
A Gentle Introduction to ROS

Chapter: Getting started

Jason M. O’Kane

Jason M. O’Kane

University of South Carolina

Department of Computer Science and Engineering

315 Main Street

Columbia, SC 29208

http://www.cse.sc.edu/~jokane

©2014, Jason Matthew O’Kane. All rights reserved.

This is version 2.1.6(ab984b3), generated on April 24, 2018.

Typeset by the author using LATEX and memoir.cls.

ISBN 978-14-92143-23-9

http://www.cse.sc.edu/~jokane

Chapter 2

Getting started
In which we install ROS, introduce some basic ROS concepts, and interact with

a working ROS system.

Before jumping into the details of how to write software that uses ROS, it will be valuable

to get ROS up and running and to understand a few of the basic ideas that ROS uses. This

chapter lays that groundwork. After a quick discussion of how to install ROS and configure

your user account to use it, we’ll have a look at a working ROS system (specifically, an

instance of the turtlesim simulator) and learn how to interact with that system using some

command line tools.

2.1 Installing ROS

Before you can do anything with ROS, naturally you must ensure that it is installed on

your computer. (If you are working with a computer on which someone else has already

installed ROS—including the ros-indigo-turtlesim package—you can skip directly to Sec-

tion 2.2.) The installation process is well documented and mostly straightforward.Í1Í2

Here’s a summary of the necessary steps.

Adding the ROS repository As root, create a file called

/etc/apt/sources.list.d/ros-latest.list

Í1http://wiki.ros.org/ROS/Installation

Í2http://wiki.ros.org/indigo/Installation/Ubuntu

11

http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/indigo/Installation/Ubuntu

2. GETTING STARTED

containing a single line:

deb http://packages.ros.org/ros/ubuntu trusty main

� This line is specific to Ubuntu 14.04, whose codename is trusty. If you are using

Ubuntu 13.10 instead, you can substitute saucy for trusty.

¹ Other versions of Ubuntu—both older and and newer—are not supported by

the pre-compiled packages for the indigo distribution of ROS. However, for

Ubuntu versions newer than 14.04, installing ROS from its sourceÍ3 may be

a reasonable option.

If you are unsure of which Ubuntu version you’re using, you can find out using this

command:

lsb_release -a

The output should show both a codename and a release number.

Installing the package authentication key Before installing the ROS packages, you must

acquire their package authentication key. First, download the key:

wget https://raw.githubusercontent.com/ros/rosdistro/master/ros.key

If this works correctly, you’ll have a small binary file called ros.key. Next, you should con-

figure the apt package management system to use this key:

sudo apt-key add ros.key

After completing this step (apt-key should say “OK”), you can safely delete ros.key.

Downloading the package lists Once the repositories are configured, you can get the

latest lists of available packages in the usual way:

Í3http://wiki.ros.org/indigo/Installation/Source

12

http://wiki.ros.org/indigo/Installation/Source

2.1. Installing ROS

sudo apt-get update

Note that this will update all of the repositories configured on your system, not just the

newly added ROS repositories.

Installing the ROS packages Now we can actually install the ROS software. The simplest

approach is to perform a complete install of the core ROS system:

sudo apt-get install ros-indigo-desktop-full

If you have plenty of free disk space—a few GB should suffice—this package is almost cer-

tainly the best choice. If you need them, there are also some more compact alternatives, in-

cluding ros-indigo-desktop and ros-indigo-ros-base, that omit some packages and tools

in favor of reduced disk space requirements.

Installing turtlesim In this book we’ll refer many times to a simple “simulator” called

turtlesim to illustrate how things work. If you plan to follow along with any of the ex-

amples—Recommended answer: Yes—you’ll need to install turtlesim. Use a command

like this:

sudo apt-get install ros-indigo-turtlesim

Setting up rosdep systemwide After installing the ROS packages, you’ll need to execute

this command:

sudo rosdep init

This is a one-time initialization step; once ROS is working correctly, many users will not

need to revisit rosdep.

¹ As its name suggests, the purpose of this command is to initialize rosdep, which

is a tool for checking and installing package dependencies in an OS-independent

way.Í4 On Ubuntu, for example, rosdep acts as a front end to apt-get. We won’t

use rosdep directly, but we will use a few tools that invoke it behind the scenes.

Those tools will be very unhappy if rosdep is not set up correctly.

Í4http://wiki.ros.org/rosdep

13

http://wiki.ros.org/rosdep

2. GETTING STARTED

� The online documentation occasionally mentions a tool called rosinstall, whose

job is to install ROS software from source.Í5 Í6 The software that we’ll need in this

book is all available in Ubuntu deb packages, which do not require rosinstall.

2.2 Configuring your account

Whether you install ROS yourself or use a computer on which ROS is already installed,

there are two important configuration steps that must be done within the account of every

user that wants to use ROS.

Setting up rosdep in a user account First, you must initialize the rosdep system in your

account, using this command:

rosdep update

This command stores some files in your home directory, in a subdirectory called .ros. It

generally only needs to be done once.

� Note that, unlike rosdep init above, the rosdep update command should be run

using your normal user account, not using sudo.

Setting environment variables ROS relies on a few environment variables to locate the

files it needs. To set these environment variables, you’ll need to execute the setup.bash

script that ROS provides, using this command:Í7

source /opt/ros/indigo/setup.bash

You can then confirm that the environment variables are set correctly using a command

like this:

export | grep ROS

Í5http://wiki.ros.org/rosinstall

Í6http://www.ros.org/doc/independent/api/rosinstall/html/

Í7http://wiki.ros.org/rosbash

14

http://wiki.ros.org/rosinstall
http://www.ros.org/doc/independent/api/rosinstall/html/
http://wiki.ros.org/rosbash

2.3. A minimal example using turtlesim

If everything has worked correctly, you should see a handful of values (showing values for

environment variables like ROS_DISTRO and ROS_PACKAGE_PATH) as the out-

put from this command. If setup.bash has not been run, then the output of this command

will usually be empty.

� If you get “command not found” errors from the ROS commands introduced later

in this chapter, the most likely reason is that setup.bash has not been run in your

current shell.

Note, however, that the steps listed above apply only to the current shell. It would

work perfectly well to simply execute that source command each time you start a new

shell in which you’d like to execute ROS commands. However, this is both annoying and

remarkably easy to forget, especially when you consider that the modular design of many

ROS systems often calls for several different commands to execute concurrently, each in a

separate terminal.

Thus, you’ll want to configure your account to run the setup.bash script automatically,

each time you start a new shell. To do this, edit the file named .bashrc in your home

directory, and put the above source command at the bottom.

¹ In addition to setting environment variables, this setup.bash script also defines

bash functions to implement a few commands, including roscd and rosls, which

are introduced below. These functions are defined in the rosbash package.Í8

2.3 A minimal example using turtlesim

Before we begin to examine the details of how ROS works, let’s start with an example. This

quick exercise will serve a few different purposes: It will help you confirm that ROS is in-

stalled correctly, it will introduce the turtlesim simulatorÍ9 that is used in many online

tutorials and throughout this book, and it will provide a working (albeit quite simple) sys-

tem that we’ll refer back to in the rest of this chapter.

Í8http://wiki.ros.org/rosbash

Í9http://wiki.ros.org/turtlesim

15

http://wiki.ros.org/rosbash
http://wiki.ros.org/turtlesim

2. GETTING STARTED

Figure 2.1: The turtlesim window,

before and after some drawing.

Starting turtlesim In three separate terminals, execute these three commands:

roscore

rosrun turtlesim turtlesim_node

rosrun turtlesim turtle_teleop_key

The separate terminals are intended to allow all three commands to execute simultane-

ously. If everything works correctly, you should see a graphical window similar to the

left part of Figure 2.1. This window shows a simulated, turtle-shaped robot that lives in

a square world. (The appearance of your turtle may differ. The simulator selects from a

collection of “mascot” turtles for each of the historical distributions of ROS.) If you give

your third terminal (the one executing the turtle_teleop_key command) the input fo-

cus and press the Up, Down, Left, or Right keys, the turtle will move in response to your

commands, leaving a trail behind it.

� If the turtle does not move in response to your key presses, make sure that the

turtle_teleop_key window has the input focus, for example by clicking inside it.

You may need to arrange the windows carefully to focus this terminal while the sim-

ulation window is still visible.

Making virtual turtles draw lines is not, in itself, particularly exciting.1 However, this

example already has enough happening behind the scenes to illustrate many of the main

ideas on which more interesting ROS systems are based.

You should keep these three terminals open, because the examples in the following

sections will show some additional ways to interact with this system.

1The author, for example, first started making turtles draw on computer screens sometime around 1987.

16

2.4. Packages

2.4 Packages

All ROS software is organized into packages. A ROS package is a coherent collection of files,

generally including both executables and supporting files, that serves a specific purpose.

In the example, we used two executables called turtlesim_node and turtle_teleop_key,

both of which are members of the turtlesim package.

� Be careful of the difference between ROS packages and the packages used by your

operating system’s package manager, such as the deb packages used by Ubuntu.

The concepts are similar, and installing a deb package may add one or more ROS

packages to your installation, but the two are not equivalent.

It is not an overstatement to say that all ROS software is part of one package or another.

Importantly, this includes new programs that you create. We’ll see how to create new pack-

ages in Section 3.1. In the meantime, ROS provides several commands for interacting with

installed packages.

Listing and locating packages You can obtain a list of all of the installed ROS packages

using this command:Í10Í11

rospack list

On the author’s system, this produces a list of 188 packages.

Each package is defined by a manifest, which is a file called package.xml. This file

defines some details about the package, including its name, version, maintainer, and de-

pendencies. The directory containing package.xml is called the package directory. (In

fact, this is the definition of a ROS package: Any directory that ROS can find that contains

a file named package.xml is a package directory.) This directory stores most of the pack-

age’s files.

¹ An important exception is that, for most packages—specifically, those that have

been updated to use the new catkin build system—compiled executables are not

stored in the package directory, but in a separate standardized directory hierarchy.

Í10http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem

Í11http://wiki.ros.org/rospack

17

http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem
http://wiki.ros.org/rospack

2. GETTING STARTED

For packages installed by apt-get, this hierarchy is rooted at /opt/ros/indigo. Ex-

ecutables are stored in the lib subdirectory under this root. Similarly, automatically

generated include files are stored inside the include subdirectory under this root.

When it needs them, ROS finds these files by searching in the directories listed in the

CMAKE_PREFIX_PATH environment variable, which is set automatically by

setup.bash. This sort of out-of-source compilation is one of the primary changes

introduced by catkin in the groovy distribution of ROS, compared to fuerte and

older distributions. Generally, though, all of this happens behind the scenes, and

we can rely on ROS to find the files it needs.

To find the directory of a single package, use the rospack find command:

rospack find package-name

Of course, there may be times when you don’t know (or can’t remember) the complete

name of the package that you’re interested in. In these cases, it’s quite convenient that

rospack supports tab completion for package names. For example, you could type

rospack find turtle

and, before pressing Enter, press the Tab key twice to see a list of all of the installed ROS

packages whose names start with turtle.

In fact, most ROS commands support this kind of tab completion, not just for pack-

age names, but in nearly every place in which it makes sense. In the command above,

you could also use Tabs to complete both the command name rospack and the “sub-

command” find.

� Frequent use of tab completion can go a long way toward reducing the number of

things you’ll need to remember, including the full names of packages, nodes, top-

ics, message types, and services. Computers are quite good at storing and recalling

these kinds of things. Unsolicited advice: Let your computer do that job for you.

Inspecting a package To view the files in a package directory, use a command like this:

rosls package-name

If you’d like to “go to” a package directory, you can change the current directory to a par-

ticular package, using a command like this:

18

2.4. Packages

1 $ r o s l s t u r t l e s im

2 cmake

3 images

4 msg

5 package . xml

6 s rv

7 $ r o s l s t u r t l e s im / images

8 box− t u r t l e . png

9 diamondback . png

10 e l e c t r i c . png

11 f u e r t e . png

12 groovy . png

13 hydro . png

14 hydro . svg

15 i nd i g o . png

16 i nd i g o . svg

17 pa l e t t e . png

18 robot− t u r t l e . png

19 sea− t u r t l e . png

20 t u r t l e . png

21 $ roscd t u r t l e s im / images /

22 $ eog box− t u r t l e . png

Listing 2.1: Using rosls and roscd to view the turtle images used by turtlesim. The eog command

is the “Eye of Gnome” image viewer.

roscd package-name

As a simple example, suppose that you wanted to see the collection of turtle images used

by turtlesim. Listing 2.1 shows an example of how you could use rosls and roscd to see a

list of these images and to view one of them.

� In some parts of the online documentation, you may see references to the con-

cept of a stack.Í12 A stack is a collection of related packages. Starting with the

groovy version of ROS, the stack concept was phased out and replaced by meta-

packages.Í13 Í14 The biggest difference is a “flattening” of the hierarchy: A meta-

package is a package—It has a manifest just like any other package, and no other

packages are stored inside its directory—whereas a stack is a container for packages

19

2. GETTING STARTED

stored as subdirectories. There’s rarely a reason for new users to interact directly

with stacks.

2.5 The master

So far we’ve talked primarily about files, and how they are organized into packages. Let’s

shift gears and talk now about how to actually execute some ROS software.

One of the basic goals of ROS is to enable roboticists to design software as a collection

of small, mostly independent programs called nodes that all run at the same time. For this

to work, those nodes must be able to communicate with one another. The part of ROS

that facilitates this communication is called the ROS master. To start the master, use this

command:

roscore

We’ve already seen this in action in the turtlesim example. For once, there is no additional

complexity to worry about: roscore does not take any arguments, and does not need to be

configured.

You should allow the master to continue running for the entire time that you’re using

ROS. One reasonable workflow is to start roscore in one terminal, then open other termi-

nals for your “real” work. There are not many reasons to stop roscore, except when you’ve

finished working with ROS. When you reach that point, you can stop the master by typing

Ctrl-C in its terminal.

¹ Though not many, there are a few reasons that restarting roscore might be a good

idea. Examples: To switch to a new set of log files (See Chapter 4) or to clear the

parameter server (See Chapter 7).

Í12http://wiki.ros.org/rosbuild/Stacks

Í13http://wiki.ros.org/catkin/conceptual_overview

Í14http://wiki.ros.org/catkin/package.xml

20

http://wiki.ros.org/rosbuild/Stacks
http://wiki.ros.org/catkin/conceptual_overview
http://wiki.ros.org/catkin/package.xml

2.6. Nodes

� Most ROS nodes connect to the master when they start up, and do not attempt to

reconnect if that connection fails later on. Therefore, if you stop roscore, any other

nodes running at the time will be unable to establish new connections, even if you

restart roscore later.

The roscore command shown here is used to explicitly start the ROS master. In Chap-

ter 6, we’ll learn about a tool called roslaunch whose purpose is to start many nodes at

once; this tool is smart enough to start a master if none is running, but will also happily

use an existing master if there is one.

2.6 Nodes

Once you’ve started roscore, you can run programs that use ROS. A running instance of a

ROS program is called a node.Í15

¹ The phrase “running instance of” in this definition is important. If we execute mul-

tiple copies of the same program at the same time—taking care to ensure that each

uses a different node name—each of those copies is treated as a separate node. We

will see this difference in action in Section 2.8.

In the turtlesim example, we created two nodes. One node is an instance of an exe-

cutable called turtlesim_node. This node is responsible for creating the turtlesim win-

dow and simulating the motion of the turtle. The second node is an instance of an ex-

ecutable called turtle_teleop_key. The abbreviation teleop is a shortened form of the

word teleoperation, which refers to situations in which a human controls a robot remotely

by giving direct movement commands. This node waits for an arrow key to be pressed,

converts that key press to a movement command, and sends that command to the turtlesim-

_node node.

Starting nodes The basic command to create a node (also known as “running a ROS pro-

gram”) is rosrun:Í16

Í15http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes

Í16http://wiki.ros.org/rosbash#rosrun

21

http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/rosbash#rosrun

2. GETTING STARTED

rosrun package-name executable-name

There are two required parameters to rosrun. The first parameter is a package name. We

discussed package names in Section 2.4. The second parameter is simply the name of an

executable file within that package.

¹ There’s nothing “magical” about rosrun: It’s just a shell script that understands

ROS’s file organization well enough to know where to look for executables by their

package names. Once it finds the program you ask for, rosrun executes that pro-

gram normally. For example, if you really wanted to, you could execute turtlesim-

_node directly, just like any other program:

/opt/ros/indigo/lib/turtlesim/turtlesim_node

The work of registering with the master to become a ROS node happens inside the

program, not in rosrun.

Listing nodes ROS provides a few ways to get information about the nodes that are run-

ning at any particular time. To get a list of running nodes, try this command:Í17

rosnode list

If you do this after executing the commands from Section 2.3, you’ll see a list of three

nodes:

/rosout

/teleop_turtle

/turtlesim

A few things about this list are worthy of note.

R The /rosout node is a special node that is started automatically by roscore. Its pur-

pose is somewhat similar to the standard output (i.e. std::cout) that you might use

in a console program. We look at /rosout more fully in Section 4.4.2.

Í17http://wiki.ros.org/rosnode

22

http://wiki.ros.org/rosnode

2.6. Nodes

¹ The leading / in the name /rosout indicates that this node’s name is in the

global namespace. ROS has a rich system for naming nodes and other ob-

jects. This system, which Chapter 5 discusses in more detail, uses name-

spaces to organize things.Í18

R The other two nodes should be fairly clear: They’re the simulator (turtlesim) and

the teleoperation program (teleop_turtle) we started in Section 2.3.

R If you compare the output of rosnode list to the executable names in the rosrun

commands from Section 2.3, you’ll notice that node names are not necessarily the

same as the names of the executables underlying those nodes.

¹ You can explicitly set the name of a node as part of the rosrun command:

rosrun package-name executable-name __name:=node-name

This approach will override the name that the node would normally have

given itself, and can be important because ROS insists that every node have

a distinct name. (We’ll use __name in Section 2.8 to construct a slightly

larger example system.) Generally, though, if you’re assigning names using

__name on a regular basis, you probably should be using a launch file—See

Chapter 6—instead of running nodes individually.

Inspecting a node You can get some information about a particular node using this com-

mand:

rosnode info node-name

The output includes a list of topics—See Section 2.7.2—for which that node is a publisher

or subscriber, the services—See Chapter 8—offered by that node, its Linux process identi-

fier (PID), and a summary of the connections it has made to other nodes.

Killing a node To kill a node you can use this command:

rosnode kill node-name

Í18http://wiki.ros.org/Names

23

http://wiki.ros.org/Names

2. GETTING STARTED

Unlike killing and restarting the master, killing and restarting a node usually does not

have a major impact on other nodes; even for nodes that are exchanging messages, those

connections would be dropped when the node is killed and reestablished when the node

restarts.

� You can also kill a node using the usual Ctrl-C technique. However, that method

may not give the node a chance to unregister itself from the master. A symptom of

this problem is that the killed node may still be listed by rosnode list for a while.

This is harmless, but might make it more difficult to tell what’s going on. To remove

dead nodes from the list, you can use this command:

rosnode cleanup

2.7 Topics and messages

In our turtlesim example, it’s clear that the teleoperation node and the simulator node

must be talking to each other somehow. Otherwise, how would the turtle, which lives in

the latter node, know when to move in response to your key presses, which are collected

by the former node?

The primary mechanism that ROS nodes use to communicate is to send messages.

Messages in ROS are organized into named topics.Í19 The idea is that a node that wants

to share information will publish messages on the appropriate topic or topics; a node that

wants to receive information will subscribe to the topic or topics that it’s interested in. The

ROS master takes care of ensuring that publishers and subscribers can find each other; the

messages themselves are sent directly from publisher to subscriber.

2.7.1 Viewing the graph

This idea is probably easiest to see graphically, and the easiest way to visualize the publish-

subscribe relationships between ROS nodes is to use this command:

rqt_graph

In this name, the r is for ROS, and the qt refers to the Qt GUI toolkit used to implement

the program. You should see a GUI, most of which is devoted to showing the nodes in the

Í19http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics

24

http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics

2.7. Topics and messages

Figure 2.2: The rqt_graph interface,

showing the graph for the turtlesim ex-

ample. Debug nodes, including rosout,

are omitted by default.

/turtlesim

/rosout

/rosout
/teleop_turtle

/turtle1/cmd_vel

/rosout

/rqt_gui_py_node_5487

/rosout

Figure 2.3: The complete turtlesim graph, including nodes that rqt_graph classifies as

debug nodes.

current system. In this case, you will see something like Figure 2.2. In this graph, the ovals

represent nodes, and the directed edges represent publisher-subscriber relationships. The

graph tells us that the node named /teleop_turtle publishes messages on a topic called

/turtle1/cmd_vel, and that the node named /turtlesim subscribes to those messages.

(In this context, the name “cmd_vel” is short for “command velocity.”)

You might notice that the rosout node that we saw in Section 2.6 is missing from this

view. By default, rqt_graph hides nodes that it thinks exist only for debugging. You can

disable this feature by unchecking the “Hide debug” box. Figure 2.3 shows the resulting

graph.

R Notice that rqt_graph itself appears as a node.

R All of these nodes publish messages on a topic called /rosout, to which the node

named /rosout subscribes. This topic is one mechanism through which nodes can

generate textual log messages. Chapter 4 has more about logging in ROS.

25

_turtlesim
_rosout
topic_3A_rosout
_teleop_turtle
topic_3A_turtle1_cmd_vel
topic_3A_rosout
_rqt_gui_py_node_5487
topic_3A_rosout

2. GETTING STARTED

� The name /rosout refers to both a node and a topic. ROS doesn’t get confused

by these kinds of duplicate names because it’s always clear from the context

whether we want to talk about the /rosout node or the /rosout topic.

This view of debug nodes is useful for seeing a true picture of the current state of things,

but can also clutter the graph quite a bit with information that is not often very helpful.

The rqt_graph tool has several other options for tweaking the way that it shows the

graph. The author’s personal preference is to change the dropdown from “Nodes only” to

“Nodes/Topics (all)”, and to disable all of the checkboxes except “Hide Debug.” This setup,

whose results are shown in Figure 2.4, has the advantage that all of the topics are shown

in rectangles, separate from the nodes. One can see, for example, that the turtlesim node,

in addition to subscribing to velocity commands, also publishes both its current pose and

data from a simulated color sensor. When you’re exploring a new ROS system, rqt_graph,

especially with these options, can be a useful way to discover what topics are available for

your programs to use to communicate with the existing nodes.

� The phenomenon of having topics with no subscribers may seem like a bug, but

it’s actually very common. The intuition is that ROS nodes are usually designed

to publish the useful information that they have, without worrying about whether

anyone is subscribing to those messages. This helps to reduce the level of coupling

between individual nodes.

Now we can understand at least part of how the turtlesim teleoperation system works.

When you press a key, the /teleop_turtle node publishes messages with those movement

commands on a topic called /turtle1/cmd_vel. Because it subscribes to that topic, the

turtlesim_node receives those messages, and simulates the turtle moving with the re-

quested velocity. The important points here are:

R The simulator doesn’t care (or even know) which program publishes those cmd_vel

messages. Any program that publishes on that topic can control the turtle.

R The teleoperation program doesn’t care (or even know) which program subscribes

to the cmd_vel messages it publishes. Any program that subscribes to that topic is

free to respond to those commands.

26

2.7. Topics and messages

/turtle1/color_sensor

/turtle1/cmd_vel

/turtlesim

/turtle1/pose

/teleop_turtle

Figure 2.4: The turtlesim graph, showing all topics, including those with no publishers or

no subscribers, as distinct objects.

By the way, these topic names begin with /turtle1 because they are concerned with the

default turtle, whose name happens to be “turtle1.” We’ll see, in Chapter 8, how to add

additional turtles to a turtlesim window.

2.7.2 Messages and message types

So far we’ve talked about the idea that nodes can send messages to each other, but we’ve

been quite vague about what information is actually contained in those messages. Let’s

take a closer look at the topics and messages themselves.

Listing topics To get a list of active topics, use this command:Í20

rostopic list

In our example, this shows a list of five topics:

/rosout

/rosout_agg

/turtle1/cmd_vel

/turtle1/color_sensor

/turtle1/pose

The topic list should, of course, be the same as the set of topics viewable in rqt_graph,

but might be more convenient to see in text form.

Í20http://wiki.ros.org/rostopic

27

topic_3A_turtle1_color_sensor
topic_3A_turtle1_cmd_vel
_turtlesim
topic_3A_turtle1_pose
_teleop_turtle
http://wiki.ros.org/rostopic

2. GETTING STARTED

Echoing messages You can see the actual messages that are being published on a single

topic using the rostopic command:

rostopic echo topic-name

This command will dump any messages published on the given topic to the terminal. List-

ing 2.2 shows some example output from

rostopic echo /turtle1/cmd_vel

taken at a time when /teleop_turtle was receiving keystrokes. Each --- line in the out-

put shows the end of one message and the start of another. In this case, there were three

messages.

Measuring publication rates There are also two commands for measuring the speed at

which messages are published and the bandwidth consumed by those messages:

rostopic hz topic-name

rostopic bw topic-name

These commands subscribe to the given topic and output statistics in units of messages

per second and bytes per second, respectively.

� Even if you don’t care much about the specific rates, these commands can be useful

for debugging, because they provide an easy way to verify that messages are indeed

being published regularly on particular topics.

Inspecting a topic You can learn more about a topic using the rostopic info command:

rostopic info topic-name

For example, from this command:

rostopic info /turtle1/color_sensor

you should see output similar to this:

Type: turtlesim/Color

Publishers:

* /turtlesim (http://donatello:46397/)

Subscribers: None

28

2.7. Topics and messages

1 l i n e a r :

2 x : 2 .0

3 y : 0 .0

4 z : 0 .0

5 angular :

6 x : 0 .0

7 y : 0 .0

8 z : 0 .0

9 −−−

10 l i n e a r :

11 x : 0 .0

12 y : 0 .0

13 z : 0 .0

14 angular :

15 x : 0 .0

16 y : 0 .0

17 z : −2.0

18 −−−

19 l i n e a r :

20 x : 2 .0

21 y : 0 .0

22 z : 0 .0

23 angular :

24 x : 0 .0

25 y : 0 .0

26 z : 0 .0

27 −−−

Listing 2.2: Sample output from rostopic echo.

The most important part of this output is the very first line, which shows the message type

of that topic. In the case of /turtle1/color_sensor, the message type is turtlesim/Color.

The word “type” in this context is referring to the concept of a data type. It’s important to

understand message types because they determine the content of the messages. That is,

the message type of a topic tells you what information is included in each message on that

topic, and how that information is organized.

29

2. GETTING STARTED

Inspecting a message type To see details about a message type, use a command like

this:Í21Í22

rosmsg show message-type-name

Let’s try using it on the message type for /turtle1/color_sensor that we found above:

rosmsg show turtlesim/Color

The output is:

uint8 r

uint8 g

uint8 b

The format is a list of fields, one per line. Each field is defined by a built-in data type (like

int8, bool, or string) and a field name. The output above tells us that a turtlesim/Color

is a thing that contains three unsigned 8-bit integers called r, g, and b. Every message on

any topic with message type turtlesim/Color is defined by values for these three fields.

(As you might guess, these numbers correspond the the red-green-blue color intensities

for the pixel under the center of the simulated turtle.)

Another example, one we’ll revisit several times, is geometry_msgs/Twist. This is the

message type for the /turtle1/cmd_vel topic, and it is slightly more complicated:

geometry_msgs/Vector3 linear

float64 x

float64 y

float64 z

geometry_msgs/Vector3 angular

float64 x

float64 y

float64 z

In this case, both linear and angular are composite fields whose data type is geometry-

_msgs/Vector3. The indentation shows that fields named x, y, and z are members within

those two top-level fields. That is, a message with type geometry_msgs/Twist contains

exactly six numbers, organized into two vectors called linear and angular. Each of these

numbers has the built-in type float64, which means, naturally, that each is a 64-bit floating

point number.

Í21http://wiki.ros.org/rosmsg

Í22http://wiki.ros.org/msg

30

http://wiki.ros.org/rosmsg
http://wiki.ros.org/msg

2.7. Topics and messages

In general, a composite field is simply a combination of one or more sub-fields, each

of which may be another composite field or a simple field with a built-in data type. The

same idea appears in C++ and other object-oriented languages, in which one object may

have other objects as data members.

¹ It’s worth noting that the data types of composite fields are message types in their

own right. For example, it would be perfectly legitimate to have topic with message

type geometry_msgs/Vector3. Messages on with this type would consist of three

top-level fields, namely x, y, and z.

This kind of nesting can be useful to preventing code duplication for systems in

which many message types share common elements. A common example is the

message type std_msgs/Header, which contains some basic sequence, timestamp,

and coordinate frame information. This type is included as a composite field called

header in hundreds of other message types.

Fortunately, rosmsg show automatically expands composite fields all the way down

to the underlying built-in types, using indentation to show the nested structure, so

there is often no need to inspect the nested message types directly.

Message types can also contain arrays with fixed or variable length (shown with square

brackets []) and constants (generally for interpreting the contents of other, non-constant

fields). These features are not used by turtlesim. For an example message type that uses

these features, have a look at sensor_msgs/NavSatFix, which represents a single GPS fix.

Publishing messages from the command line Most of the time, the work of publishing

messages is done by specialized programs.2 However, you may find it useful at times to

publish messages by hand. To do this, use rostopic:Í23

rostopic pub -r rate-in-hz topic-name message-type message-content

This command repeatedly publishes the given message on the given topic at the given rate.

The final message content parameter should provide values for all of the fields in the

message type, in order. Here’s an example:

rostopic pub -r 1 /turtle1/cmd_vel geometry_msgs/Twist ’[2, 0, 0]’ ’[0, 0, 0]’

2Indeed, creating those programs is the primary subject matter of this book!

Í23http://wiki.ros.org/rostopic

31

http://wiki.ros.org/rostopic

2. GETTING STARTED

The values are assigned to message fields in the same order that they are shown by rosmsg

show. In the case, the first three numbers denote the desired linear velocity and the final

three numbers denote the desired angular velocity. We use single quotes (’. . . ’) and

square brackets ([. . .]) to group the individual subfields into the two top-level composite

fields. As you might guess, the messages generated by this example command the turtle to

drive straight ahead (along its x-axis), with no rotation.

Likewise, a command like this will command the robot to rotate in place about its z-

axis (which is perpendicular to your computer’s screen):

rostopic pub -r 1 /turtle1/cmd_vel geometry_msgs/Twist ’[0, 0, 0]’ ’[0, 0, 1]’

� In fact, the two non-zero fields from the last two examples—specifically, linear.x

and angular.z—are the only fields within geometry_msgs/Twist that turtlesim

pays any attention to. Because the other four fields represent motions that the two-

dimensional simulator does not allow, turtlesim ignores them.

¹ The syntax shown above has the distinct disadvantage that you must remember all

of the fields of the message type and the order in which they appear. An alternative

is to give single parameter specifying all of the fields as a single YAML (a recursive

acronym for “YAML Ain’t Markup Language”Í24) dictionary. This command (which

does, in fact, contain newline characters) is equivalent to the one above, but it ex-

plicitly shows the mapping from field names to values:

rostopic pub /turtle1/cmd_vel geometry_msgs/Twist "linear:

x: 2.0

y: 0.0

z: 0.0

angular:

x: 0.0

y: 0.0

z: 0.0"

There are enough tricky interactions between bash and YAML that the online doc-

umentation has an entire page devoted just to the use of YAML on the command

line.Í25 Í26 The simplest way to get the syntax correct is to use tab completion.

32

2.7. Topics and messages

Pressing Tab after entering the message type will insert a fully formed YAML dic-

tionary, with all of the fields in the given message type. The tab-generated message

will use default values (zero, false, empty string, etc), but you can edit it to contain

the real message content that you want.

There are a few additional options to rostopic pub that might be of use.

R The form shown here uses -r to select the “rate mode” of rostopic pub, which pub-

lishes messages at regular intervals. This command also supports a one-time mode

(-1 “dash one”) and a special “latched” mode (-l “dash ell”) that publishes only once

but ensures that new subscribers to that topic will receive the message. Latched

mode is actually the default.

R It is also possible to read messages from a file (using -f) or from standard input (by

omitting both -f and the message content from the command). In both cases, the

input should be formatted like the output of rostopic echo.

� Perhaps you have begun to imagine possibilities for using a scripted combination

of rostopic echo and rostopic pub as a way of “recording” and “playing back” mes-

sages, for automating testing of your programs. If so, you’ll be interested in the

rosbag tool (Chapter 9), which is a more complete implementation of this kind of

idea.

Understanding message type names Like everything else in ROS, every message type

belongs to a specific package. Message type names always contain a slash, and the part

before the slash is the name of the containing package:

package-name/type-name

For example, the turtlesim/Color message type breaks down this way:

turtlesim
︸ ︷︷ ︸

package name

+ Color
︸ ︷︷ ︸

type name

⇒ turtlesim/Color
︸ ︷︷ ︸

message data type

Í24http://www.yaml.org/

Í25http://wiki.ros.org/YAML Overview

Í26http://wiki.ros.org/ROS/YAMLCommandLine

33

http://www.yaml.org/
http://wiki.ros.org/YAML Overview
http://wiki.ros.org/ROS/YAMLCommandLine

2. GETTING STARTED

This division of message type names serves a few purposes.

R Most directly, including packages in the message type names helps to prevent name

collisions. For example, geometry_msgs/Pose and turtlesim/Pose are distinct

message types that contain different (but conceptually similar) data.

R As we’ll see in Chapter 3, when writing ROS programs, we’ll need to declare depen-

dencies on other packages that contain message types that we use. Including the

package name as part of the message type name makes these dependencies easier

to see.

R Finally, knowing the package that contains a given message type can be useful for fig-

uring out that type’s purpose. For example, the type name ModelState is quite mys-

terious in isolation, but the full name gazebo/ModelState clarifies that this mes-

sage type is part of the Gazebo simulator, and likely contains information about one

of the models within that simulation.

2.8 A larger example

So far in this chapter, we’ve seen how to start the ROS master, how to start ROS nodes,

and how to investigate the topics those nodes use to communicate with one another. This

section wraps up our introduction with an example a little larger than the one from Sec-

tion 2.3, intended to illustrate a bit more fully the way topics and messages work.

First, stop any nodes that might be currently running. Start roscore if it’s not already

active. Then, in four separate terminals, run these four commands:

rosrun turtlesim turtlesim_node __name:=A

rosrun turtlesim turtlesim_node __name:=B

rosrun turtlesim turtle_teleop_key __name:=C

rosrun turtlesim turtle_teleop_key __name:=D

This should start two instances of the turtlesim simulator—These should appear in two

separate windows—and two instances of the turtlesim teleoperation node.

The only element in the example that might be unfamiliar is the __name parameter

to rosrun. These parameters override the default name that each node tries to assign to

itself. They’re needed because the ROS master does not allow multiple nodes with the

same name.

34

2.8. A larger example

/turtle1/cmd_vel

/B

/A

/turtle1/color_sensor

/turtle1/pose

/C

/D

Figure 2.5: A slightly more complex ROS graph, with two turtlesim nodes named A and B

and two teleoperation nodes named C and D.

¹ If you do attempt to start two nodes with the same name, the new node will start

without any problem, but the original node will terminate with a message like this:

[WARN] [1369835799.391679597]: Shutdown request received.

[WARN] [1369835799.391880002]: Reason given for shutdown:

[new node registered with same name]

Even though we’re working to avoid it here, this behavior can be useful in general.

This is especially true if you are debugging and revising a node, because it ensures

that you won’t have multiple versions of the same node running by mistake.

Before we discuss this four-node example, you may wish to take a moment to think

about how the system will behave. What would the graph, as displayed by rqt_graph,

look like? Which turtles would move in response to which teleoperation nodes?

Hopefully, you predicted that the graph would look like Figure 2.5, and that both turtles

would make the same movements in response to key presses sent to either teleoperation

node. Let’s see why.

2.8.1 Communication via topics is many-to-many.

You might have expected each teleoperation node to connect to one simulator, creating

two independently controllable simulations.3 Note, however, that these two kinds of nodes

publish and subscribe, respectively, on the /turtle1/cmd_vel topic. Messages published

on this topic, regardless of which node publishes them, are delivered to every subscriber

of that topic.

In this example, every message published by teleoperation node C is delivered to both

simulation nodes, namely A and B. Likewise, messages published by D are delivered to

3In Chapter 6, we’ll see the right way to create these sorts of parallel, independent turtlesim simulations.

35

topic_3A_turtle1_cmd_vel
_B
_A
topic_3A_turtle1_color_sensor
topic_3A_turtle1_pose
_C
_D

2. GETTING STARTED

both A and B. When these messages arrive, the turtles move accordingly, regardless of

which node published them. The main idea here is that topics and messages are used

for many-to-many communication. Many publishers and many subscribers can share a

single topic.

2.8.2 Nodes are loosely coupled.

No doubt you have noticed that we did not need to reprogram the turtlesim simulator to

accept movement commands from multiple sources, nor did the teleoperation node need

to be designed to drive multiple instances of the simulator at once. In fact, it would be an

easy exercise to extend this example to arbitrarily many4 nodes of either type.

At the other extreme, consider what would happen if the turtlesim simulator were

started in isolation, without any other nodes. In that situation, the simulator would wait

for messages on /turtle1/cmd_vel, happily oblivious to the fact that there are no pub-

lishers for that topic.

The punchline is that our turtlesim nodes specifically—and most well-designed ROS

nodes generally—are loosely coupled. None of the nodes explicitly know about any of the

others; their only interactions are indirect, at the level of topics and messages. This inde-

pendence of nodes, along with the decomposition it facilitates of larger tasks into smaller

reusable pieces, is one of the key design features of ROS.

R Software (like turtle_teleop_key) that produces information can publish that in-

formation, without worrying about how that information is consumed.

R Software (like turtlesim_node) that consumes information can subscribe to the

topic or topics containing the data it needs, without worrying about how those data

are produced.

ROS does provide a mechanism, called services, for slightly more direct, one-to-one com-

munication. This secondary technique is much less common, but does have its uses.

Chapter 8 describes how to create and use services.

4...within reason. The author’s computer, for example, begins to complain about having too many active

X clients after starting about 100 simultaneous instances of turtlesim_node.

36

2.9. Checking for problems

2.9 Checking for problems

One final (for now) command line tool, which can be helpful when ROS is not behaving

the way you expect, is roswtf,5Í27 Í28 which can be run with no arguments:

roswtf

This command performs a broad variety of sanity checks, including examinations of your

environment variables, installed files, and running nodes. For example, roswtf checks

whether the rosdep portions of the install process have been completed, whether any

nodes appear to have hung or died unexpectedly, and whether the active nodes are cor-

rectly connected to each other. A complete list of checks performed by roswtf seems to

exist, unfortunately, only in the Python source code for that tool.

2.10 Looking forward

The goal of this chapter was to introduce some basic ROS objects like nodes, messages, and

topics, along with some command line tools for interacting with those objects. In the next

chapter, we’ll move beyond interacting with existing ROS programs and on to the process

of writing new programs.

5The name of this tool is not explained in its documentation, but the author is pretty sure that it’s an

acronym for “Why The Failure?”

Í27http://wiki.ros.org/roswtf

Í28http://wiki.ros.org/ROS/Tutorials/Getting started with roswtf

37

http://wiki.ros.org/roswtf
http://wiki.ros.org/ROS/Tutorials/Getting started with roswtf

