The proposed approach is an important potential improvement over existing methods because it
collects heart rate information unencumbered by biofeedback sensors, complex computational processing or high cost equip-
ment. We use a thermal infrared sensor to capture subtle changes in the sub-nasal skin surface temperature to monitor cardiac
pulse. This study extends our previous research in which breathing rate is automatically extracted using the same hardware.
Experiments conducted to test the proposed system accuracyshow that in 72.7% of typical cases heart rate was successfully
detected within 0-9 beats per minute as measured by root-mean-square error.

1 INTRODUCTION

The growing use of robots in rehabilitative therapy and in socially assistive applications has brought to focus the needto make
human-robot interactions as natural and beneficial to the humans using them as possible. A multitude of human-robot applications
stand to greatly benefit from a small, inexpensive system capable of delivering accurate heart rate data remotely. For example,
existing rehabilitative robotic (RR) systems such as shoulder, wrist, hand and ankle robots which exercise a targeted muscle or
muscle group [1] may sense a user’s level of strength to determine how much assistance to provide but would be further improved
by having a non-contact method for obtaining their user’s heart rate and overall stress level during therapy. Home-use robots
working in close proximity to the elderly would be additionally beneficial to their users if they were able to remotely collect and
transmit critical vital signs indicative of their physicalcondition to a family member or service provider. Further, robots used in
socially assistive robotics (SAR) that are capable of monitoring the heart rate of children with social or developmental disabilities
(especially those who are non-verbal) would be better-suited for use in therapy since their behavior could be adapted based on
the perceived stress-state of the child. Should the child become stressed during the course of the therapy, he or she may not be
able to immediately communicate this fact to the therapist or teacher. A robot that is continually collecting information about the
child’s heart rate can detect subtle shifts in his or her emotional state and alert the child’s therapist before the child’s frustration
escalates. Detecting heart rate remotely is a necessary next step towards fully realizing this potential.

A variety of methods have been used to collect data about a user’s emotional or stress state including measuring the amount
of eye contact, body pose, number, quality and content of verbal utterances, and several physiological indicators suchas galvanic
skin response, electroencephalography (EEG), breathing and heart rate. Galvanic skin response measures changes in the electrical
conductance of skin [2] while EEG is used to measure the voltage fluctuations resulting from ionic current flows within the
neurons of the brain [3]. Capturing heart rate has traditionally employed contact modalities for obtaining data, although non-
contact methods have more recently been explored.

Contact approaches include the use of electrocardiograms (ECG) which require the user to be fitted with sensors and a variety
of recently introduced cardiograph applications for portable electronic devices which require the user to place theirfinger over
a small, onboard camera to detect subtle changes in skin color. These devices typically deliver accurate heart rate data, but are
generally not suitable for mobile applications, where lighting conditions are not consistent, for people who are averse to wearing
sensors, and when the use of contact sensors is otherwise impractical. In addition, although solutions exist using non-contact
methods such as radar and doppler modalities, these approaches rely on high-cost equipment and collecting and analyzing very
large amounts of data at a high processing cost.

This research presents a new non-contact heart rate measurement technique suitable for most RR and SAR applications.
Changes in the sub-nasal skin surface temperature are tracked and a heart rate in beats per minute (bpm) is automaticallycalcu-
lated. This study extends our previous research [4] in whichbreathing rate is computed using the same hardware we use forthis
study. Key improvements to our software have yielded a four-fold increase in the number of samples collected per second and
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the implementation of a Discrete Wavelet Transform (DWT) for automatically calculating the heart rate. The novel contribution
of this paper is a simple, robust, low cost approach for remotely collecting and monitoring heart rate.

The remainder of this paper is structured as follows. We describe several types of robotic implementations using various
existing heart rate detection approaches in Section 2. Section 3 explains the fundamental methodology and rationale for the
hardware selected and details the software design and implementation. A description of our approach to the experiment design
and test results can be found in Section 4. We conclude the paper with a summary of our research and a brief discussion of future
work in Section 5.

2 RELATED WORK

Remotely detecting shifts in the psychological state and physical condition of humans is a challenge recently undertaken by
researchers in numerous fields including image and signal processing [5], human-computer interaction [6], computer vision [7],
biomedical engineering [8] and robotics [9]. Until very recently, studies in human-robot interaction have typically obtained
physiological information from humans using contact modalities such as wearable biofeedback sensors or sensors fittedon the
robot. These initial studies provide valuable insight for understanding how physiological indicators can yield critical information
pertaining to the affective state of humans interacting with robots.

2.1 Vital Signs Detection with Interactive Robots

Important research using robots and contact sensors have shown that physiological responses alone can be used to successfully
recognize affective states in humans [10–12]. In the first study three physiological indicators — heart rate, skin conductance
and facial muscle contraction — are collected to perform affective state estimation during human-robot interactions.While face
muscle contraction was not found to be strongly correlated with affective state in the set of tests performed, heart rateacceleration
was found to be one of three important physiological features for successfully predicting affective state.

Other research applies the fundamental concept of human stress detection to the study of autism therapy [13]. Participants of
the study were fitted with biofeedback sensors which measured heart rate variability, skin conductivity, eyebrow movement, jaw
clenching, and body temperature. The key to this approach includes designing an affective control architecture and creating rules
by which the robot decides how to respond when the threshold anxiety level is reached.

A study in human-robot interaction collects physiologicalsignals using wearable biofeedback sensors to recognize the af-
fective state of the human and adapt the behavior of the robotaccordingly [14]. Experiments were designed using a robot-based
basketball game where a robot monitors the participant’s anxiety and alters the difficulty level of the game based on the perceived
stress level of the player. Results show that overall playerperformance is improved when the difficulty level is adjusted based on
physiological cues and not merely on performance alone.

The modes of collecting physiological data described in these studies have been effective but each method still requires that
the subject be fitted with the proper biofeedback sensors. Insome controlled settings and with certain subjects, this may not be
an issue. However, their efficacy in dynamic environments where people cannot be fitted with biofeedback sensors or in certain
medical or therapeutic settings where persons are averse towearing sensors is still somewhat limited. While the collection of
physiological data for diagnosing disorders and stress in humans is not new, remotely recovering this information for use in
robotics is an emerging field. This paper presents a complementary approach in which heart rate, an important physiological
indicator, is collected using a non-contact modality.

2.2 Remote Detection of Vital Signs

Non-contact modalities have been explored including laserdoppler vibrometry (LDV) [15], radio frequency scanners [16] and
microwave doppler radar [17]. One study remotely collects physiological information using LDV to deduce the stress state of
an individual based on vibrations of the skin directly covering the carotid artery [15]. As currently implemented, thisapproach
yields an intersession equal-error rate of 6.3%. The main drawbacks to these approaches include problems with accuratetracking
due to variances in patient physiology and the prohibitive cost of the technology.

The biomedical engineering field has also published a great deal of research dedicated to the acquisition of a wide variety
of physiological information. In one study, a low-cost camera is used to detect subtle skin color changes over time in order to
deduce heart rate [8]. Video recordings were analyzed usingindependent component analysis on three color channels (RGB) to
extract three important physiological indicators: heart rate, respiratory rate and heart rate variability. The research showed that
using a camera alone can yield fairly accurate results. However, there are significant limitations using color as the sole measure
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of physiological indicators including common variations in skin tone, ambient or direct lighting and proper face detection due to
even small changes in illumination, shadows and occlusions.

Studies in the electrical engineering field have also approached the challenge of remote vital signs monitoring by targeting a
Doppler radar at a person’s chest to measure small changes inthe demodulated voltage waveform which represents displacement
due to respiration and heart activity [18]. Several signal enhancement techniques are applied including center clipping and a
Hanning window before the heart rate is computed. Although this modality provides reasonably accurate results, doppler radar is
highly sensitive to motion originating from both the targetand from extraneous motion within the general range of the antennae
[19]. Our research uses a simpler, more robust approach thatrelies on temperature, which is tolerant of color and movement
artifacts, to detect heart rate and does not require the use of expensive equipment or processing a large amount of complex data.

Fig. 1. Remote breathing monitoring system. Front view (left) and profile view (right).

3 METHODOLOGY

This research presents a new technique for remotely detecting and monitoring heart rate in real time. Although resting heart rates
may vary from one individual to the next, healthy adults havea typical resting heart rate between 60-120 bpm [20]. Each beat of
the heart consists of a series of deflections reflecting the time evolution of electrical activity in the heart that is responsible for
initiating muscle contraction. A single heartbeat is typically decomposed into five constituent parts labeled: P, Q, R,S, and T. The
largest-amplitude portion of the ECG is the QRS complex, caused by currents generated when the ventricles depolarize prior to
their contraction. We are most interested in measuring the QRS component of the cardiac cycle where one heart beat is measured
from the beginning of one QRS cycle to the beginning of the next.

The heart rate measurement system described in this research (see Figure 1) employs a single-point infrared sensor introduced
in our previous research [4] for collecting and calculatingnon-contact breathing rates. The process for temperature data collection
consists of the following: (1) aim the sensor at a pre-definedsub-nasal target region using the location of the nose as extracted
from the most recent video frame and, (2) extract the temperature information provided by the sensor analog signal. The subnasal
region is selected as the target for two reasons. First, the superior labial artery, which follows a course along the edgeof the upper
lip, is believed to cause subtle temperature changes corresponding to cardiac pulse. Second, we seek to extract heart rate and
breathing rate concurrently in future applications using the proposed sensor mechanism.

In order to accomplish proper sensor targeting and temperature extraction, a specific combination of hardware and software
was included in the overall system design. Our system uses the same custom-built actuated platform enumerated in our previous
work [4] so we omit a detailed description here.
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3.1 SOFTWARE

The software developed for our system manages three main functions: (1) infrared sensor positioning, (2) temperature collec-
tion, (3) data pre-processing and heart rate calculation. Although sensor positioning is accomplished using the same technique
described in our prior study [4], new software was developedfor an improved rate of temperature collection, a more robust ap-
proach for data processing and the extraction of a heart rate. Sensor positioning relies on repeated nose detections andautomatic
adjustment of the sensor’s platform position in order to maintain the subject’s nose in the target region of the IR sensor. The IR
sensor is repeatedly sampled and collected data is subsequently processed in order to extract a temperature in degrees Fahrenheit.
Once the raw temperature data is pre-processed using a low-pass filter, a DWT is used to compute the heart rate in beats per
minute. The data processing method implemented for detecting heart rate is sufficiently fast to be used in real time.

Infrared temperature collection The infrared temperature collection system has been improved so that a sample rate of 20-25
samples per second is achieved, compared to the 6 samples persecond collected by the original system. This represents the upper
limit of the sample rate we can achieve given the hardware employed and is accomplished by processing the nose detection and
sensor positioning independently from the temperature collection and data processing. Because heart beat events occur at a much
higher frequency than breathing events, increasing the number of samples collected per second was necessary in order tocapture
the relatively short-lived temperature increases that correlate to heart rate.

The infrared sensor is continuously sampled until a window of 32 time-stamped samples or approximately 1.6 seconds of
temperature data has been collected. Various window sizes were tested in order to evaluate the system’s performance during
periodic heart rate fluctuations. Although larger window sizes provide higher stability in computed heart rates, they are prone to
excessive smoothing and reduce the system’s ability to detect short-lived heart rate increases or decreases. Further,while small
window sizes are susceptible to being dominated by relatively small errors that can be introduced when temperatures arecollected
during re-targeting, they provide more resilient and responsive heart rate detection overall.

Data pre-processing Data is pre-processed in three steps. First, temperatures that are collected when the infrared sensor is
performing initial targeting and periodic re-targeting are often too low to be considered related to the human body. Exceptionally
low readings are assumed to be from a non-human source and areexcluded from the data set at the time of temperature collection.
Secondly, low-amplitude noise picked up by the sensor signal is minimized using a low-pass filter on each collected set ofdata.
Finally, to make the IR data suitable for processing with a DWT, the 0-mean is computed for all the samples in each window.
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Fig. 2. Sample set of DWT coefficients.

Heart rate calculation Heart rates are computed using a DWT [21] on each window of collected infrared data. A DWT is used to
process the IR data for two fundamental reasons: (1) heart rates are not stationary since they have varying frequency components
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at different time intervals and, (2) we are interested in thetemporal information associated with each reading. UnlikeFast Fourier
Transforms (FFTs), DWTs are capable of extracting specific frequencies occuring at particular time intervals.

The DWT first sends samples through a low pass filter which yields approximation coefficients and a high pass filter which
results in one or more detail coefficients. The outcome of this filtering technique is that the component signal frequencies are
cut in half and according to Nyquist’s rule, half the samplescan be discarded. Although this process halves the time resolution
and each output has half of the input frequency band (since only half of each filter output characterizes the entire signal), the
frequency resolution is effectively doubled with each decomposition.

The decomposition process is recursively repeated in orderto increase the frequency resolution until no further decomposi-
tions are possible. Once the decomposition is completed, a set of coefficients is output that were produced at various scales and
at different time intervals of the signal. The coefficients can then be analyzed to extract frequency information for particular time
intervals or for the signal in its entirety.

Due to the nature of this technique, the number of samples processed in a given data set by the DWT must be in powers of
two. Our system uses the Daubechies 6 (db6) [22] wavelet to perform the transform and collects temperature readings at a rate
of 20 samples per second so the highest frequency that can be extracted is 10 samples per second or 10 Hertz (Hz). The range
of frequencies in which we are most interested for this research are 0.8-1.90 Hz because they correspond to heart rates between
48 bpm and 114 bpm. The DWT levels of decomposition which contain the detail coefficients within that frequency range are
found at levels 3 and 4 and represent frequencies between 1.25-2.5 Hz (level 3) and 0.625-1.25 Hz (level 4). Since the input
signal is recursively decomposed into component frequencies using a DWT, it is possible to isolate breathing from heartrates,
with effectively no crossover. Figure 2 illustrates a representative coefficient file produced for one set of pre-processed IR data.

Finally, the heart rate is extracted by (1) computing and comparing the average amplitude of the detail coefficients at levels 3
and 4, (2) selecting the level with the largest average amplitude, (3) counting the number of zero crossings for the coefficients at
the selected level and, (4) multiplying that number by 37.5 (the number of 1.6-second windows in a minute). Zero crossings are
defined as any change in signal direction which exceeds a minimal threshold of 0.1.

4 EXPERIMENTS

Experiments were conducted to measure the effectiveness ofthe single-point infrared sensor for detecting heart ratesremotely. A
representative graph of extracted heart rates as detected by the IR sensor and by the ECG illustrate typical results overa period
of approximately 35 seconds in Figure 3.
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Fig. 3. ECG and IR heart rates for a representative 35-second data set. IR heart rate (dashed line) and ECG heart rate window (solid line).
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4.1 Experiment setup

The proposed system’s accuracy were quantitatively measured by collecting temperature data with the infrared sensor,computing
the heart rate and comparing the results with heart rate dataobtained from an ECG. For the ECG data collection, participants
were each fitted with 3 electrodes attached to a bioradio which continuously transmitted heart rate data to a nearby computer.
ECG information is collected at approximately 600 samples per second and a heart rate is computed for each 960 samples, or1.6
seconds of ECG data, so that IR and ECG heart rates can be easily processed and compared.

Experiments included 24 study participants, 17 females and7 males, between the ages of 18 and 35. Individuals who par-
ticipated in this study were not taking medication which could interfere with their heart rate at the time of the experiment. Each
participant was asked to sit in a chair that was situated approximately 1 meter from a rolling table equipped with the infrared sen-
sor system and a laptop computer. During the course of each 10-minute test session study subjects watched a video playingon the
laptop computer. The primary purpose of the video was to maintain the participant’s attention in a forward-facing, relatively still
position. Small movements resulting from participants shifting their position during the test session were automatically managed
using incremental pan and tilt adjustments of the sensor platform.

4.2 Experiment Results

Twenty four test sets, each consisting of approximately 10 minutes of data and about 375 individual heart rates were collected
and analyzed. Of those 24 sets, two were identified as anomalous due to obvious and persistent nose detection problems observed
while the test was being conducted. Common problems in feature detection are typically due to false positive identification of
other artifacts in the environment that possess similar characteristics to the target feature. For example, during onetest set the nose
detection system falsely identified the subject’s eye as hernose and the entire test set collected data consisting of temperatures
measured around the eye region. Twenty two test sets are classified as “typical” and contain data collected when the nose detection
and tracking was not clearly working improperly.
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Fig. 4. All 24 test set results by RMSE. Sets 14 and 19 are considered atypical because of obvious nose detection issues during testing.

Overall system accuracy was measured by computing the difference between the reported ECG heart rate and the IR detected
heart rate for each 1.6-second window (Figure 4). Because the ECG data collected during experiments consists of a heart rate
without a time-stamp, part of the system performance analysis includes an auto-correction for the temporal alignment of data
between ECG heart rates and IR-derived heart rates by comparing the root-mean-square errors (RMSE) of various offsets for
each window of coefficients computed. Typical and anomaloustest sets were analyzed separately and accuracy was assessed in
beats per minute (bpm). Six categories were used to classifyour results: (1) 0-4 bpm, (2) 5-9 bpm, (3) 10-14 bpm, (4) 15-19bpm,
(5) 20-24 and (6) 25 and higher bpm.

Of the approximately 375 heart rates compared for each typical test set, about 73% (or 16 out of 22) averaged heart rates
within 0-9 beats per minute as compared to average heart rates produced by the ECG over the entire 10-minute test set (Table 1).
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Range of RMSE in bpm Percentage of Typical Test Cases

0-4 27.3%

5-9 45.4%

10-14 18.2%

15-19 9.1%

Table 1. Typical test sets results by RMSE. Two excluded sets had persistent nose detection problems.

Test Set Lowest ECG Heart Rate Highest ECG Heart Rate Accuracy in RMSE

1 71 87 2.71

2 61 74 3.81

4 93 115 6.28

16 71 88 3.03

Table 2. Representative test sets successfully detecting lower- and higher-range heart rates.

Although stress testing was not conducted in these initial experiments, heart rates within a given session varied on average
by about 20 bpm. The minimum and maximum heart rates detectedwith low RMSE scores ranged between 61 and 115 bpm. A
summary of results demonstrating several successful test sets for both lower range heart rates and higher heart rates isincluded
in Table 2.

An additional consideration in the assessment of system performance is the system’s ability to effectively track increases
and decreases in heart rate even when the baseline is shiftedby an offset as shown in Figure 5. Test sets that mirror heart rate
fluctuations as reported by the ECG but are offset by a certainamount will produce higher RMSE scores on average even though
increases and decreases in heart rate are accurately detected. We believe there are two potential causes for this offset. First,
computing the number of zero crossings exclusively for the captured IR data may not be sufficient to calculate the heart rate
accurately. Second, intermittent errors in targeting the infrared sensor precisely may result in cumulative errors incomputed heart
rate. Future work will include an evaluation of these cases to determine if a baseline shift can be corrected and if they can still be
used to provide valuable information pertaining to changesin heart rate that are indicative of stress state.
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5 CONCLUSIONS

This paper presents a new non-contact technique for measuring temperature changes in the sub-nasal skin surface temperature
to calculate heart rate. This study extends and improves ourprevious work where breathing rates were automatically extracted
using a curve-fitting function and ground truth was measuredwith a self-reporting method. Several enhancements were made to
the original system software and testing design, making it possible to use the same hardware to remotely extract a heart rate.

Initial results from the tests conducted in this study are very promising. This study demonstrates a low-cost, potential solu-
tion for obtaining physiological information using a non-contact approach. Due to its small size and the minimal computation
required for the calculation of heart rates, incorporatingsuch a device in robots working alongside humans in many SAR and RR
applications has great potential.

Future work will focus on improving the accuracy and robustness of the sensor targeting component in order to minimize
heart rate detection errors resulting from occasional or persistent drifting. Enhancements to the nose detection system will in-
clude detecting other facial landmarks to assist the classifier in identifying the nose and specifically, the sub-nassalregion, more
accurately. Additionally, further testing will be conducted to examine the system’s ability to detect heart rates effectively when
the user is engaged in light activity and sensor positioningmust respond quickly to minimal but frequent user movements.
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