
A Gentle Introduction to ROS

Chapter: Recording and replaying messages

Jason M. O’Kane



Jason M. O’Kane

University of South Carolina

Department of Computer Science and Engineering

315 Main Street

Columbia, SC 29208

http://www.cse.sc.edu/~jokane

©2014, Jason Matthew O’Kane. All rights reserved.

This is version 2.1.6(ab984b3), generated on April 24, 2018.

Typeset by the author using LATEX and memoir.cls.

ISBN 978-14-92143-23-9

http://www.cse.sc.edu/~jokane


Chapter 9

Recording and replaying messages
In which we use bag files to record and replay messages.

One of the primary features of a well-designed ROS system is that parts of the system that

consume information should not care about the mechanism used to produce that infor-

mation. This architecture is easy to see in the publish-subscribe model of communication

that ROS primarily uses. A good subscriber node should work any time the messages it

needs are being published, regardless of which other node or nodes is publishing them.

This chapter describes a tool called rosbag that is a concrete example of this kind of

flexibility. With rosbag, we can record the messages published on one or more topics to

a file, and then later replay those messages. Taken together, these two capabilities form a

powerful way to test some kinds of robot software: We can run the robot itself only a few

times, recording the topics we care about, and then replay the messages on those topics

many times, experimenting with the software that processes those data.

9.1 Recording and replaying bag files

The term bag file refers to a specially formatted file that stores timestamped ROS messages.

The rosbag command can be used both to record and to replay bag files.Í1Í2

Recording bag files To create a bag file, use the rosbag command:

rosbag record -O filename.bag topic-names

Í1http://wiki.ros.org/rosbag

Í2http://wiki.ros.org/rosbag/Commandline

133

http://wiki.ros.org/rosbag
http://wiki.ros.org/rosbag/Commandline


9. RECORDING AND REPLAYING MESSAGES

If you don’t give a file name, rosbag will choose one for you based on the current date and

time. In addition, there are a few other options for rosbag record that might be useful.

R Instead of listing specific topics, you can use rosbag record -a to record messages

on every topic that is currently being published.

� Recording every topic is no problem for the kinds of small-scale systems that

appear in this book. However, it can be a surprisingly bad idea on many real

robot systems. For example, most robots equipped with cameras have nodes

that publish multiple topics containing images that have undergone varying

amounts of processing and varying levels of compression. Recording all of

these topics can create staggeringly huge bag files very quickly. Think twice

before using -a, or at least keep an eye on the size of the bag file.

R You can enable compression in the bag file using rosbag record -j. This has the

usual tradeoffs of compression: Generally smaller file sizes in exchange for slightly

more computation to read and write. In the author’s opinion, compression generally

seems to be a good idea for bag files.

When you’ve finished recording, use Ctrl-C to stop rosbag.

Replaying bag files To replay a bag file, use a command like this:

rosbag play filename.bag

The messages stored in the bag file are then replayed, in the same order and with the same

time intervals between them as when they were originally published.

Inspecting bag files The rosbag info command can provide a number of interesting

snippets of information about a bag:

rosbag info filename.bag

An an example, here’s the output for a bag that the author recorded while writing the next

section:

path: square.bag

version: 2.0

duration: 1:08s (68s)

134



9.2. Example: A bag of squares

start: Jan 06 2014 00:05:34.66 (1388984734.66)

end: Jan 06 2014 00:06:42.99 (1388984802.99)

size: 770.8 KB

messages: 8518

compression: none [1/1 chunks]

types: geometry_msgs/Twist [9f195f881246fdfa2798d1d3eebca84a]

turtlesim/Pose [863b248d5016ca62ea2e895ae5265cf9]

topics: /turtle1/cmd_vel 4249 msgs : geometry_msgs/Twist

/turtle1/pose 4269 msgs : turtlesim/Pose

In particular, the duration, message count, and topic lists are likely to be interesting.

9.2 Example: A bag of squares

Let’s work through an example to get a feel for how bag files work.

Drawing squares First, start roscore and the usual turtlesim_node. From the turtlesim

package, start a draw_square node:

rosrun turtlesim draw_square

This node resets the simulation (by calling its reset service) and publishes velocity com-

mands that drive the turtle in a close approximation of a repeating square pattern. (You

could also use any of the nodes we’ve written to publish velocity commands. The prefabri-

cated draw_square program is a good choice because unlike, say, pubvel, it’s easy to see

the structure of the motions the turtle makes.)

Recording a bag of squares While the turtle is drawing squares, run this command to

record both the velocity commands and turtle pose messages:

rosbag record -O square.bag /turtle1/cmd_vel /turtle1/pose

The initial output will let you know that rosbag is subscribing to /turtle1/cmd_vel and

to /turtle1/pose, and that it is recording to square.bag. At this point, the graph (as shown

by rqt_graph) would look something like Figure 9.1. The new and interesting part is that

rosbag has created a new node, called /record_. . . , that subscribes to /turtle1/cmd-

_vel. The graph shows that rosbag records messages by subscribing to the topics you ask

for, just like any other node, using the same mechanisms that we learned in Chapter 3.

135



9. RECORDING AND REPLAYING MESSAGES

Figure 9.1: The graph of nodes and topics while rosbag

record is running.

/draw_square

/turtle1/cmd_vel

/turtlesim

/record_...

/turtle1/color_sensor /turtle1/pose

� Nodes created by rosbag use anonymous names, which we discussed in Section 5.4.

In this chapter, we’ve replaced the trailing numbers from those names with ellipses

(. . .) for brevity. Note that the use of anonymous names means that we can run

multiple rosbag record instances at once, if we choose to.

Replaying the bag of squares After this system has run for a while—a minute or two

should be plenty—kill rosbag to stop the recording and kill draw_square to stop the tur-

tle’s drawing. Next, let’s replay the bag. After ensuring that roscore and turtlesim are still

running, use this command:

rosbag play square.bag

Notice that the turtle will resume moving. This happens because rosbag has created a

node named play_. . . that is now publishing on /turtle1/cmd_vel, as shown in Fig-

ure 9.2. As we would expect, the messages that it publishes are the same ones that draw-

_square originally published.

Figure 9.3 illustrates drawings that might result from this sequence of operations. De-

pending on how carefully you’ve thought about what rosbag does, these drawings might

be a bit surprising.

R The squares drawn during rosbag play might not be in the same place as squares

drawn during rosbag record. Why not? Because rosbag only replicates a sequence

of messages. It does not replicate the initial conditions. The second batch of squares,

136



9.2. Example: A bag of squares

/turtle1/color_sensor

/turtle1/cmd_vel

/turtlesim

/turtle1/pose

/play_...

Figure 9.2: The graph of nodes and topics while rosbag play is

running.

Figure 9.3: [left] A turtlesim turtle

responding to movement com-

mands from draw_square. Those

movement commands are also

recorded by rosbag. [right] By re-

playing the bag, we can send the

same sequence of messages to the

turtle.

drawn during rosbag play, began from wherever the turtle happened to be at the

time we executed that command.

R The original draw_square and rosbag play can send the turtle to different places,

even though the bag contains the pose data from the /turtle1/pose topic. Why?

Quite simply, because in this example, no one (other than rosbag record) subscribes

to /turtle1/pose. There’s a difference between someone (in this case, rosbag play)

publishing data about where the turtle is, and the turtle actually being there. The

pose data from the bag file is ignored.

In fact, when both turtlesim_node and rosbag play are running, the messages on

/turtle1/pose can be downright contradictory. Listing 9.1 shows an example of four

messages published on this topic in rapid succession, within less than a second. No-

tice the abrupt changes in the y coordinate. It is fortunate that no nodes are sub-

scribed to this topic, because any such node would likely have trouble making sense

of its messages.

137



9. RECORDING AND REPLAYING MESSAGES

1 x : 5.93630695343

2 y : 4.66894054413

3 the ta : 5 .85922956467

4 l i n e a r_ve l o c i t y : 0 .0

5 angular_ve loc i ty : 0 .40000000596

6 −−−

7 x : 5.56227588654

8 y : 7 .4833817482

9 the ta : 4 .17920017242

10 l i n e a r_ve l o c i t y : 0 .0

11 angular_ve loc i ty : 0 .40000000596

12 −−−

13 x : 5.93630695343

14 y : 4.66894054413

15 the ta : 5 .865629673

16 l i n e a r_ve l o c i t y : 0 .0

17 angular_ve loc i ty : 0 .40000000596

18 −−−

19 x : 5.56227588654

20 y : 7 .4833817482

21 the ta : 4 .18560028076

22 l i n e a r_ve l o c i t y : 0 .0

23 angular_ve loc i ty : 0 .40000000596

24 −−−

Listing 9.1: Four successive messages published on /turtle1/pose in short period time, with

conflicting reports about the location of the turtle. Notice the large difference in the y coordinates.

The conflict occurs because both turtlesim and rosbag play are publishing on this topic.

� The lesson is to avoid (or, at a minimum, to be very careful with) systems in

which both rosbag and “real” nodes are publishing on the same topic.

R Figure 9.3 also illustrates that service calls (see Chapter 8) are not recorded in bag

files. If they were, then the bag might include some record of when draw_square

called /reset before beginning to send messages, and the turtle would have returned

to its starting point.

138



9.3. Bags in launch files

9.3 Bags in launch files

In addition to the rosbag command that we have seen already, ROS also provides executa-

bles named record and play that are members of the rosbag package. These programs

have the same functions and accept the same command line parameters as rosbag record

and rosbag play, respectively.

This means, for one thing, that it is possible—but needlessly verbose—to record or

replay bag files using rosrun, like this:

rosrun rosbag record -O filename.bag topic-names

rosrun rosbag play filename.bag

More importantly, these record and play executables make it easy to include bags as part

of our launch files, by including the appropriate node elements. For example, a record

node might look like this:

<node

pkg="rosbag"

name="record"

type="record"

args="-O filename.bag topic-names"

/>

Likewise, a play node might look like this:

<node

pkg="rosbag"

name="play"

type="play"

args="filename.bag"

/>

Aside from the need to pass args for their command lines, these nodes don’t need any

unusual treatment from roslaunch.

� At this point, you might be surprised to see the chapter ending without any discus-

sion of how to use bag files from C++ programs. In fact, there does exist an API for

reading and writing bag files.Í3 However, that API is really only needed for spe-

cialized applications. For simple recording and playback operations, the rosbag

command line interface is quite sufficient.

139



9. RECORDING AND REPLAYING MESSAGES

9.4 Looking forward

This concludes our guided tour of the essential elements of ROS. The next chapter wraps

things up by briefly mentioning a few other topics that show up frequently in real ROS

systems.

Í3http://wiki.ros.org/rosbag/Code API

140

http://wiki.ros.org/rosbag/Code API

