
A Gentle Introduction to ROS

Chapter: Writing ROS programs

Jason M. O’Kane

Jason M. O’Kane

University of South Carolina

Department of Computer Science and Engineering

315 Main Street

Columbia, SC 29208

http://www.cse.sc.edu/~jokane

©2014, Jason Matthew O’Kane. All rights reserved.

This is version 2.1.6(ab984b3), generated on April 24, 2018.

Typeset by the author using LATEX and memoir.cls.

ISBN 978-14-92143-23-9

http://www.cse.sc.edu/~jokane

Chapter 3

Writing ROS programs
In which we write ROS programs to publish and subscribe to messages.

So far we’ve introduced a few core ROS features, including packages, nodes, topics, and

messages. We also spent a bit of time exploring some existing software built on those fea-

tures. Now it’s finally time to begin creating your own ROS programs. This chapter de-

scribes how to set up a development workspace and shows three short programs, includ-

ing the standard “hello world” example, and two that show how to publish and subscribe

to messages.

3.1 Creating a workspace and a package

We saw in Section 2.4 that all ROS software, including software we create, is organized into

packages. Before we write any programs, the first steps are to create a workspace to hold

our packages, and then to create the package itself.

Creating a workspace Packages that you create should live together in a directory called

a workspace.Í1 For example, the author’s workspace is a directory called /home/jokane-

/ros, but you can name your workspace whatever you like, and store the directory any-

where in your account that you prefer. Use the normal mkdir command to create a direc-

tory. We’ll refer to this new directory as your workspace directory.

Í1http://wiki.ros.org/catkin/Tutorials/create_a_workspace

39

http://wiki.ros.org/catkin/Tutorials/create_a_workspace

3. WRITING ROS PROGRAMS

¹ For many users, there’s no real need to use more than one ROS workspace. However,

ROS’s catkin build system, which we’ll introduce in Section 3.2.2, attempts to build

all of the packages in a workspace at once. Therefore, if you’re working on many

packages or have several distinct projects, it may be useful to maintain several in-

dependent workspaces.

One final step is needed to set up the workspace. Create a subdirectory called src inside

the workspace directory. As you might guess, this subdirectory will contain the source code

for your packages.

Creating a package The command to create a new ROS package, which should be run

from the src directory of your workspace, looks like this:Í2

catkin_create_pkg package-name

Actually, this package creation command doesn’t do much: It creates a directory to hold

the package and creates two configuration files inside that directory.

R The first configuration file, called package.xml, is the manifest discussed in Sec-

tion 2.4.

R The second file, called CMakeLists.txt, is a script for an industrial-strength cross-

platform build system called CMake. It contains a list of build instructions includ-

ing what executables should be created, what source files to use to build each of

them, and where to find the include files and libraries needed for those executables.

CMake is used internally by catkin.

In the coming sections, we’ll see a few edits you’ll need to make to each of these files to

configure your new package. For now, it’s enough to understand that catkin_create_pkg

doesn’t do anything magical. Its job is simply to make things a bit more convenient by

creating both the package directory and default versions of these two configuration files.

� This three-layered directory structure—a workspace directory, containing a src di-

rectory, containing a package directory—might seem to be overkill for simple pro-

jects and small workspaces, but the catkin build system requires it.

Í2http://wiki.ros.org/ROS/Tutorials/CreatingPackage

40

http://wiki.ros.org/ROS/Tutorials/CreatingPackage

3.2. Hello, ROS!

¹ ROS package names follow a naming convention that allows only lowercase letters,

digits, and underscores. The convention also requires that the first character be a

lowercase letter. A few ROS tools, including catkin, will complain about packages

that do not follow this convention.

All of the examples in this book belong to a package called agitr, named after the ini-

tials of the book’s title. If you’d like to recreate this package yourself, you can create a

package with this name running this command from your workspace’s src directory:

catkin_create_pkg agitr

An alternative to creating the agitr package yourself is to download the archive of this

package from the book’s website, and expand it from within your workspace directory.

Editing the manifest After creating your package, you may want to edit its package.xml,

which contains some metadata describing the package. The default version installed by

catkin_create_pkg is liberally commented and largely self-explanatory. Note, however,

that most of this information is not utilized by ROS, neither at build time nor at run time,

and only becomes really important if you release your package publicly. In the spirit of

keeping documentation in sync with actual functionality, a reasonable minimum might

be to fill in the description and maintainer fields. Listing 3.1 shows the manifest from our

agitr package.

3.2 Hello, ROS!

Now that we’ve created a package, we can start writing ROS programs.

3.2.1 A simple program

Listing 3.2 shows a ROS version of the canonical “Hello, world!” program. This source file,

named hello.cpp, belongs in your package folder, right next to package.xml and CMake-

Lists.txt.

� Some online tutorials suggest creating a src directory within your package directory

to contain C++ source files. This additional organization might be helpful, espe-

cially for larger packages with many types of files, but it isn’t strictly necessary.

41

3. WRITING ROS PROGRAMS

1 <?xml ve r s i on ="1.0"?>

2 <package>

3 <name>ag i t r </name>

4 <vers ion >0.0.1</ vers ion>

5 <des c r i p t i on >

6 Examples from A Gentle In t roduc t i on to ROS

7 </de s c r i p t i on >

8 <mainta iner emai l="jokane@cse . sc . edu">

9 Jason O' Kane

10 </maintainer>

11 <l i c e n s e >TODO</l i c e n s e >

12 <buildtool_depend>catkin </buildtool_depend>

13 <build_depend>geometry_msgs</build_depend>

14 <run_depend>geometry_msgs</run_depend>

15 <build_depend>tur t l e s im </build_depend>

16 <run_depend>tur t l e s im </run_depend>

17 </package>

Listing 3.1: The manifest (that is, package.xml) for this book’s agitr package.

We’ll see how to compile and run this program momentarily, but first let’s examine the

code itself.

R The header file ros/ros.h includes declarations of the standard ROS classes. You’ll

want to include it in every ROS program that you write.

R The ros::init function initializes the ROS client library. Call this once at the begin-

ning of your program.Í3 The last parameter is a string containing the default name

of your node.

¹ This default name can be overridden by a launch file (see page 87) or by a

rosrun command line parameter (see page 23).

R The ros::NodeHandle object is the main mechanism that your program will use to

interact with the ROS system.Í4 Creating this object registers your program as a

Í3http://wiki.ros.org/roscpp/Overview/InitializationandShutdown

Í4http://wiki.ros.org/roscpp/Overview/NodeHandles

42

http://wiki.ros.org/roscpp/Overview/Initialization and Shutdown
http://wiki.ros.org/roscpp/Overview/NodeHandles

3.2. Hello, ROS!

1 // This is a ROS version of the standard "hello , world"

2 // program.

3

4 // This header defines the standard ROS classes .

5 #inc lude <ros / ro s . h>

6

7 i n t main (i n t argc , char ∗∗ argv) {

8 // In i t i a l i z e the ROS system .

9 ro s : : i n i t (argc , argv , " he l l o_ros ") ;

10

11 // Establish this program as a ROS node.

12 ro s : : NodeHandle nh ;

13

14 // Send some output as a log message .

15 ROS_INFO_STREAM("Hel lo , ␣ROS! ") ;

16 }

Listing 3.2: A trivial ROS program called hello.cpp.

node with the ROS master. The simplest technique is to create a single NodeHandle

object to use throughout your program.

¹ Internally, the NodeHandle class maintains a reference count, and only regis-

ters a new node with the master when the first NodeHandle object is created.

Likewise, the node is only unregistered when all of the NodeHandle objects

have been destroyed. This detail has two impacts: First, you can, if you pre-

fer, create multiple NodeHandle objects, all of which refer to the same node.

There are occasionally reasons that this would make sense. An example of one

such situation appears on page 129. Second, this means that it is not possible,

using the standard roscpp interface, to run multiple distinct nodes within a

single program.

R The ROS_INFO_STREAM line generates an informational message. This mes-

sage is sent to several different locations, including the console screen. We’ll see

more details about this kind of log message in Chapter 4.

43

3. WRITING ROS PROGRAMS

3.2.2 Compiling the Hello program

How can you compile and run this program? This is handled by ROS’s build system, called

catkin. There are four steps.Í5

Declaring dependencies First, we need to declare the other packages on which ours de-

pends. For C++ programs, this step is needed primarily to ensure that catkin provides

the C++ compiler with the appropriate flags to locate the header files and libraries that it

needs.

To list dependencies, edit the CMakeLists.txt in your package directory. The default

version of this file has this line:

find_package(catkin REQUIRED)

Dependencies on other catkin packages can be added in a COMPONENTS section on

this line:

find_package(catkin REQUIRED COMPONENTS package-names)

For the hello example, we need one dependency on a package called roscpp, which pro-

vides the C++ ROS client library. The required find_package line, therefore, is:

find_package(catkin REQUIRED COMPONENTS roscpp)

We should also list dependencies in the package manifest (package.xml), using the build-

_depend and run_depend elements:

<build_depend>package-name</build_depend>

<run_depend>package-name</run_depend>

In our example, the hello program needs roscpp both at build time and at run time, so the

manifest should contain:

<build_depend>roscpp</build_depend>

<run_depend>roscpp</run_depend>

However, dependencies declared in the manifest are not used in the build process; if you

omit them here, you likely won’t see any error messages until you distribute your package

to others who try to build it without having the required packages installed.

Í5http://wiki.ros.org/ROS/Tutorials/BuildingPackages

44

http://wiki.ros.org/ROS/Tutorials/BuildingPackages

3.2. Hello, ROS!

Declaring an executable Next, we need to add two lines to CMakeLists.txt declaring

the executable we would like to create. The general form is

add_executable(executable-name source-files)

target_link_libraries(executable-name ${catkin_LIBRARIES})

The first line declares the name of the executable we want, and a list of source files that

should be combined to form that executable. If you have more than one source file, list

them all here, separated by spaces. The second line tells CMake to use the appropriate

library flags (defined by the find_package line above) when linking this executable. If

your package contains more than one executable, copy and modify these two lines for

each executable you have.

In our example, we want an executable called hello, compiled from a single source file

called hello.cpp, so we would add these lines to CMakeLists.txt:

add_executable(hello hello.cpp)

target_link_libraries(hello ${catkin_LIBRARIES})

For reference, Listing 3.3 shows a short CMakeLists.txt that suffices for our example.

The default version of CMakeLists.txt created by catkin_create_pkg contains some

commented-out guidance for a few other purposes; for many simple programs, something

similar to the simple version shown here is enough.

Building the workspace Once your CMakeLists.txt is set up, you can build your work-

space—including compiling all of the executables in all of its packages—using this com-

mand:

catkin_make

Because it’s designed to build all of the packages in your workspace, this command must be

run from your workspace directory. It will perform several configuration steps (especially

the first time you run it) and create subdirectories called devel and build within your work-

space. These two new directories contain build-related files like automatically-generated

makefiles, object code, and the executables themselves. If you like, the devel and build

subdirectories can safely be deleted when you’ve finished working on your package.

If there are compile errors, you’ll see them here. After correcting them, you can catkin-

_make again to complete the build process.

� If you see errors from catkin_make that the header ros/ros.h cannot be found,

or “undefined reference” errors on ros::init or other ROS functions, the most likely

45

3. WRITING ROS PROGRAMS

1 # What ve r s i on o f CMake i s needed ?

2 cmake_minimum_required (VERSION 2 . 8 . 3)

3

4 # Name o f t h i s package .

5 p r o j e c t (a g i t r)

6

7 # Find the ca tk in bu i ld system , and any other packages on

8 # which we depend .

9 f ind_package (ca tk in REQUIRED COMPONENTS roscpp)

10

11 # Declare our ca tk in package .

12 catkin_package ()

13

14 # Spec i f y l o c a t i o n s o f header f i l e s .

15 i n c l ud e_d i r e c t o r i e s (i n c lude ${catkin_INCLUDE_DIRS})

16

17 # Declare the executab le , a long with i t s source f i l e s . I f

18 # there are mu l t ip l e executab le s , use mu l t ip l e c op i e s o f

19 # th i s l i n e .

20 add_executable (h e l l o h e l l o . cpp)

21

22 # Spec i f y l i b r a r i e s aga in s t which to l i n k . Again , t h i s

23 # l i n e should be copied f o r each d i s t i n c t executab l e in

24 # the package .

25 t a r g e t_ l i n k_ l i b r a r i e s (h e l l o ${catkin_LIBRARIES})

Listing 3.3: The CMakeLists.txt to build hello.cpp.

reason is that your CMakeLists.txt does not correctly declare a dependency on

roscpp.

Sourcing setup.bash The final step is to execute a script called setup.bash, which is cre-

ated by catkin_make inside the devel subdirectory of your workspace:

source devel/setup.bash

This automatically-generated script sets several environment variables that enable ROS

to find your package and its newly-generated executables. It is analogous to the global

setup.bash from Section 2.2, but tailored specifically to your workspace. Unless the direc-

46

3.3. A publisher program

tory structure changes, you only need to do this only once in each terminal, even if you

modify the code and recompile with catkin_make.

3.2.3 Executing the hello program

When all of those build steps are complete, your new ROS program is ready to execute

using rosrun (Section 2.6), just like any other ROS program. In our example, the command

is:

rosrun agitr hello

The program should produce output that looks something like this:

[INFO] [1416432122.659693753]: Hello, ROS!

Don’t forget to start roscore first: This program is a node, and nodes need a master to run

correctly. By the way, the numbers in this output line represent the time—measured in

seconds since January 1, 1970—when our ROS_INFO_STREAM line was executed.

� This rosrun, along with some other ROS commands, may generate an error that

looks like this:

[rospack] Error: stack/package package-name not found

Two common causes of this error are (a) misspelling the package name, and (b)

failing to run the setup.bash for your workspace.

3.3 A publisher program

The hello program from the previous section showed how to compile and run a simple

ROS program. That program was useful as an introduction to catkin, but, like all “Hello,

World!” programs, it didn’t do anything useful. In this section, we’ll look at a program that

interacts with ROS a bit more.Í6 Specifically, we’ll see how to send randomly-generated

velocity commands to a turtlesim turtle, causing it to wander aimlessly. The brief C++

source code for the program, called pubvel, appears as Listing 3.4. This program shows all

of the elements needed to publish messages from code.

Í6http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c++)

47

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c++)

3. WRITING ROS PROGRAMS

1 // This program publishes randomly−generated velocity

2 // messages for turtlesim .

3 #inc lude <ros / ro s . h>

4 #inc lude <geometry_msgs/Twist . h> // For geometry_msgs : : Twist

5 #inc lude <s t d l i b . h> // For rand() and RAND_MAX

6

7 i n t main (i n t argc , char ∗∗ argv) {

8 // In i t i a l i z e the ROS system and become a node .

9 ro s : : i n i t (argc , argv , " pub l i sh_ve loc i ty ") ;

10 ro s : : NodeHandle nh ;

11

12 // Create a publisher object .

13 ro s : : Pub l i she r pub = nh . adve r t i s e <geometry_msgs : : Twist>(

14 " t u r t l e 1 /cmd_vel" , 1000) ;

15

16 // Seed the random number generator .

17 srand (time (0)) ;

18

19 // Loop at 2Hz unti l the node is shut down.

20 ro s : : Rate r a t e (2) ;

21 whi le (ro s : : ok ()) {

22 // Create and f i l l in the message . The other four

23 // f ie lds , which are ignored by turtlesim , default to 0.

24 geometry_msgs : : Twist msg ;

25 msg . l i n e a r . x = double (rand ()) / double (RAND_MAX) ;

26 msg . angular . z = 2∗ double (rand ()) / double (RAND_MAX) − 1 ;

27

28 // Publish the message .

29 pub . pub l i sh (msg) ;

30

31 // Send a message to rosout with the detai ls .

32 ROS_INFO_STREAM("Sending␣random␣ v e l o c i t y ␣command : "

33 << "␣ l i n e a r=" << msg . l i n e a r . x

34 << "␣ angular=" << msg . angular . z) ;

35

36 // Wait unti l i t ' s time for another iteration .

37 r a t e . s l e e p () ;

38 }

39 }

Listing 3.4: A program called pubvel.cpp that publishes randomly generated movement

commands for a turtlesim turtle.

48

3.3. A publisher program

3.3.1 Publishing messages

The main differences between pubvel and hello all stem from the need to publish mes-

sages.

Including the message type declaration You’ll likely recall from Section 2.7.2 that ev-

ery ROS topic is associated with a message type. Each message type has a corresponding

C++ header file. You’ll need to #include this header for every message type used in your

program, with code like this:

#include <package_name/type_name.h>

Note that the package name should be the name of the package containing the message

type, and not (necessarily) the name of your own package. In pubvel, we want to pub-

lish messages of type geometry_msgs/Twist—a type named Twist owned by a package

named geometry_msgs—so we need this line:

#include <geometry_msgs/Twist.h>

The purpose of this header is to define a C++ class that has the same data members as

the fields of the given message type. This class is defined in a namespace named after the

package. The practical impact of this naming is that when referring to message classes

in C++ code, you’ll use the double colon (::)—also called the scope resolution operator—

to separate the package name from the type name. In our pubvel example, the header

defines a class called geometry_msgs::Twist.

Creating a publisher object The work of actually publishing the messages is done by an

object of class ros::Publisher.Í7 A line like this creates the object we need:

ros::Publisher pub = node_handle.advertise<message_type>(

topic_name, queue_size);

Let’s have a look at each part of this line.

R The node_handle is an object of class ros::NodeHandle, one that you created near

the start of your program. We’re calling the advertise method of that object.

R The message_type part inside the angle brackets—formally called the template

parameter—is the data type for the messages we want to publish. This should be the

name of the class defined in the header discussed above. In the example, we use the

geometry_msgs::Twist class.

Í7http://wiki.ros.org/roscpp/Overview/PublishersandSubscribers

49

http://wiki.ros.org/roscpp/Overview/Publishers and Subscribers

3. WRITING ROS PROGRAMS

R The topic_name is a string containing the name of the topic on which we want to

publish. It should match the topic names shown by rostopic list or rqt_graph, but

(usually) without the leading slash (/). We drop the leading slash to make the topic

name a relative name; Chapter 5 explains the mechanics and purposes of relative

names. In the example, the topic name is "turtle1/cmd_vel".

� Be careful about the difference between the topic name and the message type.

If you accidentally swap these two, you’ll get lots of potentially confusing

compile errors.

R The last parameter to advertise is an integer representing the size of the message

queue for this publisher. In most cases, a reasonably large value, say 1000, is suit-

able. If your program rapidly publishes more messages than the queue can hold, the

oldest unsent messages will be discarded.

¹ This parameter is needed because, in most cases, the message must be trans-

mitted to another node. This communication process can be time consum-

ing, especially compared to the time needed to create messages. ROS miti-

gates this delay by having the publish method (see below) store the message

in an “outbox” queue and return right away. A separate thread behind the

scenes actually transmits the message. The integer value given here is the

number of messages—and not, as you might guess, the number of bytes—

that the message queue can hold.

Interestingly, the ROS client library is smart enough to know when the pub-

lisher and subscriber nodes are part of the same underlying process. In these

cases, the message is delivered directly to the subscriber, without using any

network transport. This feature is very important for making nodeletsÍ8 —

that is, multiple nodes that can be dynamically loaded into a single process—

efficient.

If you want to publish messages on multiple topics from the same node, you’ll need to

create a separate ros::Publisher object for each topic.

Í8http://wiki.ros.org/nodelet

50

http://wiki.ros.org/nodelet

3.3. A publisher program

� Be mindful of the lifetime of your ros::Publisher objects. Creating the publisher

is an expensive operation, so it’s a usually bad idea to create a new ros::Publisher

object each time you want to publish a message. Instead, create one publisher for

each topic, and use that publisher throughout the execution of your program. In

pubvel, we accomplish this by declaring the publisher outside of the while loop.

Creating and filling in the message object Next, we create the message object itself. We

already referred to the message class when we created the ros::Publisher object. Objects

of that class have one publicly accessible data member for each field in the underlying

message type.

We used rosmsg show (Section 2.7.2) to see that the geometry_msgs/Twist message

type has two top-level fields (linear and angular), each of which contains three sub-fields

(x, y, and z). Each of these sub-fields is a 64-bit floating point number, called a double by

most C++ compilers. The code in Listing 3.4 creates a geometry_msgs::Twist object and

assigns pseudo-random numbers to two of these data members:

geometry_msgs::Twist msg;

msg.linear.x = double(rand())/double(RAND_MAX);

msg.angular.z = 2*double(rand())/double(RAND_MAX) - 1;

This code sets the linear velocity to a number between 0 and 1, and the angular velocity to a

number between −1 and 1. Because turtlesim ignores the other four fields (msg.linear.y,

msg.linear.z, msg.angular.x, and msg.angular.y), we leave them with their default value,

which happens to be zero.

Of course, most message types have fields with types other than float64. Fortunately,

the mapping from ROS field types to C++ types works precisely the way you might ex-

pect.Í9 One fact that may not be obvious is that fields with array types—shown with

square brackets by rosmsg show—are realized as STL vectors in C++ code.

Publishing the message After all of that preliminary work, it is very simple to actually

publish the message, using the publish method of the ros::Publisher object. In the exam-

ple, it looks like this:

pub.publish(msg);

This method adds the given msg the publisher’s outgoing message queue, from which it

will be sent as soon as possible to any subscribers of the corresponding topic.

Í9http://wiki.ros.org/msg

51

http://wiki.ros.org/msg

3. WRITING ROS PROGRAMS

Formatting the output Although it’s not directly related to publishing our velocity com-

mands, the ROS_INFO_STREAM line in Listing 3.4 is worth a look. This is a more

complete illustration of what ROS_INFO_STREAM can do, because it shows the abil-

ity to insert data other than strings—in this case, the specific randomly generated mes-

sage fields—into the output. Section 4.3 has more information about how ROS_INFO-

_STREAM works.

3.3.2 The publishing loop

The previous section covered the details of message publishing. Our pubvel example re-

peats the publishing steps inside a while loop to publish many different messages as time

passes. The program uses a two additional constructs to form this loop.

Checking for node shutdown The condition of pubvel’s while loop is:

ros::ok()

Informally, this function checks whether our program is still in “good standing” as a ROS

node. It will return true, until the node has some reason to shut down. There are a few

ways to get ros::ok() to return false:

R You can use rosnode kill on the node.

R You can send an interrupt signal (Ctrl-C) to the program.

¹ Interestingly, ros::init() installs a handler for this signal, and uses it to initiate

a graceful shutdown. The impact is that Ctrl-C can be used to make ros::ok()

return false, but does not immediately terminate the program. This can be

important if there are clean-up steps—Writing log files, saving partial results,

saying goodbye, etc—that should happen before the program exits.

R You can call, somewhere in the program itself,

ros::shutdown()

This function can be a useful way to signal that your node’s work is complete from

deep within your code.

R You can start another node with the same name. This usually happens if you start a

new instance of the same program.

52

3.3. A publisher program

Controlling the publishing rate The last new element of pubvel is its use of a ros::Rate

object:Í10

ros::Rate rate(2);

This object controls how rapidly the loop runs. The parameter in its constructor is in units

of Hz, that is, in cycles per second. This example creates a rate object designed to regulate

a loop that executes two iterations per second. Near the end of each loop iteration, we call

the sleep method of this object:

rate.sleep();

Each call to the this method causes a delay in the program. The duration of the delay is cal-

culated to prevent the loop from iterating faster than the specified rate. Without this kind

of control, the program would publish messages as fast as the computer allows, which can

overwhelm publish and subscribe queues and waste computation and network resources.

(On the author’s computer, an unregulated version of this program topped out around

6300 messages per second.)

You can confirm that this regulation is working correctly, using rostopic hz. For pub-

vel, the results should look similar to this:

average rate: 2.000

min: 0.500s max: 0.500s std dev: 0.00006s window: 10

We can see that our messages are being published at a rate of two per second, with very

little deviation from this schedule.

� You might be thinking of an alternative to ros::Rate that uses a simple, fixed delay—

perhaps generated by sleep or usleep—in each loop iteration. The advantage of

a ros::Rate object over this approach is that ros::Rate can account for the time

consumed by other parts of the loop. If there is nontrivial computation to be done

in each iteration (as we would expect from a real program), the time consumed by

this computation is subtracted from the delay. In extreme cases, in which the real

work of the loop takes longer than the requested rate, the delay induced by sleep()

can be reduced to zero.

Í10http://wiki.ros.org/roscpp/Overview/Time

53

http://wiki.ros.org/roscpp/Overview/Time

3. WRITING ROS PROGRAMS

3.3.3 Compiling pubvel

The process of building pubvel is mostly the same as for hello: Modify CMakeLists.txt

and package.xml, and then use catkin_make to build your workspace. There is, however,

one important difference from hello.

Declaring message type dependencies Because pubvel uses a message type from the

geometry_msgs package, we must declare a dependency on that package. This takes the

same form as the roscpp dependency discussed in Section 3.2.2. Specifically, we must

modify the find_package line in CMakeLists.txt to mention geometry_msgs in addi-

tion to roscpp:

find_package(catkin REQUIRED COMPONENTS roscpp geometry_msgs)

Note that we are modifying the existing find_package line, rather than creating a new one.

In package.xml, we should add elements for the new dependency:

<build_depend>geometry_msgs</build_depend>

<run_depend>geometry_msgs</run_depend>

� If you skip (or forget) this step, then catkin_make may not be able to find the

header file geometry_msgs/Twist.h. When you see errors about missing header

files, it’s a good idea to verify the dependencies of your package.

3.3.4 Executing pubvel

At last, we’re ready to run pubvel. As usual, rosrun can do the job.

rosrun agitr pubvel

You’ll also want to run a turtlesim simulator, so that you can see the turtle respond to the

motion commands that pubvel publishes:

rosrun turtlesim turtlesim_node

Figure 3.1 shows an example of the results.

54

3.4. A subscriber program

Figure 3.1: A turtlesim turtle re-

sponding to random velocity com-

mands from pubvel.

3.4 A subscriber program

So far, we’ve seen an example program that publishes messages. This is, of course, only

half of the story when it comes to communicating with other nodes via messages. Let’s

take a look now at a program that subscribes to messages published by other nodes.Í11

Continuing to use turtlesim as a test platform, we’ll subscribe to the /turtle1/pose

topic, on which turtlesim_node publishes.1 Messages on this topic describe the pose—a

term referring to position and orientation—of the turtle. Listing 3.5 shows a short pro-

gram that subscribes to those messages and summarizes them for us via ROS_INFO-

_STREAM. Although some parts of this program should be familiar by now, there are

three new elements.

Writing a callback function One important difference between publishing and subscrib-

ing is that a subscriber node doesn’t know when messages will arrive. To deal with this fact,

we must place any code that responds to incoming messages inside a callback function,

which ROS calls once for each arriving message. A subscriber callback function looks like

this:

void function_name(const package_name::type_name &msg) {

. . .

}

The package_name and type_name are the same as for publishing: They refer to the

message class for the topic to which we plan to subscribe. The body of the callback func-

1How do we know that turtlesim_node publishes on this topic? One way to find out is to start that node

and then use rostopic list, rosnode info, or rqt_graph to see the topics being published. See Section 2.7.1.

Í11http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c++)

55

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c++)

3. WRITING ROS PROGRAMS

1 // This program subscribes to turt le1/pose and shows i t s

2 // messages on the screen .

3 #inc lude <ros / ro s . h>

4 #inc lude <tu r t l e s im /Pose . h>

5 #inc lude <iomanip> // for std : : setprecision and std : : fixed

6

7 // A callback function . Executed each time a new pose

8 // message arrives .

9 void poseMessageReceived (const t u r t l e s im : : Pose& msg) {

10 ROS_INFO_STREAM(std : : s e t p r e c i s i o n (2) << std : : f i x ed

11 << " po s i t i o n=(" << msg . x << " , " << msg . y << ") "

12 << "␣ d i r e c t i o n=" << msg . theta) ;

13 }

14

15 i n t main (i n t argc , char ∗∗ argv) {

16 // In i t i a l i z e the ROS system and become a node .

17 ro s : : i n i t (argc , argv , " subscribe_to_pose ") ;

18 ro s : : NodeHandle nh ;

19

20 // Create a subscriber object .

21 ro s : : Subsc r ibe r sub = nh . sub s c r i b e (" t u r t l e 1 /pose " , 1000 ,

22 &poseMessageReceived) ;

23

24 // Let ROS take over .

25 ro s : : sp in () ;

26 }

Listing 3.5: A ROS program called subpose.cpp that subscribes to pose data published by a

turtlesim robot.

tion then has access to all of the fields in the received message, and can store, use, or dis-

card that data as it sees fit. As always, we must include the appropriate header that defines

this class.

In the example, our callback accepts messages of type turtlesim::Pose, so the header

we need is turtlesim/Pose.h. (We can learn that this is the correct message type using ros-

topic info; recall Section 2.7.2.) The callback simply prints out some data from the mes-

sage, including its x, y, and theta data members, via ROS_INFO_STREAM. (We can

learn what data fields the message type has using rosmsg show, again from Section 2.7.2.)

A real program would, of course, generally do some meaningful work with the message.

56

3.4. A subscriber program

Notice that subscriber callback functions have a void return type. A bit of thought

should confirm that this makes sense. Since it’s ROS’s job to call this function, there’s no

place in our program for any non-void return value to go.

Creating a subscriber object To subscribe to a topic, we create a ros::Subscriber ob-

ject:Í12

ros::Subscriber sub = node_handle.subscribe(topic_name,

queue_size, pointer_to_callback_function);

This line has several moving parts (most of which have analogues in the declaration of a

ros::Publisher):

R The node_handle is the same node handle object that we’ve seen several times

already.

R The topic_name is the name of the topic to which we want to subscribe, in the

form of a string. This example uses "turtle1/pose". Again, we omit the leading

slash to make this string a relative name.

R The queue_size is the integer size of the message queue for this subscriber. Usu-

ally, you can use a large value like 1000 without worrying too much about the queu-

ing process.

¹ When new messages arrive, they are stored in a queue until ROS gets a chance

to execute your callback function. This parameter establishes a maximum

number of messages that ROS will store in that queue at one time. If new

messages arrive when the queue is full, the oldest unprocessed messages will

be dropped to make room. This may seem, on the surface, to be very similar

to the technique used for publishing messages—See page 50—but differs in

an important way: The rate at which ROS can empty a publishing queue de-

pends on the time taken to actually transmit the messages to subscribers, and

is largely out of our control. In contrast, the speed with which ROS empties

a subscribing queue depends on how quickly we process callbacks. Thus, we

can reduce the likelihood of a subscriber queue overflowing by (a) ensuring

that we allow callbacks to occur, via ros::spin or ros::spinOnce, frequently,

and (b) reducing the amount of time consumed by each callback.

Í12http://wiki.ros.org/roscpp/Overview/PublishersandSubscribers

57

http://wiki.ros.org/roscpp/Overview/Publishers and Subscribers

3. WRITING ROS PROGRAMS

R The last parameter is a pointer to the callback function that ROS should execute

when messages arrive. In C++, you can get a pointer to a function using the amper-

sand (&, “address-of”) operator on the function name. In our example, it looks like

this:

&poseMessageReceived

� Don’t make the common mistake of writing () (or even (msg)) after the func-

tion name. Those parentheses (and arguments) are needed only when you ac-

tually want to call a function, not when you want to get a pointer to a function

without calling it, as we are doing here. ROS supplies the required arguments

when it calls your callback function.

¹ Comment on C++ syntax: The ampersand is actually optional, and many pro-

grams omit it. The compiler can tell that you want a pointer to the function,

rather than the value returned from executing the function, because the func-

tion name is not followed by parentheses. The author’s suggestion is to in-

clude it, because it makes the fact that we’re dealing with a pointer more ob-

vious to human readers.

You might notice that, while creating a ros::Subscriber object, we do not explicitly

mention the message type anywhere. In fact, the subscribe method is templated, and

the C++ compiler infers the correct message type based on the data type of the callback

function pointer we provide.

� If you use the wrong message type as the argument to your callback function, the

compiler will not be able to detect this error. Instead, you’ll see run-time error mes-

sages complaining about the type mismatch. These errors could, depending on the

timing, come from either the publisher or subscriber nodes.

One potentially counterintuitive fact about ros::Subscriber objects is that it is quite

rare to actually call any of their methods. Instead, the lifetime of that object is the most

58

3.4. A subscriber program

relevant part: When we construct a ros::Subscriber, our node establishes connections

with any publishers of the named topic. When the object is destroyed—either by going out

of scope, or by a delete of an object created by the new operator—those connections are

dropped.

Giving ROS control The final complication is that ROS will only execute our callback

function when we give it explicit permission to do so.Í13 There are actually two slightly

different ways to accomplish this. One version looks like this:

ros::spinOnce();

This code asks ROS to execute all of the pending callbacks from all of the node’s subscrip-

tions, and then return control back to us. The other option looks like this:

ros::spin();

This alternative to ros::spinOnce() asks ROS to wait for and execute callbacks until the

node shuts down. In other words, ros::spin() is roughly equivalent to this loop:

while(ros::ok()) {

ros::spinOnce();

}

The question of whether to use ros::spinOnce() or ros::spin() comes down to this: Does

your program have any repetitive work to do, other than responding to callbacks? If the

answer is “No,” then use ros::spin(). If the answer is “Yes,” then a reasonable option is to

write a loop that does that other work and calls ros::spinOnce() periodically to process

callbacks. Listing 3.5 uses ros::spin() because that program’s only job is to receive and

summarize incoming pose messages.

� A common error in subscriber programs is to mistakenly omit both ros::spinOnce

and ros::spin. In this case, ROS never has an opportunity to execute your callback

function. Omitting ros::spin will likely cause your program to exit shortly after it

starts. Omitting ros::spinOnce might make it appear as though no messages are

being received.

Í13http://wiki.ros.org/roscpp/Overview/CallbacksandSpinning

59

http://wiki.ros.org/roscpp/Overview/Callbacks and Spinning

3. WRITING ROS PROGRAMS

1 [INFO] [1370972120 .089584153] : p o s i t i o n =(2 .42 ,2 . 32) d i r e c t i o n =1.93

2 [INFO] [1370972120 .105376510] : p o s i t i o n =(2 .41 ,2 . 33) d i r e c t i o n =1.95

3 [INFO] [1370972120 .121365352] : p o s i t i o n =(2 .41 ,2 . 34) d i r e c t i o n =1.96

4 [INFO] [1370972120 .137468325] : p o s i t i o n =(2 .40 ,2 . 36) d i r e c t i o n =1.98

5 [INFO] [1370972120 .153486499] : p o s i t i o n =(2 .40 ,2 . 37) d i r e c t i o n =2.00

6 [INFO] [1370972120 .169468546] : p o s i t i o n =(2 .39 ,2 . 38) d i r e c t i o n =2.01

7 [INFO] [1370972120 .185472204] : p o s i t i o n =(2 .39 ,2 . 39) d i r e c t i o n =2.03

Listing 3.6: Sample output from subpose, showing gradual changes in the robot’s pose.

3.4.1 Compiling and executing subpose

This program can be compiled and executed just like the first two examples we’ve seen.

� Don’t forget to ensure that your package has a dependency on turtlesim, which is

needed because we’re using the turtlesim/Pose message type. See Section 3.3.3 for

a reminder of how to declare this dependency.

A sample of the program’s output, from when both turtlesim_node and pubvel were

also running, appears as Listing 3.6.

3.5 Looking forward

This chapter’s intent was to show how to write, compile, and execute a few simple pro-

grams, including programs that perform the core ROS operations of publishing and sub-

scribing. Each of these programs used a macro called ROS_INFO_STREAM to gener-

ate informational log messages. In the next chapter, we’ll examine ROS’s logging system,

of which ROS_INFO_STREAM is just a small part, more completely.

60

